
Cloud Native - Benutzerhandbuch (v1.1.1)
S2 = zur Weitergabe an Kunden

55050 - Cloud Native

Cloud Native - Benutzerhandbuch

Inhaltsverzeichnis

1 Überblick . 5

2 Management der Cloud-Native-Umgebung . 7

2.1 Kubernetes-Cluster . 7

2.1.1 Leistungsschnitt: Anwendungsbetrieb durch den Kunden . 7

2.1.2 Leistungsschnitt: Anwendungsbetrieb durch FI-TS . 7

2.2 Cloud-Native-API . 7

2.2.1 Hierarchische Strukturierung der Cloud-Native-Einheiten . 8

2.2.2 Reservierung von IP-Adressen . 8

2.2.3 Privilegierte Container . 9

2.2.4 Auditing . 9

2.2.4.1 Splunk-Konfiguration . 10

2.2.4.2 Cluster-Forwarding-Konfiguration . 10

2.3 Kubernetes API . 10

2.3.1 Berechtigungsvergabe . 11

2.3.2 IP-basierte Einschränkung des Zugriffs auf den Kubernetes API Server 11

2.3.3 Technische Benutzer für Continuous Integration . 12

2.3.4 Eine Kubeconfig erzeugen . 13

2.3.5 Firewall, Network-Policies und ClusterwideNetworkpolicy . 14

2.3.6 Cloud-Provider-Interface für die FI-TS Infrastruktur . 17

2.3.7 Austausch defekter Nodes . 17

2.3.8 Local NVMe-Storage . 18

2.3.8.1 Migration von csi-lvm zu csi-driver-lvm . 20

2.3.9 Cloud Native Block-Storage . 21

2.3.9.1 Nutzung bestehender Block-Storage-Volumes . 22

2.3.9.2 Snapshots . 22

2.3.9.3 Optional: Clientseitige Volume-Verschlüsselung . 23

2.3.10 S3-kompatibles Object-Storage . 24

2.4 Middleware und Datenbanken . 26

2.5 Cloud Platform Status Dashboard . 27

2.6 Beendigung . 27

2.6.1 Export der Kubernetes-Konfiguration und -Volumes . 27

2.6.2 Löschen von Kubernetes-Clustern . 27

2.6.3 Löschen von Block-Storage Volumes . 28

2.6.4 S3 Object-Store . 28

3 Patchmanagement und Lifecycle . 29

3.1 Patchmanagement Cluster . 29

S2 = zur Weitergabe an Kunden 2 von 64

Cloud Native - Benutzerhandbuch

3.1.1 Kubernetes-Update/-Upgrade . 29

3.1.2 Betriebssystem-Update/-Upgrade für Nodes . 29

3.1.3 Release-Reporting und Software-Lifecycle für Kubernetes-Cluster 30

3.2 Patchmanagement für Middleware und Datenbanken . 31

3.2.1 Updates/Upgrades . 31

3.2.2 Release-Reporting und Software-Lifecycle . 31

4 Netzanbindung . 32

4.1 Internet-Verbindungen . 32

4.2 Interne Verbindungen . 34

5 Produktoption Isolierte Kubernetes-Cluster . 36

5.1 Clustervarianten in der FCN . 36

5.2 Unbedingt erforderliche Containerimages . 37

5.3 Containerimages für eigene Applikationen . 37

5.4 Netzwerkarchitektur . 38

5.5 Praktische Handhabung . 40

5.5.1 Internet Access Restricted . 40

5.5.2 Internet Access Forbidden . 41

5.6 Service . 43

5.7 Kosten . 44

6 Servertypen . 45

6.1 Server mit GPUs . 46

6.1.1 Einrichtung . 46

7 Ratgeber und Best Practices . 49

7.1 Release Notes und Changes . 49

7.2 Überlegungen vor der Anlage eines neuen Clusters . 50

7.2.1 Maximale Clustergröße and Anzahl von Pods pro Worker Node 51

7.2.2 Einsatz von Cloud Storage . 52

7.2.3 Cluster Purposes . 52

7.2.4 Hochverfügbare Kubernetes Control Plane . 53

7.2.5 Cluster-Autoscaling . 54

7.2.6 kubectl cp und kubectl exec . 55

7.2.7 IP Adressen . 55

7.2.7.1 Flüchtige IP Adressen . 55

7.2.7.1.1 Adresse des Kubernetes API Servers . 56

7.2.7.2 Adresse der Cluster Firewall . 56

7.2.7.3 Service Type Load Balancer Adressen . 56

7.2.7.4 Adresse der Cloud Native API . 56

7.3 Cluster- und Node-Updates mit Zero Downtime . 57

S2 = zur Weitergabe an Kunden 3 von 64

Cloud Native - Benutzerhandbuch

7.3.1 Reduktion der Kopplung zu gemanageten Komponenten . 57

7.3.2 Simulation von Updateszenarien . 57

7.3.2.1 kubelet und Container Runtime . 57

7.3.2.2 MetalLB . 58

7.4 Nutzung von Worker Groups . 58

7.4.1 Upgrade von Kubernetes mit Hilfe von Worker Groups . 59

7.5 Auto-Updates . 60

7.5.1 Kubernetes Patch Version . 61

7.5.2 Machine Image Updates . 61

7.5.3 Firewall Image Updates . 61

7.6 Geo-redundante Software Deployments . 61

7.7 Q&A . 61

7.8 Weitere Hilfestellung . 62

8 Änderungshistorie . 63

S2 = zur Weitergabe an Kunden 4 von 64

Cloud Native - Benutzerhandbuch

1 Überblick

IT-Verantwortliche in vielen Wirtschaftszweigen mussten erkennen, dass große monolitisch

strukturierte Anwendungen im Betrieb oft unzureichend skalieren, schwierig zu warten

sind und sich aufgrund massiver innerer Abhängigkeiten nur mit sehr hohem personellen,

organisatorischen und materiellen Aufwand weiterentwickeln lassen. Angeregt durch agil

arbeitende Entwicklercommunitys und neu etablierte Devops-Prozesse in der Industrie sowie

die Fähigkeit von Linux, Workloads getrennt in leichtgewichtigen Containern abzuarbeiten,

hat in den letzten Jahren ein Wandel hin zu containerisierten Entwicklungs-, Build- und

Betriebsprozessen stattgefunden.

Im Gegensatz zu monolitisch aufgebauten Anwendungen zeichnen sich auf mehrere Contai-

ner verteilte Applikationen durch ihre einfache Skalierbarkeit, leichte Wartbarkeit sowie eine

lose Kopplung der einzelnen Funktionseinheiten auf, was deren Weiterentwicklung in der

Praxis ungleich leichter gestaltet. Das wegen seiner Open-Source-Strategie zukunftssichere

Kubernetes-Projekt ist unschwer als Quasi-Standard für den teilautomatisierten Betrieb

komplexer Containerlandschaften in modernen Clouds auszumachen.

Mit den Managed Hosting Services der Produktfamilie FI-TS Finance-Cloud Native bietet FI-TS

seinen Kunden die Möglichkeit, container-basierte Anwendungen auf einer hochmodernen

dedizierten Kubernetes-Plattform zu entwickeln und produktiv zu betreiben. FI-TS-Kunden

können des Weiteren aus einem wachsenden Produktset Cloud-native Services rund um die

Themen Storage, Datenbanken und Data Streaming wählen. In Abgrenzung zu anderen Markt-

teilnehmern orientiert sich das Design der Cloudarchitektur in besonderem Maße auf die IT-

Sicherheit und die Einhaltung der Compliance-Vorgaben von Banken und Versicherungen. FI-

TS betreibt die Kundencluster zudem ausnahmslos in eigenen Rechenzentren in Deutschland.

Alle Kubernetes-Cluster von FI-TS unterliegen einem strikten rollen-basierten Zugriffsrechte-

System, in das auf Wunsch kundeneigene Berechtigungssysteme integrierbar sind.

Die Kubernetes-Lösung beinhaltet die komplette Hardware-Infrastruktur, die Software sowie

den Support, die für das Ausführen von Containern und für deren Orchestrierung durch Ku-

bernetes nötig sind. Jedes Kunden-Cluster wird in einem eigenen Netzsegment mit eigener

dedizierter Firewall und eigener Routing-Instanz (VRF) bereitgestellt. Lokal angebundene

NVMe-Flashdisks gewährleisten selbst bei stark ressourcenabhängigen Anwendungsfällen

stets eine optimale Performance. Kubernetes-Cluster sind inhärent mit Mechanismen zum

Schutz gegen Ausfälle ausgestattet. FI-TS berät darüber hinaus über die Möglichkeit, Cluster

parallel an mehreren RZ-Standorten zu betreiben.

S2 = zur Weitergabe an Kunden 5 von 64

../Architektur/02-L%C3%B6sungsbeschreibung.md/#l%C3%B6sungsumfang-fi-ts-finance-cloud-native

Cloud Native - Benutzerhandbuch

Die Bereitstellung, das Management und das Löschen von ganzen Kubernetes-Clustern

erfolgt automatisiert über ein von FI-TS konzipiertes API. Das Bereitstellen zusätzlicher

Clusterserver (sogenannter Worker-Nodes) erfolgt dynamisch anhand der im Kubernetes-

Deployment vorgenommenen Ressourcen-Reservierungen. Anders als bei konventionellen

Cloudarchitekturen muss der Kunde also nicht in einem vorgegebenen Verfahrensschritt

explizit einen Server ordern, wenn er in seinem Cluster mehr Computing-Leistung benötigt.

Die Abrechnung der erbrachten Leistungen erfolgt dynamisch anhand von reservierten

virtuellen CPUs, RAM und Storage für die Container des Kunden im erfassten Zeitraum.

Bestandskunden benötigen deshalb für die Nutzung der Cloud-Native Plattform eine Ver-

tragserweiterung, die die dynamische Verrechnung regelt.

S2 = zur Weitergabe an Kunden 6 von 64

Cloud Native - Benutzerhandbuch

2 Management der Cloud-Native-Umgebung

FI-TS bietet seine Dienstleistungen auf der Cloud-Native-Plattform in verschiedenen Leis-

tungsschnitten an. Der Kunde darf für einzelne Umgebungen (zum Beispiel Test, Pre-Produk-

tion und Produktion) passend zu seinem Bedarf verschiedene Schnitte zu wählen.

Technisch erfolgen der Bezug und die Verwaltung sämtlicher Cloud-Native-Produkte über

APIs. Im ersten Schritt ist dies das von FI-TS übergreifend bereitgestellte Cloud-Native-API,

aber auch über die APIs der jeweiligen Produkte lassen sich vertrags- oder service-relevante

Änderungen durchführen.

2.1 Kubernetes-Cluster

2.1.1 Leistungsschnitt: Anwendungsbetrieb durch den Kunden

Im einfachsten Leistungsschnitt stellt FI-TS dem Kunden lediglich ein oder mehrere Kuber-

netes-Cluster bereit. In diesem Szenario dürfen und müssen die Kunden das Management

ihrer Cluster selbstständig über das Cloud-API von FI-TS vornehmen. Hierzu gehören insbe-

sondere:

• das Anlegen und Löschen der Cluster

• das Durchführen von Updates und Upgrades

• das Deployment von Anwendungen im Kubernetes-Cluster mit administrativen Rechten

2.1.2 Leistungsschnitt: Anwendungsbetrieb durch FI-TS

In der wertigeren Service-Variante übernehmen die FI-TS die Betriebsverantwortung für die

Anwendungen im Kubernetes-Cluster. Die Spezialisten managen die Kubernetes-Cluster in

umfassender Weise. Beispielsweise führen sie - wenn möglich - Tests auf einer Pre-Produk-

tionsumgebung durch, bevor sie Updates in Produktivsysteme einspielen. Organisatorische

und regulatorische Gründe machen es bei diesem Leistungsschnitt nötig, aus Perspektive des

Kunden die Zugriffsrechte auf das Cloud-API der FI-TS und das Kubernetes-Cluster deutlich

zu beschränken.

2.2 Cloud-Native-API

Das Anlegen und Verwalten von Cloud-Native-Produkten gelingen über ein REST-API bezie-

hungsweise den zugehörigen Kommandozeilen-Tool cloudctl. Das API löst unter anderem die

folgenden Aktionen aus:

S2 = zur Weitergabe an Kunden 7 von 64

Cloud Native - Benutzerhandbuch

• Verwalten von Projekten zur logischen Strukturierung von Umgebungen und Anwendungen

• Anlegen, Aktualisieren oder Löschen von Kubernetes-Clustern

• Abruf von Zugriffsdaten (Credentials) für die Kubernetes-Cluster

• Verwalten der reservierten IP-Adressen und Netze

• Abruf von Verbrauchsdaten

Der Zugriff auf die Cloud-Native-APIs erfolgt über das Internet. Für diesen Vorgang ist ein

gültiger OpenID-Connect-Token von einem akkreditierten OpenID Connect Authentication

Server¹ erforderlich.

2.2.1 Hierarchische Strukturierung der Cloud-Native-Einheiten

Für die Verwaltung der Cloud-Native-Plattform sind die folgenden Strukturierungseinheiten

wichtig:

• Tenant: Mit Vertragsabschluss legt FI-TS einen Mandanten-Zugang für Cloud-Native an und

ordnet diesem Zugang auch den Einzelvertrag für die Abrechnung der in Anspruch genom-

menen Cloud-Native-Ressourcen zu. (Als Spezialfall kann es sinnvoll sein, dass ein Kunde

mehrere Cloud-Native-Einzelverträge schließt. Dann wird FI-TS jeden Vertrag als separaten

Tenant behandeln.) Innerhalb des Tenant kann der Mandant mehrere Projekte anlegen.

• Projekt: Projekte dienen der logischen Gruppierung von mehreren Kubernetes-Clustern.

Cluster, die zu einem Projekt gehören, können externe IP-Adressen gemeinsam verwenden

(zum Beispiel für Loadbalancing oder Failover).

• Cluster: Die Cloud-Native-Architektur von FI-TS gestattet es, dass Kunden mehrere unab-

hängige Kubernetes-Cluster verwenden, um zum Beispiel Stages oder Sicherheitszonen

voneinander zu trennen. Um dabei ein sehr hohes Maß an Sicherheit zu gewährleisten,

richtet FI-TS Cluster auf dedizierter Server-Hardware (Worker-Nodes und Firewall) ein und

trennt es auf Layer-3-Ebene mit Firewall-Systemen von anderen ab.

2.2.2 Reservierung von IP-Adressen

Kunden können für die Services in ihrem Kubernetes-Cluster über das Cloud-Native-API

sowohl private² als auch öffentliche IP-Adressen reservieren. Wichtig ist, dass sie IP-Adressen

beim Reservieren stets einem Projekt zuordnen und nur in Kubernetes-Clustern verwenden,

die diesem Projekt zugeordnet sind.

¹Ein OpenID Connect Gateway zur Kopplung vorhandener Verzeichnisdienste (namentlich Active-Directory
und LDAP) kann FI-TS im Zuge einer Ersteinrichtung bereitstellen.

²Die Cloud-Native-Umgebung vergibt private IP-Adressen aus dem RFC6598-Bereich 100.64.0.0/10. Sie
sind über den MPLS-Backbone der FI-TS aus den Bestandsnetzen oder über CredNet erreichbar.

S2 = zur Weitergabe an Kunden 8 von 64

Cloud Native - Benutzerhandbuch

2.2.3 Privilegierte Container

Grundsätzlich beschränkt Kubernetes nicht die Ausführung privilegierter Container.

Seit der Kubernetes-Version 1.23 lassen sich privilegierte Container auf Namespace-Ebene

mithilfe des integrierten PodSecurity Admission Controller jedoch steuern. Der Default-

Pod-Security-Standard für Namespaces kann der Kunde über cloudctl cluster update <ID>

--default-pod-security-standard festgelegen.

Für Cluster mit Kubernetes Version 1.24 oder früher bestand und besteht noch die Möglich-

keit, die veralteten PodSecurityPolcies (deprecated) zu verwenden. Diese Funktionalität kann

der Kunde über den Befehl cloudctl cluster update <ID> --allowprivileged=false aktivie-

ren.

FI-TS empfiehlt Kunden, Cluster mit Kubernetes ab Versionen 1.24 auf den integrierten

PodSecurity Admission Controller anstelle von PodSecurityPolicies umzustellen.

2.2.4 Auditing

Für jedes Cluster kann ein Audit-Log über die Zugriffe auf die kube-apiserver API geführt

werden und muss über cloudctl cluster audit konfiguriert werden. Das Audit-Log kann

an unterschiedliche Endpunkte wie Splunk oder für den Test-Betrieb an das eigene Cluster

weitergeleitet werden. Details hierzu finden sich in den folgenden Kapiteln. Mittels cloudctl

cluster audit --cluster-id=<id> policy --from-file <path> kann die Audit-Policy gesetzt

werden. Diese Policy beschreibt welche API-Aufrufe an die gewählten Endpunkte weiterge-

leitet werden.

Standardmäßig wird sichergestellt, dass die gewählten Kubernetes API-Aufrufe am gewählten

Endpunkt ankommen bevor der Request ausgeführt wird. Dies kann mittels des cloudctl

cluster audit --cluster-id=<id> mode <mode> umgestellt werden. Die folgenden Einstellun-

gen stehen zur Auswahl:

• batch: sammelt Events und leitet diese asynchron in Batches weiter.

• blocking: blockiert API-Aufrufe bis die Verarbeitung des Events abgeschlossen oder fehlge-

schlagen ist.

• blocking-strict: blockiert ebenfalls die API-Aufrufe. Wenn die Verarbeitung fehlschlägt,

wird die Anfrage abgelehnt.

S2 = zur Weitergabe an Kunden 9 von 64

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://v1-24.docs.kubernetes.io/docs/concepts/security/pod-security-policy/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug/debug-cluster/audit/#audit-policy

Cloud Native - Benutzerhandbuch

2.2.4.1 Splunk-Konfiguration

Das empfohlene Ziel für die Audit-Logs ist Splunk und kann mittels cloudctl cluster audit --

cluster-id=<id> splunk konfiguriert werden. Hierfür muss das folgende Kommando mit den

entsprechenden Zugangsdaten ausgeführt werden:

$ cloudctl cluster audit --cluster-id=<id> \ bash
 splunk \
 --enabled \
 --ca <path-to-certificate-authority> \
 --host <the-HEC-host-of-splunk> \
 --index <the-target-index> \
 --port <the-port-of-splunk> \
 --token <the-token-for-splunk>

2.2.4.2 Cluster-Forwarding-Konfiguration

Als weiteres Ziel für die Audit-Logs kann das Cluster-Forwarding für den Test-Betrieb

verwendet werden. Mittels cloudctl cluster audit --cluster-id=<id> cluster-forwarding --

enabled können die Audit-Logs an das eigene Cluster weitergeleitet werden. Hierfür wird ein

Deployment audittailer mit einem Pod im Namespace audit erstellt. Die Auit-Log-Meldun-

gen werden von diesem Pod als Container-Log gescrhieben und können mit einer beliebigen

Kubernetes Logging-Lösung verarbeitet werden.

Warning

Wir empfehlen Cluster-Forwarding nicht für die Verwendung im Produktions-Betrieb.

Grund hierfür ist, dass Anwender, die Zugriff auf die Kubernetes API besitzen, versuchen

können das Audit-Forwarding zu blockieren oder zu manipulieren. Um diesen Angriffs-

vektor auszuschließen, verwenden Sie stattdessen das Splunk Backend. Die Audit-Logs

werden dann direkt zu Splunk weitergeleitet ohne den Umweg über das eigene Cluster zu

nehmen. Außerdem ist das Feature nicht mit hochverfügbaren Kubernetes Control Planes

(siehe Abschnitt 7.2.4) kompatibel.

Mittels --enabled=false kann das Cluster-Forwarding wieder deaktiviert werden. Das

audittailer Deployment wird hierdurch ebenfalls entfernt.

2.3 Kubernetes API

Mit dem Start eines Kubernetes-Clusters entsteht für dieses Cluster zugleich ein API-

Server. Das Kubernetes-API ist weitgehend standardisiert und öffentlich dokumentiert. Die

S2 = zur Weitergabe an Kunden 10 von 64

Cloud Native - Benutzerhandbuch

Kubernetes-Implementierung der FI-TS beinhaltet einige Erweiterungen, die den compliance-

konformen Einsatz von Kubernetes unterstützen und das Verwalten vereinfachen:

2.3.1 Berechtigungsvergabe

FI-TS berechtigt einen Kubernetes-Cluster-User beim Zugriff auf API-Server auch anhand der

Gruppenzuordnung, die sein OpenID-Connect-Token enthält. Hierzu existiert ein Namenskon-

zept, das die Rechtevergabe in Stufen zulässt (siehe auch IAM Roles Overview). Die Struktur

ist so konzipiert, dass sie die Integration in vorhandene Berechtigungsmanagement-Systeme

erleichtert.

Abbildung 1: Namenskonzept zur Abstufung der Zugriffsrechte

Um auch Zugriffe auf Ebene der Kubernetes-Namespaces zu beschränken, bekommen FI-TS-

Kubernetes-Cluster einen Authentication Webhook installiert, der die API-Zugriffe zusätzlich

zu den RBAC-Mechanismen von Kubernetes reglementiert.

2.3.2 IP-basierte Einschränkung des Zugriffs auf den Kubernetes API Server

Standardmäßig ist der Kubernetes API Server auch von außerhalb der Cloud-Native Netze aus

dem Internet erreichbar. Kunden haben die Möglichkeit, den Zugriff auf den Kubernetes API

Server mit cloudctl auf bestimmte Netzbereiche einzuschränken (ACL Whitelisting):

cloudctl cluster update ... --enable-kube-apiserver-acl --kube-apiserver-acl-
set-allowed-cidrs <CIDR>,<CIDR>

bash

S2 = zur Weitergabe an Kunden 11 von 64

https://git.f-i-ts.de/cloud-native/iam/iam-concept

Cloud Native - Benutzerhandbuch

Warning

Auch die Mitarbeiter von FI-TS haben nach der Aktivierung dieser Funktion keinen Zugriff

mehr auf Ihren Kubernetes-API-Server und können Sie daher bei Problemen innerhalb

Ihres Clusters nicht mehr unterstützen.

2.3.3 Technische Benutzer für Continuous Integration

CI-Pipelines steuern ihre Workflows häufig mit Hilfe von technischen Benutzern (Serviceac-

counts). Beim Anlegen solcher nicht-interaktiver User ist darauf zu achten, den Accounts nur

das funktional unabdingbare Set an Rechten einzuräumen.

Der erste Schritt im folgenden Beispiel legt einen ServiceAccount und entsprechende Rollen

im Namespace test an und bindet die Rollen an den Serviceaccount.

ci-service-account.yml:

apiVersion: v1 yaml
kind: ServiceAccount
metadata:
 name: ci-service-account
 namespace: test

ci-role-and-rolebinding.yml:

S2 = zur Weitergabe an Kunden 12 von 64

Cloud Native - Benutzerhandbuch

--- yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: ci-role
 namespace: test
rules:
- apiGroups: ["*"] # '*' nur für das Beispiel, Rechte einschränken!
 resources: ["*"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: ci-rolebinding
 namespace: test
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: ci-role
subjects:
- namespace: test
 kind: ServiceAccount
 name: ci-service-account

Serviceaccount & Role Binding anlegen:

kubectl create -f ci-service-account.yml bash
kubectl create -f ci-role-and-rolebinding.yml

Danach holt sich der Administrator das Token für den Serviceaccount und erzeugt eine

kubeconfig:

kubectl get -n test $(kubectl get secrets -n test -o name | grep ci-service-
account-token) -o json | jq -r '.data | .token' | base64 -d

bash

2.3.4 Eine Kubeconfig erzeugen

Oft ist für ein Cluster bereits eine kubeconfig vorhanden, sodass dessen Administrator diese

Datei kopieren und anpassen kann. Sind diese Kubeconfig und der passende Context gerade

aktiv, extrahiert er den benötigten Kubeconfig-Ausschnitt:

S2 = zur Weitergabe an Kunden 13 von 64

Cloud Native - Benutzerhandbuch

kubectl config view --flatten --minify > ci-kubeconfig bash

Dann editiert der Cluster-Administrator den User, indem er die vorhandenen Werte durch das

Token ersetzt:

apiVersion: v1 yaml
kind: Config
clusters:
- cluster:
 certificate-authority-data: ...
 server: ...
 name: name-des-clusters
contexts:
- context:
 cluster: name-des-clusters
 user: ci-service-account
 name: ci-service-account-context
current-context: ci-service-account-context
users:
- name: ci-service-account
 user:
 token: <hier Token des service-accounts einfügen>

Wer die Kubeconfig benutzen will, gibt sie kubectl als Parameter oder in Form der Environ-

ment-Variable KUBECONFIG mit.

kubectl --kubeconfig ci-kubeconfig -n test create deployment nginx --image
nginx

bash

kubectl --kubeconfig ci-kubeconfig -n test get pods

2.3.5 Firewall, Network-Policies und ClusterwideNetworkpolicy

Um eine optimale Trennung der Kubernetes-Cluster von verschiedenen Kunden und Stages

zu erreichen, stellt FI-TS für jedes Cluster eine eigene physische Firewall als Übergangspunkt

zu anderen Netzsegmenten bereit. Diese verbietet in der Grundeinstellung alle eingehenden

Zugriffe (Whitelist-Strategie) und erlaubt nur abgehende HTTPS-Verbindungen.

Ebenso wird Calico als CNI-Provider mit der Unterstützung von Network-Policies aktiviert, um

eine Micro-Segmentierung der Netzkommunikation im Kubernetes-Cluster zu etablieren.

Network-Policies sind für die Beschränkung der Kommunikation zwischen Pods und

Services im Cluster verantwortlich. Und erst durch Definition der entsprechenden

S2 = zur Weitergabe an Kunden 14 von 64

https://docs.projectcalico.org/about/about-calico/

Cloud Native - Benutzerhandbuch

ClusterwideNetworkpolicy im Kubernetes-Deployment wird eine Kommunikation nach außen

möglich. Ein spezieller Firewall-Controller setzt diese Policies in Regeln auf der vorgelagerten

Firewall um.

Firewall-Freischaltungen

Damit der Firewall-Controller ClusterwideNetworkPolicy-Objekte als relevant erachtet, müs-

sen diese zum Namespace firewall gehören.

Als Beispiel folgt hier eine ClusterwideNetworkPolicy mit einer Egress-Regel für NTP und einer

Ingress-Regel für auf Port 8443 eingehende Pakete:

--- yaml
apiVersion: metal-stack.io/v1
kind: ClusterwideNetworkPolicy
metadata:
 namespace: firewall
 name: clusterwidenetworkpolicy-sample
spec:
 egress:
 - to:
 - cidr: 1.1.0.0/24
 except:
 - 1.1.1.0/16
 - cidr: 8.8.8.8/32
 ports:
 - protocol: UDP
 port: 53
 - protocol: TCP
 port: 53
 ingress:
 - from:
 - cidr: 1.1.0.0/24
 except:
 - 1.1.1.0/16
 - cidr: 8.8.8.8/32
 ports:
 - protocol: TCP
 port: 8443

Eine umfassende und stets aktuelle Dokumentation dazu ist beim Metal-Stack-Projekt zu

finden.

S2 = zur Weitergabe an Kunden 15 von 64

https://github.com/metal-stack/firewall-controller

Cloud Native - Benutzerhandbuch

Services vom Typ LoadBalancer setzt der Firewall-Controller in Firewall-Regeln um. Diese

können auch Einschränkungen und Freischaltungen anhand von Quell-IP-Netzen enthalten.

Hier das Beispiel einer Service-Definition mit einer Whitelist erlaubter Quell-IP-Netze:

--- yaml
apiVersion: v1
kind: Service
metadata:
 name: s1
 namespace: test-ns
spec:
 type: LoadBalancer
 loadBalancerIP: 212.37.83.1
 loadBalancerSourceRanges:
 - 192.168.0.0/24
 - 192.168.2.0/24
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 8063

Die Service-Definition erlaubt Port-80-Zugriffe zur IP 212.37.83.1 von den Adressbereichen

192.168.0.0/24 und 192.168.2.0/24. Die zugehörige Netfilter-Regel gestaltet sich folgender-

maßen:

ip saddr { 192.168.0.0/24, 192.168.2.0/24 } ip daddr { 212.37.83.1 } tcp
dport { 80 } counter accept comment "accept traffic for k8s service test-
ns/s1"

bash

Der Firewall-Controller spiegelt seine Informationen zu Drop-Vorgängen in den Cluster. Sie

sind über den droptailer-Pod im firewall-Namespace einsehbar: stern -n firewall drop.

SNAT-Adressen der Firewall

Das Metal-API weist jeder Firewall bei deren Start pro Netzsegment eine dynamische IP-

Adresse zu. Die Firewall fungiert in diesem Netzsegment fortan als Ein- und Austrittspunkt,

realisiert hierbei Source-NATing und verbirgt somit den cluster-internen Traffic vor dessen

Außenwelt.

Kunden, denen die mangelnde Vorhersagbarkeit der zugeteilten Firewall-IP Probleme berei-

tet, können zur Laufzeit des Firewall-Controllers eine oder mehrere zusätzliche, statische

S2 = zur Weitergabe an Kunden 16 von 64

Cloud Native - Benutzerhandbuch

Adressen zuweisen. Dazu muss der Cluster-Admin per cloudctl ip allocate eine statische IP-

Adresse des Segmentes reservieren, die er dann bei cloudctl cluster create oder ... update

persistiert:

cloudctl ip allocate --name egress-ip-internet --network internet --project
<PROJECT-ID> --description "static ip used for egress traffic"

bash

cloudctl cluster create ... --egress internet:<Internet-IP_1>
cloudctl cluster update ... --egress internet:<Internet-IP_1> --egress
internet:<Internet-IP_2> --egress mpls:<MPLS-IP>

Nebenbedingungen:

• Egress-Adressen lassen sich erst mit Firewall-Images seit dem Build-Datum 22.11.2020

beeinflussen

• Egress-Adressen müssen statisch sein und sind nicht für andere Zwecke verwendbar

• Wichtig: Wer Egress-Einstellungen ändert, muss stets alle Adressen aller Netzsegmente

angeben

• Sind mehrere IP-Adressen pro Netzsegment konfiguriert (--egress internet:Internet-

IP_1 --egress internet:Internet-IP_2), setzt die Firewall für jede davon SNAT um. Dieses

Feature kommt Anwendungen entgegen, bei denen Port Exhaustion (keine freien Ports

mehr) infolge vieler offengehaltener Verbindungen droht.

2.3.6 Cloud-Provider-Interface für die FI-TS Infrastruktur

Kubernetes steuert auch die Bereitstellung der für das Cluster notwendi-

gen Hardware-Ressourcen. Ausschlaggebend sind die im Kubernetes-Deployment

spezifizierten Ressourcen-Reservierungen³ (spec.containers[].resources.requests.cpu,

spec.containers[].resources.requests.memory oder Volume-Claims für die Storage-Klasse

csi-lvm). Ein Autoscaler sorgt dafür, dass zusätzliche Worker-Nodes in das Kubernetes-

Cluster aufgenommen werden, wenn die Summe der angeforderten Ressourcen die aktuell

verfügbaren überschreitet.

2.3.7 Austausch defekter Nodes

Jeder Node im Kubernetes-Cluster der FCN läuft exklusiv auf einer dedizierten physischen

Maschine. Es kann vorkommen, dass diese Nodes ausfallen, sei es aufgrund von defekter

Hardware, Software-Fehlern (z.B. im Kernel, Containerd oder Kubelet) oder durch fehlerhafte

Anwendungen im Cluster. In solchen Fällen versetzt Kubernetes den betroffenen Node nor-

³Die im Kubernetes ebenfalls mögliche Angabe von Limits für die Container-Ressourcen darf die Reservie-
rung überschreiten und ist nicht abrechnungsrelevant. Die im Limit gesetzten Werte lösen aber keine Reaktion
des Autoscalers aus. Es wird daher empfohlen, dass die Limits nur moderat über den Reservierungen liegen,
um unvorhergesehene Performance-Probleme der Anwendungscontainer zu vermeiden.

S2 = zur Weitergabe an Kunden 17 von 64

Cloud Native - Benutzerhandbuch

malerweise in den Zustand „NotReady“ und verteilt die Workloads, sofern sie keine lokalen

Volumes verwenden, umgehend auf andere Nodes im Cluster.

Die FCN ersetzt ausgefallene Nodes innerhalb einer konfigurierbaren Zeitspanne automa-

tisch. Standardmäßig beträgt die Zeitspanne für den Austausch von defekten Nodes 7 Tage.

Es wird empfohlen, diesen Wert auf einen niedrigeren Wert zu setzen, beispielsweise auf 24

Stunden. Kunden können dies über die Kommandozeile mit dem Befehl cloudctl cluster

update --healthtimeout 24h konfigurieren.

Für den Fall, dass der Workernode ein Fehlverhalten zeigt, das Kubernetes nicht automatisch

erkennt, oder wenn der Kunde den Austausch eines defekten Nodes aus anderen Gründen

sofort durchführen möchten, besteht die Möglichkeit, dies manuell mit kubectl zu veranlas-

sen. Dazu muss dem Node die folgende Annotation hinzugefügt bekommen:

kubectl annotate node <Node-Name> node.machine.sapcloud.io/trigger-deletion-
by-mcm=true

bash

Dadurch fügt Kubernetes dem Cluster einen neuen Node hinzu und fordert den angegebene

Node zum „Drain“ auf. Die Workloads verteilen sich, sofern möglich, auf die anderen Nodes.

Zu beachten ist, dass beim Austausch von Nodes lokale Volumes (StorageClass csi-lvm)

immer verloren gehen.

Falls eine Firewall offensichtlich oder vermutet defekt ist, lässt sich diese ebenfalls per kubectl

ausgetauschen. Dazu muss ein Admin das entsprechende fwmon-Objekt mit der folgenden

Annotation versehen:

kubectl annotate fwmon -n firewall <Fwmon-Name> firewall.metal-stack.io/roll-
set=true

bash

Dadurch bekommt der Cluster eine neue Firewall zugeordnet, und die vorhandene Firewall

wird entfernt. Dies führt zu einer kurzzeitigen Unterbrechung der Verfügbarkeit des Clusters.

2.3.8 Local NVMe-Storage

Alle Workernodes im Kubernetes-Cluster verfügen über lokal installierte NVM-Express-SSDs.

Damit steht jedem Node ein hochperformantes Speichermedium zur Verfügung, das Kuber-

netes über seinen Persistent Volume-Mechanismus (PV) an die Container anzubinden in der

Lage ist.

S2 = zur Weitergabe an Kunden 18 von 64

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Cloud Native - Benutzerhandbuch

Beim Lösungsdesign haben Kunden zu beachten, dass diese lokalen Volumes als solche nicht

redundant ausgelegt sind. Bei einem Hardwaredefekt gehen die Daten auf dem einzelnen

Workernode potenziell verloren, auf das Cluster bezogen bleiben die Daten regelmäßig

jedoch erhalten, sobald sie eine dafür ausgelegte Anwendung auf andere Knoten repliziert.

Wir raten daher grundsätzlich an Cloud Native Block-Storage (beschrieben in Abschnitt 2.3.9

zu verwenden).

Um den lokalen Node-Storage nutzbar zu machen, kann über die Cloud Native API ein von der

FI-TS gewartetes CSI Plugin namens csi-driver-lvm im Cluster provisioniert werden. Hierbei ist

zu beachten, dass dieses Plugin nicht (mehr) standardmäßig im Cluster bereitgestellt wird,

sondern bei der Anlage des Clusters mit dem Flag --enable-csi-driver-lvm explizit aktiviert

werden muss. Das Plugin kann auch noch nachträglich über das cloudctl cluster update --

enable-csi-driver-lvm aktiviert oder deaktiviert werden.

Daraufhin werden weitere StorageClasses zum Cluster hinzugefügt, die in

PersistentVolumeClaims (PVCs) verwendet werden können. Die Storage Classes basieren auf

der Verwendung von Linux LVM. Hier eine Erläuterung zu den Storage Classes:

• csi-driver-lvm-linear: Daten werden sequenziell auf den zur Verfügung stehenden Spei-

chermedien gespeichert.

• csi-driver-lvm-mirror: Daten werden gleichmäßig auf den zur Verfügung stehenden Spei-

chermedien verteilt, was die Lese- und Schreibgeschwindigkeit erhöht. Dies bietet eine

höhere Performance, aber der Ausfall eines Volumes führt zu Datenverlust.

• csi-driver-lvm-striped: Daten werden auf den zur Verfügung stehenden Speichermedien

dupliziert, was die Datensicherheit erhöht. Die Ausfallsicherheit ist hier höher, allerdings

steht in Summe weniger Speicherplatz zur Verfügung (50% der Kapazität).

apiVersion: v1 yaml
kind: PersistentVolumeClaim
metadata:
 name: lvm-pvc
 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: csi-driver-lvm-linear
 resources:
 requests:
 storage: 50Mi

S2 = zur Weitergabe an Kunden 19 von 64

https://github.com/container-storage-interface/spec/blob/master/spec.md
https://github.com/metal-stack/csi-driver-lvm
https://en.wikipedia.org/wiki/Logical_volume_management

Cloud Native - Benutzerhandbuch

Warning

Manche Workernodes verfügen nur über eine einzige lokale NVMe-Disk. In diesem Fall

entstehen aus der Verwendung der Storage Classes csi-driver-lvm-mirror oder csi-

driver-lvm-striped keine Vorteile. Erkundigen Sie sich ggf. vor dem Einsatz von lokalem

Storage über die Workertypes, die für den Cluster verwendet werden sollen.

2.3.8.1 Migration von csi-lvm zu csi-driver-lvm

In der Vergangenheit wurde in jedem Cluster eine Storage Class csi-lvm zur Verfügung ge-

stellt. Diese Installation wird auch bei bestehenden Clustern weiterhin fortgeführt. Allerdings

implementiert das dazugehörige Plugin eine inzwischen veraltete Version der CSI Spec von

Kubernetes. Es gibt inzwischen eine Nachfolgeversion mit dem Namen csi-driver-lvm, die

neben der Möglichkeit striped und mirror Volumes zu konfigurieren auch die Vergrößerung

von Volumes erlaubt.

Zum jetzigen Zeitpunkt existiert kein direkter Migrationspfad, um die existierenden Volumes

auf das Management durch das neue CSI Plugin zu migrieren. Aktuell wäre eine Umstellung

auf das neue CSI Plugin nur auf folgendem Weg möglich:

1. Entfernen aller PVs / PVCs, die mit der alten Storage Class csi-lvm (Provisioner metal-

stack.io/csi-lvm) angelegt wurden.

1 Deaktivierung des alten CSI Plugins mit dem Kommando: cloudctl cluster update <id> --

enable-csi-lvm=false. Dies entfernt auch die csi-lvm Storage Class aus dem Cluster.

1. Aktivierung von csi-driver-lvm über: cloudctl cluster update <id> --enable-csi-driver-

lvm. Es erscheinen nun die in Sektion Abschnitt 2.3.8 beschriebenen Storage Classes.

• Aus Komptabilitätsgründen wird wieder eine csi-lvm Storage Class erscheinen, damit

bestehende Kubernetes Manifeste weiterhin funktionieren.

1. Ggf. können über vom Cluster Anwender eingesetzte Backup-Restore-Mechanismen die

Daten bei der Neuanlage der PVs wiederhergestellt werden.

Warning

Theoretisch ist es möglich, das alte CSI Plugin zu deaktivieren ohne die bestehenden

PVs vorher zu löschen. In dem Fall laufen existierende Container zwar weiter, die dazuge-

hörigen Volumes sind aber verwaist. Das neue CSI Plugin verwaltet diese Volumes nicht

weiter. Spätestens nach einem Reboot des Nodes können diese Volumes nicht mehr

S2 = zur Weitergabe an Kunden 20 von 64

Cloud Native - Benutzerhandbuch

gemounted werden. Das Löschen von verwaisten PVs gibt den Speicher auf den Platten

nicht wieder frei.

Optional wäre eine eigene Installation von csi-driver-lvm durch den Cluster Anwender denk-

bar, um beide Plugin Versionen parallel zu betreiben. In dem Fall könnten Tools wie pv-migrate

zur Migration der Daten eingesetzt werden. In jedem Fall sollte ein solcher Migrationsweg im

Vorfeld gründlich erprobt werden.

2.3.9 Cloud Native Block-Storage

Neben dem lokalen Storage bietet FI-TS auch zentralen Blockstorage an jedem RZ-Standort

an, der unabhängig von Workernodes persistent und über das Netz erreichbar ist. Die

Performance ist vergleichbar mit der einer Workernode-lokalen Festplatte. FI-TS empfiehlt,

Cloud Native Blockstorage zu benutzen, da Kubernetes-Clusterupdates, -migrationen und das

Workernode-Scaling ungleich leichter von der Hand gehen als mit Local NVMe-Storage.

Ein CSI-Provider in Kubernetes bindet Volumes auf diesem Storage automatisch an einen

Node, wenn ein Pod den jeweiligen PersistentVolumeClaim nutzt. Ein Persistent Volume ist

aber jeweils nur an einem Node gleichzeitig nutzbar (Access-Mode: RWO - ReadWriteOnce).

Damit ein Kubernetes-Cluster den zentralen Blockstorage erreichen kann, muss es an das

Storage-Netz der jeweiligen Cloud Native Partition angebunden sein:

• Fellbach (fel-wps101) – 59e0f510-41bf-425c-a062-424ae7dad630

• Stuttgart (stg-kkw701) – cd12be9f-74d9-4460-8b06-e13a51faee23

• Nürnberg (nbg-w8101) – 282cd3b2-fe3f-47e8-b78e-d074aa9c20f5

• Nürnberg 2 (n2-tm1601) – 0c3ac419-e7f8-49ae-a2ec-bcc6ade99602

Die IDs der Storage-Netzwerke können Benutzer auch über das Kommando cloudctl cluster

inputs einsehen.

Diese Netzanbindung erfolgt bei der Cluster-Erstellung normalerweise automatisch und

passend zum Standort.

Altsysteme, bei denen das nicht der Fall ist, kann der Cluster-Admin über das Kommando

cloudctl cluster update <Cluster-UID> --external-networks <NetworkList> nachkonfigu-

rieren. In der NetworkList ergänzt er hierbei per Komma separiert die entsprechende Storage-

Netz-UUID. Die bestehenden Netze lassen sich zuvor mittels cloudctl cluster describe

<ClusterID> -o json | jq .AdditionalNetworks auslesen.

S2 = zur Weitergabe an Kunden 21 von 64

https://github.com/utkuozdemir/pv-migrate

Cloud Native - Benutzerhandbuch

Ist das Storage-Netz vom Cluster aus erreichbar, steht eine zusätzliche Storage Class

partition-gold bereit. Dies lässt sich zum Beispiel mit kubectl get StorageClasses überprü-

fen.

Zum Verwenden des Block-Storage muss ein PersistentVolumeClaim (PVC) der Storage Class

partition-gold angelegt sein. Beispiel:

apiVersion: v1 yaml
kind: PersistentVolumeClaim
metadata:
 name: fcn-block-pvc
 namespace: default
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: partition-gold
 resources:
 requests:
 storage: 50Mi

Es besteht weiterhin die Möglichkeit, mit dem Befehl cloudctl cluster update <Cluster-

UID> --default-storage-class partition-gold diese Storage Class automatisch bei allen neu

angelegten PVCs zu verwenden.

2.3.9.1 Nutzung bestehender Block-Storage-Volumes

Blockstorage-Volumes bleiben über die Laufzeit der Kubernetes-Cluster hinaus bestehen.

Voraussetzung: Die ReclaimPolicy des PV muss auf Retain gestellt sein. In der Grundeinstel-

lung steht die ReclaimPolicy auf Delete, was bewirkt, dass Kubernetes das PV nach dem

Löschen des zugehörigen Clusters ebenfalls löscht!

Innerhalb desselben Projekts und derselben Partition dürfen Kunden bereits mit Nutzdaten

gefüllte und mit Retain parametrisierte Volumes in neuen Kubernetes-Clustern dagegen

wieder anbinden. Hierzu können Sie mit cloudctl volume manifest eine Konfigurationsvorlage

für das bestehende PersistentVolume erzeugen.

2.3.9.2 Snapshots

Kubernetes ab 1.20.x unterstützt nativ das Anfertigen von Volume-Snapshots, wenn der zu-

gehörige CSI-Treiber dies zulässt. Die Vorgehensweise beschreibt die offiziellen Kubernetes-

Dokumentation detailliert: Volume Snapshots.

S2 = zur Weitergabe an Kunden 22 von 64

https://kubernetes.io/docs/concepts/storage/volume-snapshots/

Cloud Native - Benutzerhandbuch

Aus einem Snapshot können Kunden wieder ein Volume erzeugen, zum Beispiel, um davon

ein Backup anzufertigen oder um einen Test mit den Orginaldaten durchzuführen. Wichtig zu

wissen: Der Quell-Snapshot lässt sich erst dann wieder löschen, wenn alle davon abgeleiteten

Volumes ebenfalls gelöscht wurden.

Die vorhanden Snapshots kann sich der Cluster-Admin mittels cloudctl volume snapshot ls

--project <Project-UID> anzeigen lassen und sie mittels cloudctl volume snapshot delete

<Volume-UID> löschen.

2.3.9.3 Optional: Clientseitige Volume-Verschlüsselung

Es gibt Kunden, die infolge regulatorischer Vorgaben oder aus eigenem Antrieb persistente

Daten verschlüsselt ablegen wollen. FI-TS FCN Hosting biete solchen Kunden an, ihre Nutz-

daten in Volumes auf Cloud Native Blockstorage kryptografisch geschützt abzulegen. Zum

Einsatz kommt hierbei die aus dem Linux-Kernel bekannte Blockverschlüsselungstechnik

LUKS2, deren Stärke und Implementierungsqualität in Fachkreisen anerkannt ist. Im kon-

kreten Fall passiert die Ver- und Entschlüsselung als Client-side Encryption im Kubernetes-

Cluster (ab Version 1.20.x!) des Kunden, genauer: auf dem Workernode, der das PV verwendet.

Auf dem Ziel-Block-Storage-System ist das zugehörige Volume von Anfang an verschlüsselt,

also schon vor dem Anlegen des Filesystems.

Dazu ist es notwendig, dass der Kunde zuerst mit dem Befehl cloudctl cluster update

<Cluster-UID> --encrypted-storage-classes die entsprechende Storage Class im Cluster

installiert.

Für die Nutzung der eigentlichen Verschlüsselung muss nun noch ein Secret im Namespace

der Anwendung angelegt werden:

---- yaml
apiVersion: v1
kind: Secret
metadata:
 name: storage-encryption-key
 namespace: default # Hier bitte den entsprechenden Namespace eingeben
stringData:
 host-encryption-passphrase: please-change-me # Natürlich ein besseres Passwort

vergeben
type: Opaque

Das Cloud-API unterstützt den Kunden beim Anlegen des Secrets mittels cloudctl volume

encryption-secret-manifest --namespace <Namespace> --passphrase <Passphrase>. Danach

S2 = zur Weitergabe an Kunden 23 von 64

Cloud Native - Benutzerhandbuch

kann er den PVC mit der Storage Class partition-gold-encrypted anlegen und zugleich

verschlüsseln.

FI-TS weist darauf hin, dass bei Verlust des Secrets die gespeicherten Nutzdaten unwieder-

bringlich verloren sind, und empfieht darum, Secret-Kopien an geeigneter Stelle abzulegen.

Der Einsatz von Verschlüsselung hat außerdem Auswirkung auf die Performance des Block

Storages. So ist mit einer spürbaren Reduktion des Durchsatzes sowie einer erhöhten Latenz

zu rechnen.

2.3.10 S3-kompatibles Object-Storage

In Containerumgebungen hat sich zum persistenten Speichern von Daten vielerlei Art soge-

nannter S3-Storage durchgesetzt. FI-TS betreibt auf hochmoderner Hardware für seine Cloud-

Native-Kunden solche Speichersysteme als Managed Service, der innerhalb jeder Partition als

ein AWS-S3-kompatibler Object Store zur Verfügung steht.

Falls noch nicht vorhanden, muss der Hauptbenutzer anfänglich mit cloudctl project create

unter Nennung des Mandanten (englisch: Tenant) ein Projekt anlegen. Beispiel:

cloudctl project create --name "s3-test" --description "Mein S3-Test" --
tenant grossbank

bash

Dann lässt sich mittels cloudctl s3 create --id ... --project <Projekt-UID> --partition -

p <Rechenzentrum> der eigentliche Benutzer für S3 angelegen. Bei der ID kann man sich einen

Namen für den Benuter aussuchen, solange dieser noch nicht vergeben ist. Das Rechenzen-

trum (-p), in dem die Daten gespeichert werden sollen, ist Nürnberg, Nürnberg 2, Fellbach

oder Stuttgart. Hinweis: Es findet keine automatische Geo-Replizierung zwischen den RZs

statt.

Um sich die verfügbaren Rechenzentren anzuzeigen gibt es folgenden Befehl:

cloudctl s3 partitions bash

Die Ausgabe des Befehls transportiert ein Schlüsselpaar (Accesskey, Secretkey). Diese sind

dringend zu notieren, weil sie dem Benutzer als Credentials für seinen Zugriff auf S3 dienen

werden. Auf diese Weise kann er mit jedem üblichen S3-Client Buckets anlegen sowie Objekte

speichern, herunterladen und so weiter. Dafür empfiehlt sich beispielsweise das Kommando-

zeilen-Tool MiniO MC Client, das über Github ladbar ist:

S2 = zur Weitergabe an Kunden 24 von 64

https://github.com/minio/mc

Cloud Native - Benutzerhandbuch

wget https://dl.min.io/client/mc/release/linux-amd64/mc bash
chmod +x mc
./mc --help

Die folgenden Beispiele zeigen, wie sich Zugriffe auf Buckets beziehungsweise Objekte

einrichten lassen. Via Bucket Policies gelingt es darüber hinaus, Rechte S3-kompatibel einzu-

schränken oder zu erweitern.

Beispiel 1: Zugriff auf bestimmte IP-Adressen einschränken:

{ json
 "Statement": [
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:DeleteBucket",
 "s3:PutObject"
],
 "Resource": ["arn:aws:s3:::mybucket","arn:aws:s3:::mybucket/*"]
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": ["212.34.64.0/19","185.153.64.0/22"]
 }
 }
 }
]
}

Beispiel 2: Einem anderen S3-User Read-only-Zugriff auf ein Bucket gewähren:

S2 = zur Weitergabe an Kunden 25 von 64

Cloud Native - Benutzerhandbuch

{ json
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": ["arn:aws:iam::Ft:user/cd4eac58-46a5-4a31-

b59f-2ec207baa817_otheruser"]
 },
 "Action": [
 "s3:ListBucket",
 "s3:GetObject"
],
 "Resource": ["arn:aws:s3:::mybucket","arn:aws:s3:::mybucket/*"]
 }
]
}

(Principal setzt sich hier zusammen aus: arn:aws:iam::<Tenant>:user/<Project-ID>_<User-

ID>)

Beispiel 3: Öffentlichen (Anonymous)-Zugriff auf Bucket-Inhalte gewähren:

{ json
 "Statement":[
 {
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource": ["arn:aws:s3:::mybucket","arn:aws:s3:::mybucket/*"]
 }
]
}

Ein Download passiert im einfachsten Fall über einen Browser. Die URL folgt dem Sche-

ma <S3-Endpoint>/<Tenant>:<Bucket>/<File>, zum Beispiel https://s3.prod-01-fel-wps101.

fits.cloud/Ft:mybucket/myfile.zip.

2.4 Middleware und Datenbanken

Auf die Kubernetes-Plattform aufsetzend bietet FI-TS verschiedenen Middleware- und Daten-

bank-Produkte als (Managed) Services an. Kunden der Cloud-Native-Plattform können derzeit

folgende Dienste buchen:

S2 = zur Weitergabe an Kunden 26 von 64

Cloud Native - Benutzerhandbuch

• PostgreSQL

• Elasticsearch

• Kafka

Ähnlich wie beim Kubernetes-Service übernimmt der Anwendungsbetrieb der FI-TS die Steue-

rung der Middleware- und Datenbank-Updates im Rahmen des Anwendungsbetriebs.

2.5 Cloud Platform Status Dashboard

Die allgemeine Verfügbarkeit der von der Cloud-Native-Plattform bereitgestellten Services

kann über eine Webseite abgefragt werden. Die Seite enthält außerdem Hinweise zur Verwen-

dung der Plattform, Zusatzinformationen zu Updates und Störungen sowie Download-Links

zur aktuellsten Version des Benutzerhandbuchs.

Sie können das Dashboard unter folgender URL erreichen: https://status.fits.cloud/.

2.6 Beendigung

Die Cloud-Native Ressourcen werden anhand ihrer Nutzung verrechnet. Durch die Terminie-

rung von Ressourcen über die API ist es möglich auch die anfallenden Kosten zu reduzieren. Es

ist aber zu beachten, dass bei der Terminierung auch eventuell gespeicherte Daten unwieder-

bringlich gelöscht werden. Diese müssen gegebenenfalls vor dem Löschen exportiert werden.

Hierzu sind verschiedene Methoden möglich. Im Folgenden werden einige Vorschläge für den

Export und die Vorgehensweise zum Löschen der Daten beschrieben.

2.6.1 Export der Kubernetes-Konfiguration und -Volumes

Die im Kubernetes-Cluster vorhandene Konfiguration und die auf lokalen oder Blockstorage-

Volumes gespeicherten Daten lassen sich über das Kubernetes-API exportieren. Hierfür

existieren mehrere Werkzeuge. Eines der bekanntesten ist das Open-Source-Tool Velero.

Dieses ist für Backups oder für die Migration von/zu einem anderen Kubernetes-Anbieter

nutzbar.

Details zur Nutzung von Velero sind unter https://velero.io/docs/ dokumentiert.

2.6.2 Löschen von Kubernetes-Clustern

Kubernetes-Cluster können mittels cloudctl cluster delete (bzw. über die FI-TS Cloud API)

gelöscht werden. Hierbei werden auch die Worker-Nodes des Kubernetes-Clusters freigege-

ben. Um die Daten der Kunden zu schützen, wird im Zuge der Node-Freigabe auch immer

der Schlüssel der lokalen Festplatten (NVMe-Disks) verworfen. Damit gehen alle auf lokalen

S2 = zur Weitergabe an Kunden 27 von 64

https://de.wikipedia.org/wiki/PostgreSQL
https://de.wikipedia.org/wiki/Elasticsearch
https://de.wikipedia.org/wiki/Apache_Kafka
https://status.fits.cloud/
https://velero.io/
https://velero.io/docs/

Cloud Native - Benutzerhandbuch

Volumes gespeicherten Daten verloren. Auch FI-TS hat keine Möglichkeit, diese Daten wieder-

herzustellen.

Nicht gelöscht werden die Daten die aus dem Kubernetes-Cluster heraus auf Cloud-Native

Block-Storage oder auf S3-Buckets gespeicherte Daten.

2.6.3 Löschen von Block-Storage Volumes

Blockstorage-Volumes bleiben auch über die Laufzeit des Kubernetes-Clusters hinaus erhal-

ten. Diese können dann später an ein Kubernetes-Cluster (im selben Cloud-Native-Projekt)

angebunden werden.

Sollen auch die Daten auf den Block-Storage Volume gelöscht werden, müssen diese explizit

mittels cloudctl volume delete gelöscht werden. Eine Übersicht zu allen bestehenden

Volumes ist mit cloudctl volume list abrufbar.

Ein Export der Volume-Daten ist nur über die Kubernetes-API möglich (siehe oben). Volumes,

die nicht an ein Kubernetes-Cluster angebunden sind, müssen erst mit einem Cluster ver-

knüpft werden, bevor diese (z.B. mit Velero) exportiert werden können.

2.6.4 S3 Object-Store

„Datentöpfe“ auf dem S3-kompatiblen Object-Store werden in sogenannten Buckets orga-

nisiert. Auf diese kann über das S3-API zugegriffen werden. Credentials für den API-Zugriff

verwalten Anwender mittels cloudctl s3. Für den Zugriff über das S3-API existieren ebenfalls

wieder diverse Open-Source Tools. Für den Export oder die Migration gut geeignet ist der

Minio-Client. Nachdem die Credentials für den Zugriff konfiguriert wurden, können mittels

mc ls Informationen zu den Buckets und den dort gespeichert Daten abgerufen werden. mc

mirror überträgt die Daten aus dem S3-Bucket auf ein lokales Verzeichnis.

Vor dem Löschen des Buckets müssen Anwender die Objekte der dort gespeicherten Daten

löschen. In Anlehnung an die Vorgehensweise unter Unix geschieht dies mit mc rm Zum

endgültigen Löschen der Buckets dient das Kommando mc rb. (Hinweis: Wer beim Upload der

Daten Server-Side-Encryption verwendet, muss erforderlicherweise den Encrytion-Key auch

beim Löschen mit angeben - siehe mc-Dokumentation).

S2 = zur Weitergabe an Kunden 28 von 64

https://docs.min.io/docs/minio-client-quickstart-guide.html

Cloud Native - Benutzerhandbuch

3 Patchmanagement und Lifecycle

3.1 Patchmanagement Cluster

Die Verantwortlichkeiten für das Patchmanagement der Software-Komponenten der Kuber-

netes-Cluster sind vom vereinbarten Leistungsschnitt abhängig.

3.1.1 Kubernetes-Update/-Upgrade

FI-TS beobachtet und bewertet laufend das Entwicklungsgeschehen beim Kubernetes-

Projekt, um Kunden stets eine sichere und moderne Ablaufumgebung für deren Container-

Workloads bereitzustellen. Als Ergebnis der Expertise bereitet FI-TS Kubernetes-Update-Sets

auf und unterscheidet dabei zwischen:

• Patch-Release-Updates, zum Beispiel von Version 1.16.1 auf 1.16.2: Solche kleinen Versi-

onsupdates, die neben funktionsbeeinträchtigenden Bugs auch erkannte Sicherheitslücken

beheben, spielt der FI-TS-Cluster-Manager (nach ausgiebigen Tests in einem FI-TS-eigenen

Cluster) automatisch in die Kundenumgebung ein. Der Update-Vorgang erfolgt für die An-

wendungscontainer in der Regel unterbrechungsfrei, es sei denn, die besitzen eine direkte

Abhängigkeit zu Kubernetes-Services, beispielsweise weil sie laufend auf den Kubernetes-

API-Server zugreifen.

• Minor-/Major-Updates, zum Beispiel von Version 1.16._x_ auf 1.17._x_: Solche funktionser-

weiternden Updates stellt FI-TS zwar bereit, installiert sie aber nicht automatisch. Es obliegt

somit dem Kunden oder dem Anwendungsbetrieb, das Updates im Rahmen des Change-

Prozesses in die Kubernetes-Cluster einzuspielen. Hierzu eignet sich das Kommando

cloudctl cluster update. Der Cluster-Manager prozessiert dann ein Rolling Update, das

die Kubernetes-Version aktualisiert. Typisch für das Szenario ist, dass die Anwendungscon-

tainer neu starten - gegebenenfalls auch auf anderen Worker-Nodes als bisher.

Das Produkt FI-TS Finance Cloud Native Kubernetes beinhaltet den Softwaresupport für die

aktuelle und die beiden vorhergehenden Minor- und Major-Versionen.

3.1.2 Betriebssystem-Update/-Upgrade für Nodes

Auch für die Betriebssysteme der Nodes stellt FI-TS regelmäßig aktualisierte Betriebssystem-

Images bereit, spielt diese jedoch nicht automatisiert ein. Vielmehr ist vorgesehen, neue

Images im Zuge des Cluster-Updates (cloudctl cluster update) zu verteilen. Der Erneue-

rungsvorgang passiert im Cluster als Rolling Update, das Worker-Nodes zeitlich nacheinander

aktualisiert.

S2 = zur Weitergabe an Kunden 29 von 64

02-Verwaltung.md

Cloud Native - Benutzerhandbuch

Der eingesetzte Kubernetes Cluster-Manager führt hierzu einen Drain auf dem entsprechen-

den Node durch und verteilt die auf dem Knoten laufenden Container auf andere Worker,

wo sie neu starten. Anschließend bekommt ein neuer Knoten ein aktuelles Betriebssystem-

Image aufgespielt und ein neu erstelltes Local-Persistent-Volume. Nach einem Reboot wird

der neue Node ins Cluster integriert.

Das Auswechseln der Local-Persistent-Volumes hat zur Folge, dass Kubernetes-Pods, die auf

ein Local-Persistent-Volume zugreifen und sich damit an ihren Knoten gebunden haben, im

Update-Zeitfenster nicht zur Verfügung stehen.

3.1.3 Release-Reporting und Software-Lifecycle für Kubernetes-Cluster

Cloud-Native-Kunden der FI-TS können sich mit Hilfe von cloudctl cluster issues einen

Überblick über die cluster-weit eingesetzten Softwareversionen verschaffen, insbesondere

für Kubernetes, die Betriebssysteme der Worker-Nodes sowie Komponenten, die über eine

eigene Firmware verfügen. Anhand der Analyse ergeben sich Empfehlungen Updates durch-

zuführen. FI-TS kategorisiert hierbei nach:

• Stable: Die aktuell empfohlene Version. Diese hat FI-TS in einer Testumgebung überprüft

und benutzt sie per Default, wenn der Neustart eines Kubernetes-Clusters nötig ist.

• Deprecated: Eine gegenüber der Stable-Version veraltete, aber noch mit Support unterlegte

Variante. FI-TS empfiehlt, die Software so bald wie möglich einem Minor- oder Major-Update

zu unterziehen. Dem erzeugten Bericht kann der Kunde entnehmen, wann der Support

abläuft.

• Unsupported: Eine veraltete Version, für die kein Support mehr besteht. FI-TS rät nach-

drücklich davon ab, Cluster mit unsupporteter Software zu betreiben. Solange keine

Sicherheitslücken bekannt sind, die aus der Ferne ausnutzbar sind (Remote Exploits), wird

FI-TS solche Systeme nach dem „Best Effort“-Prinzip weiter betrieben, das vereinbarte SLA

aber bis zur Heilung des Versions-Mangels aussetzen. Bei Bekanntwerden eines kritischen

Remote Exploits behält sich die FI-TS vor, das Cluster im Rahmen eines Notfall-Changes

umgehend zu isolieren.

Des Weiteren informiert FI-TS Kunden per E-Mail über wichtige Statusänderungen, beispiels-

weise die bevorstehende Löschung eines Evaluierungs-Clusters.

Wenn zwei oder mehr Cluster einen Verbund zur Realisierung einer Notfallvorsorge bilden,

empfiehlt FI-TS die Aktualisierung in kurzer Folge durchzuführen. Eine technische Notwen-

digkeit hierfür besteht zwar nicht, kann im Einzelfall aber ein inkonsistentes Verhalten der

Anwendungen vermeiden.

S2 = zur Weitergabe an Kunden 30 von 64

Cloud Native - Benutzerhandbuch

Trägt FI-TS vereinbarungsgemäß die Verantwortung für den Anwendungsbetrieb, wird die

Fachabteilung für den Anwendungsbetrieb die zugehörigen Lifecycle-Reports auswerten,

erforderliche Updates mit dem Kunden abstimmen und im Rahmen der Changes durchführen.

3.2 Patchmanagement für Middleware und Datenbanken

Auf die Kubernetes-Plattform aufsetzend bietet FI-TS verschiedenen Middleware- und Daten-

bank-Produkte als (Managed) Services an. Der Umfang des zugehörigen Patchmanagements

unterscheidet sich je nach gebuchtem Leistungsschnitt.

Analog zur Kubernetes-Strategie stellt FI-TS diese Produkte entweder in einem gehosteten

Service-Cluster bereit oder - wenn auch den Anwendungsbetrieb vereinbart ist - richtet die

Dienste im eigenen Kubernetes-Cluster ein.

3.2.1 Updates/Upgrades

Für die Durchführung von Updates und Upgrades stehen für den Anwendungsbetrieb

beziehungsweise den Kunden, abhängig vom Automatisierungsgrad, zwei Varianten zur Ver-

fügung:

1. Automatisiertes Update über das Cloud-API: FI-TS wird für Produkte, die sie bei mehreren

Kunden einsetzt, spezielle Funktionen in das Cloud-API der FI-TS integrieren, über die sich

das Produkt im Lebenszyklus (Installation, Updates, Löschen, etc.) verwalten lässt.

2. Updates durch den FI-TS-Betrieb: Solange kein API für ein Produkt zur Verfügung steht,

können Kunden Updates oder sonstige Änderungen über Aufträge im Rahmen des Chan-

ge-Prozesses an die Gruppe FITS55052-Cloud-Native-Services stellen.

3.2.2 Release-Reporting und Software-Lifecycle

Analog zu den Kubernetes-Services liefert die Cloud-Native-Reportingfunktion auch die Re-

lease-Informationen für die von FI-TS gepflegten Middleware- und Datenbank-Container. Die

Kategorien (Stable, Deprecated, Unsupported) und Regelungen bezüglich der SLAs gelten

hier in gleicher Weise.

S2 = zur Weitergabe an Kunden 31 von 64

02-Verwaltung.md/#middleware-und-datenbanken

Cloud Native - Benutzerhandbuch

4 Netzanbindung

Die Cloud-Native-Umgebungen (Partitionen) von FI-TS verfügen über Verbindungen zum

Internet- und, auf Kundenwunsch, zum MPLS-Backbone. Über den MPLS-Backbone sind die

Bestandsnetze in den FI-TS-Rechenzentren, Verbundnetze der Sparkassen-Organisation und

das Crednet erreichbar. Verbindungen zwischen zwei Partitionen laufen ebenfalls über diese

Backbone-Netze.

Abbildung 2: Überblick zur Cloud-Native Netzanbindung

Jedes über das Cloud-Native-API gestartete Kubernetes-Cluster bekommt eine eigene

physische Firewall zugewiesen, die den Verkehr in und aus dem Kubernetes-Cluster

reglementiert. Die Regeln für die Firewall werden automatisch aus den ausgerollten

ClusterwideNetworkpolicy-Sets generiert (siehe Policies-Kapitel).

Jede Firewall erhält bei ihrem Start eine öffentliche Internet-IP-Adresse und auf Wunsch auch

eine RFC6598-Adresse (das ist der Bereich 100.64.0.0/10) für die Kommunikation über den

MPLS-Backbone. Außerdem ist es in beiden Bereichen möglich, weitere IP-Adressen für Ser-

vices zu beziehen, die aus dem Internet beziehungsweise aus den MPLS-Bereichen erreichbar

sind. Für die Pods und die Worker in den Kubernetes-Clustern kommen RFC1918-Adressen

aus dem Bereich 10.0.0.0/8 zur Anwendung.

4.1 Internet-Verbindungen

Bei den abgehenden Verbindungen aus dem Bereich 10.0.0.0/8 verbirgt das Cluster die Quell-

Adressen durch NATing (Masquerading der Firewall) hinter der jeweiligen Firewall-IP.

S2 = zur Weitergabe an Kunden 32 von 64

https://www.crednet.de/
02-Verwaltung.md/#firewall-network-policies-und-clusterwidenetworkpolicy

Cloud Native - Benutzerhandbuch

Abbildung 3: Ausgehende Internet-Verbindungen

Soll umgekehrt ein Service des Clusters für User aus dem Internet erreichbar sein, muss er

dafür eine extra Internet-IP zugeordnet bekommen. Dies geschieht automatisch, falls das

Kubernetes-Deployment einen Loadbalancer anfordert und dabei keine Adresse spezifiziert.

Wer stattdessen eine feste IP-Adresse vergeben will, muss diese vorab über das Cloud-Native-

API reservieren und im Kubernetes-Deployment angeben. Um nicht jedem einzelnen Service

eine separate IP zuteilen zu müssen, empfiehlt sich einen Kubernetes-Ingres-Controller⁴ ein-

zusetzen. Dieser filtert Verbindungen auf Applikationsebene und leitet sie an die zuständigen

Backend-Services weiter.

Abbildung 4: Eingehende Verbindungen aus dem Internet

⁴Auf Kundenwunsch stellt FI-TS ein Deployment-Template für einen professionell gewarteten Nginx Ingress
Controller bereit.

S2 = zur Weitergabe an Kunden 33 von 64

Cloud Native - Benutzerhandbuch

4.2 Interne Verbindungen

Durch die (optionale) Anbindung an den MPLS-Backbone können Pods interne Systeme oder

Hosts von Partner-Instituten leicht erreichen. Beim Lösungsdesign ist hierbei zu beachten,

dass viele Bestandsnetze IPv4-Adressen verwenden, die auch im Internet vergeben sind.

Um das Routing konfliktfrei zu gestalten, müssen solche lokalen Netzadressen durch ein

weiteres, per MPLS-Firewall zwischengeschaltetes NATing aus dem Bereich 100.64.0.0/10

verborgen werden. Administrativ ist hierfür über einen vorgegebenen Genehmigungsprozess

für Bestands-Firewallsysteme eine Freischaltung inklusive NATing zu beantragen.

Für abgehende Verbindungen zu internen Netzen führt die Kubernetes-Firewall ebenfalls ein

NATing (Masquerading) durch und verwendet die beim Start zugewiesene RFC6598-Adresse.

Abbildung 5: Abgehende Verbindungen zu internen Netzen

Analog dazu werden eingehende Verbindungen aus internen Netzen abgewickelt. Der Mecha-

nismus zur Vergabe der Service-IPs entspricht dem des Internet-Bereichs, nur eben mit

RFC6598-Adressen.

S2 = zur Weitergabe an Kunden 34 von 64

Cloud Native - Benutzerhandbuch

Abbildung 6: Eingehende Verbindungen aus internen Netzen

Warning

Das Cloud-Native-MPLS-Netz ist eine geteilte Ressource und eine gemeinsame Routing-

Domain über die gesamte Plattform! Sollen Loadbalancer-Services eines Clusters aus

anderen Clustern, auch anderer Mandanten, nicht erreichbar sein, muss dies der Kunde

durch passende loadBalancerSourceRanges sicherstellen. Das genaue Vorgehen ist weiter

oben im Management-Unterkapitel „Firewall-Freischaltungen“ beschrieben.

Der IP-Adressen vergeben und Netze verwalten will, greift auf das Cloud-Native-API bezie-

hungsweise das Kommandozeilentool cloudctl zurück (siehe Cluster-Verwaltung).

Tip

Anmerkung: Das Masquerading der Kubernetes-Firewall verhindert es derzeit, an Be-

standsfirewalls für einzelne (Quell-)Pods des Kubernetes-Clusters wirksam freizuschalten.

Außerdem besteht eine Einschränkung auf maximal 65.000 Verbindungen zu einem

Ziel im Bestandsnetz. FI-TS sieht NAT daher als Übergangslösung und beabsichtigt

einen höherwertigen Gateway-Service bereitzustellen, sobald sie dessen Entwicklung

abgeschlossen hat.

S2 = zur Weitergabe an Kunden 35 von 64

02-Verwaltung.md

Cloud Native - Benutzerhandbuch

5 Produktoption Isolierte Kubernetes-Cluster

Der typische Einsatzzweck von Kubernetes ist es, Anwendungen dynamisch zu hosten, deren

Anwender aus dem Internet zugreifen. Mindestens ebenso typisch ist es, dass Deployments

ihre Containerimages ungehindert aus öffentlichen Repositories beziehen. Administratoren

eines Kubernetes-Cluster haben zudem stets die Möglichkeit, Pods beliebige Wege in das

Internet und aus dem Internet zu ermöglichen.

Einige Kunden von FCN möchten dagegen einige oder alle ihre Cluster gegen Zugriffe aus

dem Internet und ins Internet nachhaltig absichern. Regulatorische Vorgaben können ein

Motiv dafür bilden oder die Vorsorge gegen den Fall, dass Angreifer einzelne Anwendungen

kompromittieren und anschließend Schadcode aus dem Internet nachladen. Ein in diesem

Zusammenhang häufig geäußerter Kundenwunsch ist, dass Anwendungsadmins nicht mehr

befähigt sein sollten, im Cluster Internetzugänge zu konfigurieren.

Um diese Anforderungen an die Absicherung von FCN-Kundenclustern gegen das Internet

nachzukommen, hat FI-TS eine zweistufige Produktoption für FCN Kubernetes Hosting ent-

wickelt, die Kunden befähigt sogenannte Isolierte Cluster anlegen. Der Schwerpunkt der

Implementierung setzt eine logische Trennung in der Netzwerkarchitektur in Richtung Inter-

net durch, die weder Anwendungen noch Anwendungsadministratoren überwinden können.

5.1 Clustervarianten in der FCN

Mit der Einführung von Isolierten Clustern muss der Kunde beim Anlegen des Cluster

entscheiden, welche Form der Isolation er für seine Applikation benötigt. Es gibt seither drei

Ausprägungen:

• Internet Access Baseline: Diese Variante ist der langjährige FCN-Standard und reglemen-

tiert weder den Internetzugriff noch die Art und Weise, wie ein Cluster Container beziehen

kann.

• Internet Access Restricted: Bei einem mit dieser Option angelegten Cluster ist der Zugang

zum Internet ein- und ausgehend anfänglich gesperrt. Der Clusteradmin darf diese Sperre

granular rückgängig machen. Funktionell erforderliche Container-Images sind erreichbar,

eigene Container-Images erfordern in der Praxis eine eigene Registry.

• Internet Access Forbidden: Mit dieser Option angelegte Cluster bleibt der Zugang zum

Internet ein- und ausgehend verwehrt. Funktionell erforderliche Containerimages sind

erreichbar, Kundenimages erfordern eine eigene Registry abseits des Internet.

S2 = zur Weitergabe an Kunden 36 von 64

Cloud Native - Benutzerhandbuch

5.2 Unbedingt erforderliche Containerimages

Um einen Kubernetes-Workernode zu erzeugen, ist es in der FCN notwendig, mehrere Contai-

nerimages zu pullen - die wichtigsten sind:

• Kubelet: Controller, der die Workload verwaltet

• CNI: Das Container Network Interface erstellt und verwaltet das Netzwerk für die Pods und

Services

• CSI: Das Container Storage Interface erzeugt und verwaltet PVCs

• CoreDNS: Domainname-Service für Container

• MetalLB: Servicetype-LoadBalancer-Implementierung

• Node-Exporter und Metrics-Server: Monitoring des Workernode

• Mehrere Metal-Stack-Addons, zum Beispiel zum Anzeigen der Firewall- und Auditing-

Events.

Für Internet Access Restricted- und Forbidden-Cluster haben die FCN-Entwickler folgende

Architekturänderungen vorgenommen:

• Da öffentliche Registrys nicht mehr erreichbar sind, greifen Isolierte Cluster in eine private

FCN-Containerregistry zu, die alle betriebsnotwendigen Containerimages gespiegelt vor-

hält - darüber hinaus aber keine weiteren. Der Zugriff auf diese Containerregistry ist nur

aus den FCN-Kubernetes-Clustern möglich.

• Die Konfiguration des containerd auf jedem Workernode ist so modifiziert, dass er nur

Containerimages aus der privaten Containerregistry pullen darf.

5.3 Containerimages für eigene Applikationen

Um die Containerimages eigener Applikationen in einem Cluster mit Isolation Forbidden

deployen zu können, ist es unumgänglich, eine eigene Registry bereitzustellen. Die Kunden-

registry muss innerhalb der für das Cluster erlaubten Netzwerke erreichbar sein. Außerdem

muss die IP-Adresse der Registry im öffentlichen DNS auflösbar sein, und die CA des Worker-

node muss das TLS-Zertifikat der Registry als gültig erkennen.

In einem Cluster mit Isolation Restricted lassen sich Containerimages aus dem Internet theo-

retisch pullen, wenn der Clusteradmin eine CWNP anlegt (siehe unten), die auf eine externe

oder öffentliche Registry zeigt. Allerdings laufen die meisten öffentlichen Containerregistrys

innerhalb von Content-Delivery-Netzwerken, die einen Host unter hunderten IP-Adressen

wechselnd exponieren. Dies verträgt sich in der Praxis mit einfachen CWNP nicht, zum Beispiel

mit einer einzigen konfigurierten IP-Adresse für Docker.io. In der Konsequenz bedarf es für

ein Restricted-Cluster auch einer dedizierten privaten Registry.

S2 = zur Weitergabe an Kunden 37 von 64

Cloud Native - Benutzerhandbuch

5.4 Netzwerkarchitektur

Für Isolierte Cluster pflegt FCN eine Liste von erlaubten Netzwerkbereichen. Sie enthält einige

RFC-Netzwerke für den ein- und ausgehenden Verkehr sowie die FCN-Internetnetzwerke für

den ausgehenden Verkehr. Kubernetes-Nutzer und -Administratoren sind nicht befähigt,

diese Whitelist zu modifizieren.

Den Zugriff aus dem Cluster steuert eine eigene Custom Ressource ClusterWideNetworkPolicy

(CWNP). FCN-Cluster bekommen bei der Anlage bereits einige CWNPs konfiguriert, die sich

zwischen Baseline, Forbidden und Restricted unterscheiden.

Baseline-CWNPs:

Rule-Name Ziel Zweck

allow-to-http 0.0.0.0/0 Egress via HTTP

allow-to-https 0.0.0.0/0 Egress via HTTPS

allow-to-apiserver IP des Kubernetes-API-Servers in

der Controlplane

API-Server-Kommunikation für

Kubelet und andere Controller

allow-to-dns IP eines öffentlichen DNS-Servers DNS-Auflösung der Kubernetes-

Workernodes und -Containers

allow-to-ntp IP eines öffentlichen NTP-Servers Zeitsynchronisierung

allow-to-storage Network des Containerstorage Persistent Volumes per CNI-Trei-

ber

allow-to-vpn VPN-Endpoint-IP der Controlplane Zum Verbinden von API-Server

zum Kubelet für Containerlogs

und Container-Exec

Forbidden- und Restricted-CWNPs:

Rule-Name Ziel Zweck

allow-to-apiserver IP des Kubernetes-API-Servers in

der Controlplane

API-Server-Kommunikation für

Kubelet und andere Controller

allow-to-dns IP eines öffentlichen DNS-Servers DNS-Auflösung der Kubernetes-

Workernodes und -Containers

allow-to-ntp IP eines öffentlichen NTP-Servers Zeitsynchronisierung

allow-to-registry IP der privaten Registry Pulling unbedingt nötiger Contai-

nerimages

allow-to-storage Network des Containerstorage Persistent Volumes per CNI-Trei-

ber

S2 = zur Weitergabe an Kunden 38 von 64

Cloud Native - Benutzerhandbuch

allow-to-vpn VPN-Endpoint-IP der Controlplane Zum Verbinden von API-Server

zum Kubelet für Containerlogs

und Container-Exec

All diese CWNPs managt der (https://github.com/metal-stack/gardener-extension-provider-

metal)[Gardener Extension Provider Metal], und dieser entfernt jede manuelle modifizierte

Regel umgehend.

Forbidden-Cluster validieren CWNPs und Servicetype LoadBalancer gegen die Liste der erlaub-

ten Netzwerke und setzen sie bei Verstoß nicht um. Im Unterschied dazu darf der Admin eines

Internet Access Restricted-Clusters eigene CWNPs und Servicetype LoadBalancer anlegen,

die außerhalb der erlaubten Netzwerke liegen.

Da DNS- und NTP-Requests von Isolierten Clustern nicht in Richtung Internet laufen dürfen,

befriedigen extra dafür vorgehaltene FCN-Infrastrukturkomponenten solche Anfragen. Die

Clusterbetriebssysteme setzen diese Vorgabe in geeigneter Weise durch.

S2 = zur Weitergabe an Kunden 39 von 64

https://github.com/metal-stack/gardener-extension-provider-metal
https://github.com/metal-stack/gardener-extension-provider-metal

Cloud Native - Benutzerhandbuch

Abbildung 7: Clusterkommunikation

5.5 Praktische Handhabung

5.5.1 Internet Access Restricted

Die Kubernetes-Version 1.27 und folgende eröffnet FCN-Kunden die Möglichkeit, Internet

Access Restricted-Cluster anzulegen. Es ist technisch ausgeschlossen, Internet Access

Baseline- oder Forbidden-Cluster auf diesen Isolationslevel zu updaten. Die Syntax ist folgen-

de:

S2 = zur Weitergabe an Kunden 40 von 64

Cloud Native - Benutzerhandbuch

> cloudctl cluster create --name <Name_des_Cluster> --project <Project-ID> --
partition <Clusterstandort> --network-isolation restricted [...]

bash

WARNING: You are going to create a cluster that has no default internet access
with the following consequences:
- pulling images is only possible from private registries you provide, these
registries must be resolvable from the public dns and must be secured with a
trusted TLS certificate
- you can create cluster wide network policies to the outside world without
restrictions
- pulling container images from registries requires to create a corresponding CWNP
to these registries
- It is not possible to change this cluster back to "baseline" after creation
Are you sure? (y/n)

Kunden können nun die Liste der erlaubten Netzwerke mit cloudctl cluster describe

abfragen:

networkaccessrestrictions: yaml
 fra-equ01:
 allowednetworks:
 egress:
 - 212.34.83.0/27
 - 100.64.0.0/10
 - 10.0.0.0/8
 ingress:
 - 100.64.0.0/10
 maskedregistries:
 - docker.io
 - quay.io
 - docker.lightbitslabs.com
 - eu.gcr.io
 - ghcr.io
 - registry.k8s.io
 - r.metal-stack.io
[...]

5.5.2 Internet Access Forbidden

Die Kubernetes-Version 1.27 und folgende eröffnet FCN-Kunden die Möglichkeit, Internet

Access Forbidden-Cluster anzulegen. Es ist technisch ausgeschlossen, Internet Access

Baseline- oder Restricted-Cluster auf diesen Isolationslevel zu updaten. Die Syntax ist fol-

gende:

S2 = zur Weitergabe an Kunden 41 von 64

Cloud Native - Benutzerhandbuch

> cloudctl cluster create --name <Name_des_Cluster> --project <Project-ID> --
partition <Clusterstandort> --network-isolation forbidden [...]

bash

WARNING: You are going to create a cluster which has no internet access with the
following consequences:
- pulling images is only possible from private registries you provide, these
registries must be resolvable from the public dns, their IP must be located in one
of the allowed networks (see cluster inputs), and must be secured with a trusted
TLS certificate
- service type loadbalancer can only be created in networks which are specified in
the allowed networks (see cluster inputs)
- cluster wide network policies can only be created in certain network ranges
which are specified in the allowed networks (see cluster inputs)
- It is not possible to change this cluster back to "baseline" after creation
Are you sure? (y/n)

CWNPs und Servicetype LoadBalancer für ausgehenden Datenverkehr validiert der Cluster

gegen die Liste der erlaubten Netzwerke setzt sie bei Verstoß nicht um:

> kubectl get clusterwidenetworkpolicies.metal-stack.io bash
NAME STATUS MESSAGE
allow-to-apiserver deployed
allow-to-dns deployed
allow-to-ntp deployed
allow-to-registry deployed
allow-to-storage deployed
allow-to-vpn deployed
allow-to-google ignored ingress/egress does not match allowed networks

Zudem erzeugt Kubernetes einen Event:

> kubectl get events bash
5s Warning ForbiddenCIDR clusterwidenetworkpolicy/
allow-to-google address:"8.8.8.8/32" is outside of the allowed network
range:"10.0.0.0/8,100.64.0.0/10,212.34.83.0/27", ignoring

Eingehenden Netzwerkverkehr gestattet ein Internet Access Forbidden-Cluster ebenfalls nur

von den erlaubten Netzwerken. Dazu ist es erforderlich, die loadbalancerIP mit einer vorher

als static reservierten IP-Adresse aus einem erlaubten Netzwerke zu konfigurieren:

S2 = zur Weitergabe an Kunden 42 von 64

Cloud Native - Benutzerhandbuch

apiVersion: v1 yaml
kind: Service
spec:
 type: LoadBalancer
 loadBalancerIP: 10.1.1.1 # ip from the internal network

Wer es versäumt, die loadBalancerIP anzugeben, bekommt einen Event ausgestellt, der

beschreibt, warum dies so ist:

> kubectl get events bash
8s Warning AllocationFailed service/example-service Failed
to allocate IP for "default/example-service": no available IPs
3s Warning SyncLoadBalancerFailed service/example-service Error
syncing load balancer: failed to ensure load balancer: no default network for ip
acquisition specified, acquire an ip for your cluster's project and specify it
directly in "spec.loadBalancerIP"

Die External-IP im Service verharrt derweil auf Pending:

> kubectl get svc bash
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-service LoadBalancer 10.244.75.171 <pending> 443:32179/TCP 4s

5.6 Service

Der Serviceumfang, den FI-TS zu den Isolierten Kubernetes-Clustern leistet, unterscheidet

sich im Grundsatz nicht zu dem für Internet Access Baseline zu erbringenden. Kunden

müssen gleichwohl beachten, dass das Personal von FI-TS ebenfalls nicht dazu in der Lage

ist, die Clusterisolation zu deaktivieren. Dies ist nicht als Nachteil zu betrachten, sondern ist

Folge des nachhaltigen Schutzes.

Sollte der Kunde jedoch Applikationen oder den Cluster selbst durch Fehlkonfiguration außer

Betrieb setzen, die nur durch Assets aus dem Internet behebbar wäre, kann FI-TS dies nicht

im Zuge des Incidentprozesesses gewährleisten. Der Ausweg besteht darin, dass der Kunde

(s)eine frühere Konfiguration wiederherstellt. FI-TS behält sich in solchen Havariefällen vor,

die SLA-Messung auszusetzen.

S2 = zur Weitergabe an Kunden 43 von 64

Cloud Native - Benutzerhandbuch

5.7 Kosten

Für die Verwendung der Cluster- und Netzwerk-Isolation entstehen erhöhte Betriebs- und

Betreuungskosten, die Kunden als Produktoption zusätzlich je Cluster für die Dauer der Clus-

ternutzung in Rechnung gestellt bekommen. Die bezogenen Verbräuche lassen sich mittels

cloudctl billing abrufen.

> cloudctl billing product-option bash

TENANT FROM TO
PROJECTID PROJECTNAME OPTION
CLUSTERID CLUSTERNAME LIFETIME
fits 2024-01-31T23:00:00.000Z
2024-02-05T09:58:35.508Z cd4eac58-46a5-4a31-b59f-2ec207baa817 mwen
PRODUCT_OPTION_CLUSTER_ISOLATION 3f7348d4-89bf-4edb-b554-d4abc303364c
mwentest 5m

Wer für die Ausgabe das Yaml-Format wählt, bekommt Details zu Gesicht:

--- yaml
clusterid: 3f7348d4-89bf-4edb-b554-d4abc303364c
clustername: mwentest
contract: "906000002"
debtorid: ""
id: PRODUCT_OPTION_CLUSTER_ISOLATION
lifetime: 300000000000
projectid: cd4eac58-46a5-4a31-b59f-2ec207baa817
projectname: mwen
tenant: fits
tenantname: FI-TS
annotations:
 - restricted # "Internet Access Forbidden"-Cluster, andernfalls "forbidden"

S2 = zur Weitergabe an Kunden 44 von 64

Cloud Native - Benutzerhandbuch

6 Servertypen

Für Kubernetes Cluster stehen an jedem Standort unterschiedliche Servertypen zur Auswahl,

die als Kubernetes Worker Nodes verwendet werden können.

Das Spezifizieren des Servertyps für den Kubernetes Cluster ist optional und kann mittels

cloudctl cluster create --machinetype <type> erfolgen. Da die Worker Nodes des Clusters

automatisch skalieren können, ist eine explizite Angabe des Servertyps für den Anwender in

der Regel nicht notwendig. Die Wahl eines bestimmten Servertyps ist nur dann notwendig,

wenn die geplante Workload besondere Anforderungen an die Hardware stellt oder keine

ausreichende Anzahl von Servern an einem Standort von einem speziellen Typ mehr zur

Verfügung steht.

Die verfügbaren Servertypen können mit dem Befehl cloudctl cluster inputs abgefragt

werden. Um das Ergebnis auf eine spezielle Partition zu filtern, kann auch cloudctl cluster

inputs --partition <id> verwendet werden.

Servertyp Empfehlung vCPUs Memory stg-kkw701 fel-wps101 nbg-w8101

c1-xlarge-x86 Compute-In-

tensive

24 96G X X X

m1-large-x86 Memory-Inten-

sive

24 192G X X X

m1-xlarge-x86 Memory-Inten-

sive

24 384G X X X

n1-medium-x86 Network-focus-

sed

8 32G X X X

g1-medium-x86 Graphic-Inten-

sive

32 256G X

s1-large-x86 Storage-Inten-

sive

8 196G X X X

s2-xlarge-x86 Storage-Inten-

sive

8 196G X X X

Tabelle 1: Übersicht über die verfügbaren Servertypen.

Bestimmte Maschinentypen führen zu einem Kostenaufschlag, der zusätzlich zu den monat-

lichen Kosten für den Kubernetes Cluster berechnet wird. Dazu zählen die Maschinentypen

m1-xlarge-x86 und g1-medium-x86.

S2 = zur Weitergabe an Kunden 45 von 64

Cloud Native - Benutzerhandbuch

Tip

Mit dem Einsatz von Worker Groups (beschrieben in einem nachfolgenden Kapitel) ist es

außerdem möglich Maschinengrößen zu mischen und die Last entsprechend des Maschi-

nentyps aufzuteilen. Auch für Update-Szenarien können Worker Groups nützlich sein.

6.1 Server mit GPUs

GPU-Nodes können momentan über zwei Wege verwendet werden:

1. Spezifizieren des Maschinentyps „g1-medium-x86“ bei der Cluster-Anlage über cloudctl

cluster create --machinetype g1-medium-x86 --machineimage nvidia-550.0

2. Einbindung einer zweiten Worker-Group bei einem existierenden Cluster. Hierbei ist zu

beachten, dass zusätzliche Worker Groups momentan nur vom Provider eingerichtet

werden können. Zum Schedulen von Workload auf Nodes einer weiteren Workergruppe

können Node Selectors verwendet werden.

6.1.1 Einrichtung

Um GPU-Nodes im Kubernetes Cluster verwenden zu können, müssen nach der Provisio-

nierung der Worker zusätzliche Installationsschritte durchgeführt werden. Zwar sind die

passenden Grafikkarten-Treiber bereits vorinstalliert und der Containerd Shim bereits einge-

richtet, jedoch ist es zusätzlich notwendig den nvidia-operator im Cluster zu deployen, um

die GPUs in Kubernetes nutzbar zu machen.

Die Installation des Operators kann beispielweise über helm erfolgen. Wir haben die Funktio-

nalität mit folgender Parametrisierung geprüft:

S2 = zur Weitergabe an Kunden 46 von 64

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://github.com/NVIDIA/gpu-operator

Cloud Native - Benutzerhandbuch

helm repo add nvidia https://helm.ngc.nvidia.com/nvidia bash
helm repo update

kubectl create ns gpu-operator
kubectl label --overwrite ns gpu-operator pod-security.kubernetes.io/
enforce=privileged

helm install --wait \
 --generate-name \
 --namespace gpu-operator \
 --create-namespace \
 nvidia/gpu-operator \
 --set driver.enabled=false \
 --set toolkit.enabled=true

Nach der Installation sollte kubectl describe node für den GPU-Worker eine entsprechende

Kapazität an GPU-Kernen ausweisen:

...
Capacity:
 cpu: 64
 ephemeral-storage: 100205640Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263802860Ki
 nvidia.com/gpu: 1
 pods: 510
...

Warning

Bei der beschriebenen Installation kann nur ein einzelner Pod auf eine GPU zugreifen.

Falls hingegen mehrere Pods gemeinsam auf dieselbe GPU zugreifen können sollen, muss

der Operator entsprechend konfiguriert werden.

Um dies zu erreichen gibt es mehrere Ansätze, die auf der offiziellen Webseite von NVIDIA

nachgeschlagen werden können:

• https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes

• https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-operator-

mig.html

S2 = zur Weitergabe an Kunden 47 von 64

https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-operator-mig.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-operator-mig.html

Cloud Native - Benutzerhandbuch

• https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html

S2 = zur Weitergabe an Kunden 48 von 64

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/gpu-sharing.html

Cloud Native - Benutzerhandbuch

7 Ratgeber und Best Practices

Seit der Einführung der Cloud-Native-Plattform hat die FI-TS viele praktische Erfahrungen im

Umgang mit Kubernetes und den zugehörigen Services gesammelt. Dieses Kapitel beinhaltet

wertvolle Ratgeber und Best Practices für die Verwendung der Plattform, die viel unnötigen

Frust und Diskussion ersparen können. Anwender sollten sich mit den vorgestellten Punkten

vertraut machen und sich bemühen diese umzusetzen, um Day-2 Betriebsaufwände zu mini-

mieren und unnötige Service-Ausfälle zu vermeiden.

7.1 Release Notes und Changes

Die FI-TS entwickelt die Cloud-Native-Plattform kontinuierlich weiter, um auf schnellstem

Weg Bug- und Vulnerability-Fixes, Verbesserung für Performance und Stabilität sowie neue

Funktionalitäten und Software-Versionen für Anwender zur Verfügung zu stellen.

Releases werden während eines geplanten Change Windows eingespielt. Changes erfolgen

in der Regel mindestens ein Mal pro Woche. Primär aktualisieren wir während eines Changes

unsere eigene Plattform-Infrastruktur, wobei als Nebenprodukt Änderungen an den von der

FI-TS gemanagten Komponenten aus den Clustern der Anwender erfolgen können⁵. Updates

an diesen Komponenten werden im selbst einstellbaren Maintenance Timewindow eines

Clusters (siehe Abschnitt 7.5) automatisiert ausgerollt. Hiervon ausgenommen sind Cluster,

die nicht mit dem Purpose production versehen wurden. Diese werden bereits innerhalb des

Change Windows vom Betriebsteam der FI-TS geupdated (siehe Abschnitt 7.2.3).

Neben Updates in den geplanten Change Windows, gibt es bestimmte Komponenten bei

denen der Zeitpunkt der Durchführung vom Anwender selbst bestimmt wird. Dies kann aus

der folgenden Tabelle entnommen werden:

Komponente Update-Zeitpunkt

Cloud-Native-API Im Change Window

Kubernetes Control Plane und gemanageten Kom-

ponenten

Im Cluster Maintenance Time Window⁶

Firewall-Controller Version Im Change Window

⁵z.B. ETCD, Kubernetes API Server / Controller Manager / Scheduler oder im Cluster-befindliche Komponen-
ten wie kubelet, CoreDNS, CNI, CSI, … (alles, was in einem neu erstellten Cluster zu finden ist).

⁶Hierbei ausgenommen sind Cluster, die nicht mit dem Purpose production versehen sind, siehe auch
Abschnitt 7.2.3.

⁷Mit Hilfe des Auto-Update Features können Kubernetes Patch Versionen selbstständig ausgerollt werden,
sobald neue Versionen verfügbar werden. Mehr Informationen dazu Abschnitt 7.5 dieses Dokuments. Des
Weiteren kann nicht ausgeschlossen, dass zu einem gegebenen Zeitpunkt alte Kubernetes Versionen durch

S2 = zur Weitergabe an Kunden 49 von 64

Cloud Native - Benutzerhandbuch

Kubernetes Version frei bestimmbar⁷

Betriebssystem-Images Version frei bestimmbar⁸

Die FI-TS ist bemüht die Releases der Cloud-Native-Plattform so transparent wie möglich zu

gestalten. Alle Änderungen können in Github Releases nachgelesen werden:

• https://github.com/fi-ts/releases

• https://github.com/metal-stack/releases

Des Weiteren werden Changes und neue Funktionalitäten über unsere Status-Seite https://

status.fits.cloud/ kommuniziert.

Die Qualität jedes unserer Releases wird durch umfangreiche Integrationstests sichergestellt.

Die Integrationstests decken alle Bereiche der Cloud Native Plattform ab und umfassen

metal-stack, Cloud-Native-API, Gardener, Lightbits und S3. Außerdem wird für jedes Release

sichergestellt, dass die bereitgestellten Cluster die CNCF Conformance Tests bestehen.

Tip

Updates sind essentiell, um die Plattform am Leben zu erhalten. Bitte unterstützen Sie

uns bei diesem Vorhaben! DevOps und kontinuierliche Integrationen sind eng mit der

Idee von Kubernetes verwoben und diese Werte sollen in der Cloud-Native-Plattform

gelebt werden. Machen Sie sich der Notwendigkeit bewusst, dass die durch uns gema-

nageten Komponenten bei einem Update neugestartet werden müssen. Kubernetes ist

so konstruiert, dass diese Änderungen unterbrechungsfrei durchgeführt werden können.

Die folgenden Sektionen enthalten alle Informationen, die Sie benötigen, damit Updates

keinerlei Einfluss auf die Workload ihrer Anwendung haben.

7.2 Überlegungen vor der Anlage eines neuen Clusters

Die von der Plattform bereitgestellten Cluster wachsen – wie üblich bei einer Cloud – dyna-

misch mit Ihrem Ressourcenbedarf. Dennoch sollten vor der Anlage eines Clusters bestimmte

Rahmenbedingungen betrachtet werden, um die Wahrscheinlichkeit einer aufwendigen Mi-

gration einer Anwendungsarchitektur auf einen neuen Cluster zu minimieren.

ein Zwangsupdate aktualisiert werden müssen. In diesem Fall werden die Cluster-Owner im Vorfeld von der FI-
TS informiert. Durch regelmäßige Durchführung von Cluster-Updates kann dieses Problem vermieden werden.

⁸Dies ist sowohl für Machine als auch Firewall Images möglich, aber standardmäßig deaktiviert. Auch hierzu
gibt es mehr Informationen in Abschnitt 7.5.

S2 = zur Weitergabe an Kunden 50 von 64

https://github.com/fi-ts/releases
https://github.com/metal-stack/releases
https://status.fits.cloud/
https://status.fits.cloud/

Cloud Native - Benutzerhandbuch

Bei der Cloud Native Plattform wird grundsätzlich davon ausgegangen, dass Ressourcen in

der Umgebung dynamisch allokiert werden. Worker Nodes haben demnach keinen besonders

langen Lebenszyklus und sollten nicht als statische Ressourcen betrachtet werden. Sie

sollen in einem Cluster regelmäßig ausgetauscht, erweitert oder reduziert werden können.

Da es sich bei den bereitgestellten Worker Nodes um physische Server („bare metal server“)

handelt, sollte man sich ebenfalls nicht auf das beständige Vorhandensein verlassen, da über

lange Sicht mit Hardware-Ausfällen zu rechnen ist. Für die Aufrechterhaltung der Services im

Cluster sorgt Kubernetes. Über unsere Infrastruktur können innerhalb weniger Minuten neue

Server provisioniert werden, sodass keine Abstriche durch den Verzicht auf Virtualisierung in

unserer Plattform bestehen.

Abhängig von der Art der Anwendung, können Workloads CPU- oder Memory-intensiv sein.

Für diese Zwecke stellen wir an jedem Standort unterschiedlich ausgestattete physische

Server für ihre Cluster zur Verfügung. Die verfügbaren Servertypen werden in Abschnitt 6

beschrieben. Bitte beachten Sie, dass ggf. nicht alle Servertypen in allen Partition verfügbar

sind.

Nutzen Sie für kritische Anwendungen mehrere Cluster mit unterschiedlichen Serverstand-

orten, um Ausfallszenarien von Rechenzentren bestmöglich abzudecken. Wie Sie Services

über mehrere Standorte hinweg verfügbar machen können, wird später in diesem Dokument

beschrieben.

7.2.1 Maximale Clustergröße and Anzahl von Pods pro Worker Node

Standardmäßig können Cluster 16 Worker Nodes umfassen auf denen jeweils 510 Pods

gescheduled werden können.

Bei ressourcenintensiven Deployments, kann es ratsam sein die Maximalanzahl der Pods

herunterzusetzen, um die maximale Clustergröße zu erhöhen. Diese Konfiguration kann bei

der Anlage eines Clusters über das Flag --max-pods-per-node in cloudctl cluster create

konfiguriert werden.

Den Zusammenhang zwischen maximaler Podanzahl pro Worker Node und Anzahl der mögli-

chen Cluster Worker Nodes können folgender Tabelle entnommen werden:

Max Pods Max Nodes

> 510 nicht ratsam

<= 510 16

<= 254 32

<= 126 64

S2 = zur Weitergabe an Kunden 51 von 64

Cloud Native - Benutzerhandbuch

< 100 nicht ratsam

Planen Sie eine Vollauslastung der Clustergröße mit ressourcenintensiven Anwendungen,

wäre beispielweise eine Clusteranlage mit cloudctl cluster create --max-pods-per-node 110

sinnvoll.

Es ist generell ratsam nicht die Grenze der maximalen Worker Nodes für ein Cluster zu

erreichen. Hierzu sollen zwei wichtige Flags erwähnt werden, die beim Erstellen und Updaten

eines Clusters zur Verfügung stehen:

• --maxsurge: Die maximale Anzahl der Worker die bei einem Rollen der Worker Nodes (z.B.

durch ein Update) gleichzeitig zum Cluster hinzugefügt werden können.

• --maxunavailable: Die maximale Anzahl der Worker die bei einem Rollen der Worker Nodes

(z.B. durch ein Update) gleichzeitig zum Cluster gleichzeitig entfernt werden können.

Wir empfehlen die Standardeinstellung von --maxsurge 1 und --maxunavailable 0, um ein

unterbrechungsfreies Rollen von Worker Nodes zu ermöglichen. Grund dafür ist, dass ein

Cluster an der Grenze der maximalen Worker Nodes kein Worker Rolling mehr durchführen

kann außer indem --maxunavailable erhöht wird. In diesem Fall muss der Cluster die Last des

entfernten Worker Nodes auffangen, was zu Beeinträchtigungen der Stabilität des Clusters

führen kann.

7.2.2 Einsatz von Cloud Storage

Sofern bei der Erstellung des Clusters das --external-networks nicht gesetzt wurde, wird jeder

Cluster standardmäßig im partitionseigenen Storage Netzwerk hinzugefügt aus dem über

die Storage Classes des Typs csi.lightbitslabs.com persistenter Storage über das NVMe/TCP

Protokoll bezogen werden kann.

Die lokalen Festplatten von Worker Nodes und die damit verbunde Storage Class csi-lvm

sollte in der Regel nicht für langfristigen Storage verwendet werden. Der Ausfall eines Worker

Nodes würde zu Datenverlust führen und das Rolling Update behindern.

7.2.3 Cluster Purposes

Jedes Cluster kann vom Anwender über ein Feld mit dem Namen „Purpose“ für unterschiedli-

che Verwendungs-Zwecke gekennzeichnet werden. Die Konfiguration geschieht über cloudctl

mit dem Flag --purpose entweder direkt bei der Cluster-Erstellung oder beim Cluster-Update

Kommando. Der Wert kann zu jedem Zeitpunkt wieder vom Anwender verändert werden. Die

zur Verfügung stehenden Werte für „Purpose“ sollen hier kurz erläutert werden:

S2 = zur Weitergabe an Kunden 52 von 64

Cloud Native - Benutzerhandbuch

• evaluation: Ein mit diesem Zweck gekennzeichneter Cluster impliziert, dass in diesem

Cluster keine produktive Workload betrieben wird und dieser zu Evaluationsgründen

angelegt wurde. Cluster mit diesem Purpose qualifizieren sich früher für neue Plattform-

Features und werden innerhalb unserer Change Windows unmittelbar geupdated. Dadurch

können Anwender und das Betriebsteam der FI-TS mögliche Probleme, die durch ein Update

entstehen könnten, in diesen Clustern bereits feststellen noch bevor diese auf Cluster mit

produktiver Workload angwendet werden. Allerdings werden diese Cluster nicht von der

SLA gedeckt.

• development: Für diesen Purpose gelten die gleichen Eigenschaften wie für evaluation.

• production: Ein mit diesem Zweck gekennzeichneter Cluster impliziert, dass in diesem

Cluster produktive Workload betrieben wird. Dieser Cluster wird bei Plattform-Updates

nicht unmittelbar während des Change Windows geupdated, sondern erst im vom Nutzer

einstellbaren Maintenance Timewindow (siehe Abschnitt 7.5). Neue Plattform-Features

werden hier vom Betriebsteam der FI-TS tendenziell später ausgerollt, nachdem diese eine

Weile auf Clustern mit nicht productionsrelevanter Workload erprobt wurden.

• infrastructure: Dieser Zweck steht nur Clustern der FI-TS zur Verfügung und dient zur

Kennzeichnung von Clustern, die Basis-Funktionalität der Plattform bereistellen. Er kann

von Anwendern nicht verwendet werden.

Tip

Sie helfen dem Betriebsteam der FI-TS, wenn Sie Cluster mit nicht produktionsrelevanter

Workload über ihren Cluster-Purpose entsprechend kennzeichnen. Je größer die Gesamt-

menge dieser Cluster ist, desto kleiner wird die Eintrittswahrscheinlichkeit, dass beim

Ausrollen eines Updates für produktive Cluster ein unvorhersehbares Problem auftritt.

7.2.4 Hochverfügbare Kubernetes Control Plane

Cluster werden fortan standardmäßig mit dem HA Control Plane Feature Gate provisioniert.

Das heißt, dass die von der Cloud Native verwalteten Komponenten der Kubernetes Control

Plane in einer hochverfügbaren Konfiguration bereitgestellt werden.

Dies bietet dem Anwender einige Vorteile: Der ETCD des Clusters wird anstatt als Standa-

lone-Installation in einer Cluster-Konfiguration bereitgestellt, wodurch Mechanismen wie

automatische Skalierung dieser Komponente zu keiner Nichtverfügbarkeit der Kubernetes

API führt. Außerdem wirken sich Plattform-Updates, die ggf. Updates an den Komponenten

der Control Plane vornehmen, nicht auf die Verfügbarkeit der Kubernetes API aus.

S2 = zur Weitergabe an Kunden 53 von 64

Cloud Native - Benutzerhandbuch

Alte Cluster, die vor der Einführung von HA Control Planes erstellt wurden, sollten mit Hilfe

des Kommandos cloudctl cluster update <id> --high-availability-control-plane auf die

hochverfügbare Kubernetes Control Plane migriert werden.

Tip

Bei der Umstellung auf HA Control Planes ist zu beachten, dass das für Produktion nicht

empfohlene Cluster-Forwarding Backend des Kubernetes API Server Auditing inkompati-

bel mit dem HA Control Plane Feature Gate ist. Das Thema Auditing wird in Abschnitt 2.2.4

genauer beschrieben und empfiehlt Splunk als Audit-Backend für Cluster mit produktiver

Workload einzusetzen.

7.2.5 Cluster-Autoscaling

Da die Kosten abhängig von den angeforderten Ressourcen im Cluster berechnet werden,

werden Cluster standardmäßig mit einem Node-Autoscaler provisioniert. Dieser erkennt

automatisch einen erhöhten Ressourcenbedarf im Cluster und fügt dementsprechend neue

Woker Nodes hinzu. Verringert sich der Ressourcenbedarf, so kann der Autoscaler auch

Worker Nodes aus dem Cluster entfernen.

Durch dieses Feature können hohe Lastspitzen aufgefangen und horizontal skaliert werden

ohne dass über lange Prozesse neue Ressourcen zur Verfügung gestellt werden müssen.

Allerdings erfordert die entstehende Dynamik auch die Berücksichtigung von speziellen

Konfigurationen in Kubernetes. Hierzu gehören:

• Die Einrichtung von PodDisruptionBudgets, die bei der Entfernung eines Nodes durch den

Cluster-Autoscaler dafür sorgen, dass ein neuer Pod auf einem existierenden Node unter-

gebracht werden kann bevor der alte gelöscht wird

• Keine Verwendung von PersistentVolumes, die eine Affinität auf einen einzigen Worker-

Node haben (sprich: Verwendung der Storage Classes des Type csi.lightbitslabs.com

anstatt csi-lvm)

Tip

Damit der Autoscaler richtig funktioniert, ist es sehr wichtig, dass die Pod Requests

adäquat gesetzt werden. Lesen Sie hierzu das Kapitel Resource Management for Pods and

Containers in der offiziellen Kubernetes Dokumentation. Monitoren Sie die Verbräuche

der Pods mit der Einrichtung eines Cluster Monitorings und der von uns bereitgestellten

Metrics API.

S2 = zur Weitergabe an Kunden 54 von 64

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/#metrics-api

Cloud Native - Benutzerhandbuch

7.2.6 kubectl cp und kubectl exec

kubectl cp und kubectl exec sind hilfreiche Kommandos, um ein Kubernetes Cluster zu de-

buggen. Die Kommandos sollten allerdings nicht im produktiven Einsatz verwendet werden.

Grund hierfür ist, dass diese Kommandos über den Kubernetes API Server geproxied werden

und dann über das Kubelet in die Container Engine weitergeleitet werden. Die Komponenten

dieser Chain unterliegen einer SLA Zeit und stehen bei Updates ggf. kurzzeitig nicht zur Ver-

fügung. Die Kubernetes API Server sind selbst-skalierend deployed, und können auch ohne

Ankündigung gerollt werden, um den Ressourcenbedarf anzupassen. Auch in diesem Fall

bricht die Verbindung der Kommandos ab. Der Traffic fließt außerdem nicht über die Cluster-

Firewall ihres Clusters und die Verbindung ist auf Grund der Komplexität verhältnismäßig

langsam und fragil.

Anstatt kubectl cp zu verwenden, können Sie für kleine Dateien Kubernetes Ressourcen

wie ConfigMaps oder Secrets verwenden und diese über CI ins Cluster deployen. Für große

Dateien verwenden Sie den S3-kompatiblen Object Storage. Der Traffic fließt dann über die

stabile Netzwerkverbindung ihrer Cluster Firewall, welche höchstens von einem durch Sie

vorgenommenen Firewall Update unterbrochen werden kann.

Statt kubectl exec verwenden Sie ggf. Kubernetes Jobs für One-Time Executions oder fest

installierte Sidecars, die Sie ebenfalls über CI definieren können.

7.2.7 IP Adressen

Im Folgenden finden sich einige Hinweise zum Bezug und dem Lebenszyklus von IP-Adressen

der Cloud Native Plattform.

7.2.7.1 Flüchtige IP Adressen

Bestimmte IP Adressen sind flüchtig (engl. ephemeral) und werden bei der Löschung eines

Clusters automatisch wieder freigegeben. Es besteht keine Garantie, dass diese IP Adressen

wieder für dasselbe Projekt allokiert werden können. Daher sollten flüchtige IP Adressen

vermutlich nicht für Network Policies oder Freischaltungen verwendet werden, die dauerhaft

geplant sind.

Eine flüchtige IP Adresse kann mit cloudctl ip static in eine statische IP Adresse umge-

wandelt werden. Mit cloudctl ip list kann man eine Übersicht über alle verwendeten IPs

erhalten.

S2 = zur Weitergabe an Kunden 55 von 64

Cloud Native - Benutzerhandbuch

7.2.7.1.1 Adresse des Kubernetes API Servers

Bei Updates oder Migrationen von Control Planes kann sich die IP Adresses einer Kubernetes

API verändern. Verlassen kann man sich nur auf den DNS-Namen der API, der beispielsweise

in der Cluster Kubeconfig zu finden ist.

Warning

Bitte verwenden Sie aus diesem Grund die IP Adresse des API Servers in keinen wichtigen

Regeln von Firewalls, etc.

7.2.7.2 Adresse der Cluster Firewall

Bei einem Firewall-Update kann sich die Internet IP einer Firewall verändern. Standardmäßig

ist diese IP Adresse die Source Adresse für ausgehenden Traffic aus ihrem Cluster, weil ausge-

hender Traffic von der Firewall mit SNAT verschleiert wird.

Wenn Sie auf eine fixe Source IP-Adresse für ihr Cluster angewiesen sind, konfigurieren Sie

eine statische Egress-IP für das Cluster über cloudctl cluster update --egress Diese

kann den Lebenszyklus eines Clusters überleben und Probleme wie Port Exhaustion können

durch die Verwendung weiterer Egress-IPs verhindert werden.

7.2.7.3 Service Type Load Balancer Adressen

Adressen, die durch die Erstellung eines Services vom Typ Load Balancer im Kubernetes

Cluster bezogen werden (insofern das LoadBalancerIP Feld nicht explizit gesetzt wird), sind

standardmäßig flüchtig und werden beim Löschen eines Clusters wieder freigegeben.

Wenn Service-Adressen über den Cluster Lebenszyklus hinaus erhalten bleiben sollen, müs-

sen diese über cloudctl ip static in eine statische Adresse umgewandelt werden.

Tip

Bitte beachten Sie, dass Sie selbst für das Aufräumen von statischen IP Adressen zustän-

dig sind und auch für nicht verwendete IP Adresse Kosten anfallen.

7.2.7.4 Adresse der Cloud Native API

Verwenden Sie für die Konfiguration von cloudctl nur die URL https://api.fits.cloud/cloud.

S2 = zur Weitergabe an Kunden 56 von 64

https://api.fits.cloud/cloud

Cloud Native - Benutzerhandbuch

7.3 Cluster- und Node-Updates mit Zero Downtime

Wir möchten dazu motivieren, Cluster häufig zu updaten (im Idealfall mit Auto-Updates),

damit sichergestellt wird, dass Security Fixes auf schnellstem Wege ausgerollt werden. In

dieser Sektion werden die Maßnahmen beschrieben, die angewendet werden können, damit

diese Prozedur planbar und ohne Ausfälle durchgeführt werden kann.

7.3.1 Reduktion der Kopplung zu gemanageten Komponenten

Um einen stabilen Betrieb der Anwendung in ihrem Cluster zu gewährleisten, ist es notwendig

die SLA-Zeiten der von uns gemangeten Komponenten zu berücksichtigen, da wir diese Zeiten

nutzen, um Updates zur Verfügung zu stellen. Als Konsequenz sollte man sich als Anwender

nicht zu stark an diese Komponenten koppeln. Insbesondere sehen wir vor:

• dass die Kubernetes API Server bei einem Update oder Change zeitweilig nicht zur Verfü-

gung stehen⁹,

• dass Komponenten auf dem Worker Node wie Kubelet oder Container Runtime Engine bei

einem Update oder Change neugestartet werden können,

• dass von uns verwaltete Komponenten innerhalb des Kubernetes Clusters (z.B. CoreDNS,

MetalLB…) neugestartet werden können.¹⁰

7.3.2 Simulation von Updateszenarien

Man kann sich auf die erwartbaren Szenarien von Updates einstellen, indem man diese in

einer Test-Stage simuliert und dabei die Verfügbarkeit der Anwendung von außen überwacht.

Sollte das Durchspielen der folgenden Szenarien keine Auswirkungen auf die Service-Erreich-

barkeit haben, ist ein reguläres Plattform-Update unterbrechungsfrei.

7.3.2.1 kubelet und Container Runtime

Um wie bei einem Plattform-Update den Neustart des Kubelets und der Container Runtime

auszulösen, kann folgende Node Annotationen verwendet werden:

kubectl annotate node <your-node> worker.gardener.cloud/restart-systemd-
services=kubelet.service,containerd.service

bash

Beim Setzen dieser Annotation führt eine Anwendung auf dem Worker Node einen Restart

des kubelets und der Container Runtime durch. Beim Neustart der Kubelet Komponente

⁹Bei Clustern, die mit dem HA Control Plane Feature Gate konfiguriert sind (siehe Abschnitt 7.2.4), reduziert
sich die potentielle Nichtverfügbarkeit des Kubernetes API Servers bei Plattform-Updates erheblich. Wir
empfehlen ältere Cluster zu HA Control Planes zu migrieren, falls dies noch nicht geschehen sein sollte.

¹⁰Diese Komponenten werden immer durch ein Rolling Update aktualisiert, sodass durch Spreading von
Pods auf mehrerer Worker Nodes das Update unterbrechungsfrei stattfinden kann.

S2 = zur Weitergabe an Kunden 57 von 64

Cloud Native - Benutzerhandbuch

markiert der kube-controller-manager den Node kurzzeitig mit dem Status NodeNotReady, was

dazu führt, dass der Node für einen kurzen Zeitpunkt aus den Services entfernt wird, wodurch

die Paketweiterleitung zu den auf diesen Nodes gescheduleten Pods unterbrochen wird.

Dieser Zustand dauert in der Regel weniger als eine Sekunde, führt aber dazu, dass stehende

Verbindungen von Komponenten auf dem Node sowohl innerhalb des Clusters als auch von

außen unterbrochen werden.

Tip

Auf dieses Verhalten von Kubernetes können wir keinen Einfluss nehmen. Es ist daher

wichtig, dass verwendete Software, die stehende Verbindungen zu einem Pod aufbaut,

einen selbstständigen Wiederaufbau einer Verbindung implementiert.

7.3.2.2 MetalLB

Die Netzwerkinfrastruktur der Cloud Native Plattform basiert auf dem BGP Protokoll. Für eine

Internet IP Adresse, die über einen Service Type Load Balancer bezogen wird, übernimmt

die von uns verwaltete Komponente MetalLB das Route Announcement für die bezogene IP-

Adresse über ein Peering mit dem auf Node befindlichen FRR Daemon.

Beim Rollen des Metallb Speaker DaemonSets im metallb-system Namespace wird für den

Zeitraum des Neustart des Pods das Route Announcement kurzzeitig zurückgezogen.

Tip

Das Rollen des Speaker DeamonSets geschieht nicht häufig. Dennoch ist es ratsam, dass

eine hochverfügbare, über einen Service Type Load Balancer exponierte Anwendung über

zwei Nodes verteilt wird. Das sogenannte Spreading über die Nodes kann mit Hilfe von

Kubernetes über Pod „anti-affinity“ realisiert werden. Hierzu empfehlen wir das Kapitel

Assigning Pods to Nodes in der Kubernetes Dokumentation.

Das Rolling Update des DeamonSets kann mit dem folgenden Befehl ausgelöst werden:

kubectl rollout restart ds -n metallb-system speaker bash

7.4 Nutzung von Worker Groups

Der Einsatz von Worker Groups kann z.B. für folgende Anwendungsfälle nützlich sein:

S2 = zur Weitergabe an Kunden 58 von 64

https://metallb.universe.tf/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

Cloud Native - Benutzerhandbuch

• Separation von Workload innerhalb des Clusters auf dedizierte Maschinen (z.B. dedizierten

Nodes für CI-Runner bei Gitlab-Deployments)

• Kubernetes Updates bei der Nodes manuell migriert werden müssen

Ein Cluster wird standardmäßig mit einer einzigen Worker Group group-0 angelegt. Innerhalb

dieser Worker Group sind alle Nodes identisch, d.h. sie verwenden denselben Servertyp und

das konfigurierte Betriebssystem Image. Nodes desselben Pools können über das gemein-

same Node Label worker.gardener.cloud/pool selektiert werden.

Werte für den Cluster-Autoscaler wie --minsize, --maxsize, --maxsurge, --maxunavailable

beziehen sich auf eine einzelne Worker Group und können für jede Worker Group individuell

konfiguriert werden. Die aktuelle Worker-Gruppen-Konfiguration kann jederzeit über den

Befehl cloudctl cluster describe <id> -o yaml --no-machines abgerufen werden.

Nach der Anlage des Clusters können weitere Worker Groups hinzugefügt oder entfernt

werden. Derzeit muss allerdings immer mindestens eine Worker Group vorhanden sein.

Das Hinzufügen einer Worker Group über cloudctl geschieht beispielsweise über cloudctl

cluster update <id> --workergroup ci-runners --minsize 1--maxsize 2 --machineimage

debian-12.0 --machinetype m1-xlarge-x86.

Da Kubernetes die Verwendung von Kubelets mit einer bis zu zwei Minor-Versionen kleineren

API Version unterstützt (näheres dazu in der Kubernetes Dokumentation unter Version Skew

Policy), können Worker Groups mit --workerversion unabhängig von der Version des Kube API

Servers auf eine ggf. niederigere Kubernetes gepinnt werden. Für Kubernetes Updates kann

dies vorteilhaft sein:

• Statt die einzelne Worker Group zwei Mal rollen zu müssen, braucht man durch Version

Pinning nur ein einziges Mal die Worker Group rollen

• Es besteht kein Zeitdruck bei der Verlagerung der Workload auf die neuen Nodes

Tip

Da zusätzliche Worker Groups potentiell gegen das bedarfsgesteuerte Abrechnungsmo-

dell arbeitet, fallen für Worker Groups zusätzliche Kosten an.

7.4.1 Upgrade von Kubernetes mit Hilfe von Worker Groups

Für das Beispiel nehmen wir einen Cluster mit Kubernetes Version 1.25.11 mit einer einzelnen

Worker Group (group-0) an, dass auf Kubernetes Version 1.27.8 aktualisiert werden soll.

S2 = zur Weitergabe an Kunden 59 von 64

https://kubernetes.io/releases/version-skew-policy/
https://kubernetes.io/releases/version-skew-policy/

Cloud Native - Benutzerhandbuch

1. Falls die bestehende Worker Group noch auf keine spezifische Version gepinnt wurde, wird

die Gruppe nun auf die aktuelle Kubernetes Version gepinnt. Das Vorgehen verhindert,

dass die Worker Nodes gerollt werden, wenn die Version des Kubenertes API Servers

erhöht wird: cloudctl cluster update <id> --workergroup group-0 --workerversion

1.25.11

2. Jetzt kann das Cluster zwei Mal geupdated werden. Selbstverständlich sollte nach jedem

Update geprüft werden, dass die Anwendung im Cluster noch einwandfrei funktioniert.

Im Vorfeld muss sichergestellt werden, dass keine veralteten Kubernetes API Ressourcen

mehr verwendet werden. Das Kommando für das Update lautet: cloudctl cluster update

<id> --version 1.26.13, anschließend cloudctl cluster update <id> --version 1.27.8.

3. Nun wird eine neue Worker Group hinzugefügt, z.B. durch cloudctl cluster update <id>

--workergroup group-1 --machineimage debian-12.0 --machinetype c1-xlarge-x86 --

workerversion 1.22.13 --minsize 1 --maxsize 5

4. Die Workload der alten Worker Gruppe kann nun auf die neue Worker Gruppe verschoben

werden. Dies geschieht üblicherweise mit den Kommandos kubectl cordon und kubectl

drain.

5. Nachdem die alten Worker Nodes frei geworden sind, kann die alte Worker Gruppe im

Anschluss an die erfolgreich Migration entfernt werden: cloudctl cluster update <id> --

workergroup group-0 --remove-workergroup

7.5 Auto-Updates

Für folgende Komponenten bieten wird eine Auto-Update Funktionalität an:

• Kubernetes Patch Version

• Worker Node Betriebssystem Image

• Firewall Betriebssystem Image

Sobald auf der Finance Cloud Native Plattform innerhalb eines Changes neue Versionen der

vorgestellten Komponenten zur Verfügung gestellt werden, können diese automatisch aktua-

lisiert werden ohne dass der Update-Prozess manuell angestoßen werden muss.

Auto-Updates finden im konfigurierten Wartungszeitfenster (Maintenance Time Window) des

Clusters statt. Standardmäßig ist dies von 23 Uhr bis 0 Uhr voreingestellt. Das Wartungszeit-

fenster kann auch über die Flags --maintenance-begin und --maintenance-end modifiziert

werden. Eine Cluster Maintenance kann außerdem über cloudctl cluster reconcile --

operation maintain erzwungen werden.

Die Funktionalität kann einzeln über die cloudctl cluster update --autoupdate-* Befehle

pro Cluster konfiguriert werden.

S2 = zur Weitergabe an Kunden 60 von 64

Cloud Native - Benutzerhandbuch

Wir empfehlen Auto-Updates uneingeschränkt für Test Umgebungen, um diese stets auf dem

neuesten Stand zu halten. Für Produktionsumgebungen kann es geschickter sein, die Updates

manuell anzustoßen, was allerdings mit einem höheren Wartungsaufwand verbunden ist.

7.5.1 Kubernetes Patch Version

Ein Update der Kubernetes Patch Version (z.B. 1.27.7 auf 1.27.8, nicht Minor-Version wie z.B.

1.26.11 auf 1.27.8) findet in-place statt. D.h. dass die Worker Nodes des Clusters nicht ausge-

tauscht werden. Stattdessen wird nur die neue Version des API Server ausgerollt und auf den

Worker Nodes die neue Kubelet Version installiert (mit allen beschriebenen Implikationen

aus Abschnitt 7.3.2.1).

7.5.2 Machine Image Updates

Bei einer Aktualisierung des Worker Node Betriebssystem Images werden die Worker Nodes

des Clusters entsprechend der Worker Group Konfiguration gerollt. Für diese Art von Update

müssen die in Abschnitt 7.3 beschriebenen Vorbereitungen getroffen werden, damit es nicht

zu Service-Unterbrechungen kommt.

7.5.3 Firewall Image Updates

Bei einer Aktualisierung des Firewall Betriebssystem Images wird zunächst eine neue Firewall

parallel zur existierenden Firewall bereitgestellt. Sobald die neue Firewall sich konfiguriert

hat, übernimmt diese das Traffic Routing und die alte Firewall wird entfernt. Bei der

Übernahme des Traffics von der alten auf die neue Firewall werden stehende Verbindungen

unterbrochen. Auch kann der Paketfluss für einige Sekunden unterbrochen werden.

7.6 Geo-redundante Software Deployments

Dieser Abschnitt ist noch nicht fertiggestellt.

7.7 Q&A

Frage: Ich habe einen Controller, der davon abhängig ist, dass die Kubernetes API immer zu

100% zur Verfügung steht. Wie kann man damit umgehen?

Antwort: Der Controller muss die Abwesenheit der Kubernetes API tolerieren können. Erhöhen

Sie ggf. Timeouts auf die maximale SLA-Zeit. Ist dies nicht möglich, kann man durch das

Deployment eines eigenen ETCDs und Kubernetes API Server im eigenen Cluster die Kopplung

auflösen und Resistenz gegenüber Plattform-Updates werden.

Frage: Kann ich einen Überblick über die Kubernetes Control Plane erhalten?

S2 = zur Weitergabe an Kunden 61 von 64

Cloud Native - Benutzerhandbuch

Jeder Kubernetes Cluster verfügt über eine separate, read-only Grafana Instanz, die ein

Anwender einsehen darf. Die URL zum Dashboard und die dazugehörigen Anmeldedaten

können über cloudctl cluster monitoring-secret abgerufen werden.

Das Dashboard liefert einen Überblick über die von uns gemanageten Control Plane Kompo-

nenten und ist nicht modifizierbar. In Problemfällen kann es sehr nützlich sein, beispielsweise

falls durch eigens ausgerollte Controller oder Webhooks die API Server des eigenen Kuber-

netes Clusters destabilisiert werden. Kontrollieren Sie in Fällen, in denen der API Server

außerhalb eines Change Windows nicht wie gewohnt reagiert die Dashboards für den Cluster.

7.8 Weitere Hilfestellung

Gerne stellen wir Ihnen ein Beratungskontingent zur Verfügung in dem wir Ihnen helfen

können die vorgestellten Best Practices für ihr Anwendungsdeployment umzusetzen.

S2 = zur Weitergabe an Kunden 62 von 64

Cloud Native - Benutzerhandbuch

8 Änderungshistorie

2023-02-24 ‚Kleinert, Jan‘ Fix in der Kapitel-Hierarchie

2023-02-24 ‚Kleinert, Jan‘ Weiterer Fix in Kapitel-Hierarchie

2023-02-24 ‚Reiger, Michael‘ Resolve „MPLS service sourceRanges“

2023-04-25 ‚Christian Brunner‘ Aufnahme der Dokumentenklassifizierung in die Fuß-

zeile

2023-05-12 ‚Wennrich, Markus‘ add instructions how to replace defect nodes/firewalls

2023-05-30 ‚Stefan Majer‘ Fix some typos

2023-06-06 ‚Fensterer, Markus‘ DMZ-Setup

2023-07-31 ‚Schwerthelm, Gerrit‘ Add storage network for n2-tm1601.

2023-08-30 ‚Markus Wennrich‘ PSP are deprecated

2023-08-30 ‚Markus Wennrich‘ add –default-pod-security-standard

2023-08-30 ‚Kleinert, Jan‘ Stilverbesserung

2023-09-12 ‚Anastasiia Orlova‘ Dokumentation wurde aktualisiert und mit Lightbits

erweitert.

2024-03-20 ‚Majer, Stefan‘ Isolated Clusters

2024-04-04 ‚Kleinert, Jan‘ Update 05-Isolierte-Cluster.md (2 Typos).

2024-04-16 ‚Peter, Mike‘ Merge branch ‚master‘ into ‚update-docs‘

2024-06-11 ‚Majer, Stefan‘ Migrate to typst

2024-06-12 ‚Schwerthelm, Gerrit‘ Sektion über die Verwendung von GPU Worker Nodes.

2024-06-12 ‚Stefan Majer‘ Keine Zeilennummern in Quelltexten

2024-06-13 ‚Brunner, Christian‘ Erstellung eines deutschsprachigen Berechtigungs-

konzepts

2024-06-14 ‚Schwerthelm, Gerrit‘ Manage dependency versions in a single place.

2024-06-14 ‚Wennrich, Markus‘ add hint to kube-apiserver-acl cloudctl commands

2024-06-14 ‚Schwerthelm, Gerrit‘ Fix some typos.

2024-06-17 ‚Schwerthelm, Gerrit‘ Add section for best practices.

2024-06-19 ‚Schwerthelm, Gerrit‘ Korrektur Struktur Best Practices.

2024-07-05 ‚Gerrit‘ Korrektur „physikalisch“ zu „physisch“.

2024-08-14 ‚Knabel, Valentin‘ feat(audit): upgrade to latest cloudctl version 32

2024-08-20 ‚Gerrit‘ Hervorhebung weshalb Audit-Log Cluster-Forwarding

nicht für Produktion verwendet werden sollte.

2024-08-28 ‚Gerrit‘ Anpassung Worker-Node Annotation seit Gardener

Node Agent.

2024-09-03 ‚Majer, Stefan‘ Merge branch ‚audit-logs-why-not-cluster-forwar-

ding‘ into ‚master‘

S2 = zur Weitergabe an Kunden 63 von 64

Cloud Native - Benutzerhandbuch

2024-10-02 ‚Pilz, Alexander‘ Berichtigung S3 Kommando

2025-02-11 ‚Schwerthelm, Gerrit‘ Anpassungen zur neuen Rollout Strategie von Platt-

form Updates.

2025-02-21 ‚Majer, Stefan‘ Typst v0.13

2025-02-27 ‚Markus Wennrich‘ Update GPU operator installation instructions to

enable toolkit

2025-02-27 ‚Markus Wennrich‘ keep spacing

2025-03-10 ‚Schwerthelm, Gerrit‘ Erklärung von HA Control Planes.

2025-03-10 ‚Schwerthelm, Gerrit‘ Update zu lokalem NVMe Storage von Workernodes.

S2 = zur Weitergabe an Kunden 64 von 64

	Überblick
	Management der Cloud-Native-Umgebung
	Kubernetes-Cluster
	Leistungsschnitt: Anwendungsbetrieb durch den Kunden
	Leistungsschnitt: Anwendungsbetrieb durch FI-TS

	Cloud-Native-API
	Hierarchische Strukturierung der Cloud-Native-Einheiten
	Reservierung von IP-Adressen
	Privilegierte Container
	Auditing
	Splunk-Konfiguration
	Cluster-Forwarding-Konfiguration

	Kubernetes API
	Berechtigungsvergabe
	IP-basierte Einschränkung des Zugriffs auf den Kubernetes API Server
	Technische Benutzer für Continuous Integration
	Eine Kubeconfig erzeugen
	Firewall, Network-Policies und ClusterwideNetworkpolicy
	Cloud-Provider-Interface für die FI-TS Infrastruktur
	Austausch defekter Nodes
	Local NVMe-Storage
	Migration von csi-lvm zu csi-driver-lvm

	Cloud Native Block-Storage
	Nutzung bestehender Block-Storage-Volumes
	Snapshots
	Optional: Clientseitige Volume-Verschlüsselung

	S3-kompatibles Object-Storage

	Middleware und Datenbanken
	Cloud Platform Status Dashboard
	Beendigung
	Export der Kubernetes-Konfiguration und -Volumes
	Löschen von Kubernetes-Clustern
	Löschen von Block-Storage Volumes
	S3 Object-Store

	Patchmanagement und Lifecycle
	Patchmanagement Cluster
	Kubernetes-Update/-Upgrade
	Betriebssystem-Update/-Upgrade für Nodes
	Release-Reporting und Software-Lifecycle für Kubernetes-Cluster

	Patchmanagement für Middleware und Datenbanken
	Updates/Upgrades
	Release-Reporting und Software-Lifecycle

	Netzanbindung
	Internet-Verbindungen
	Interne Verbindungen

	Produktoption Isolierte Kubernetes-Cluster
	Clustervarianten in der FCN
	Unbedingt erforderliche Containerimages
	Containerimages für eigene Applikationen
	Netzwerkarchitektur
	Praktische Handhabung
	Internet Access Restricted
	Internet Access Forbidden

	Service
	Kosten

	Servertypen
	Server mit GPUs
	Einrichtung

	Ratgeber und Best Practices
	Release Notes und Changes
	Überlegungen vor der Anlage eines neuen Clusters
	Maximale Clustergröße and Anzahl von Pods pro Worker Node
	Einsatz von Cloud Storage
	Cluster Purposes
	Hochverfügbare Kubernetes Control Plane
	Cluster-Autoscaling
	kubectl cp und kubectl exec
	IP Adressen
	Flüchtige IP Adressen
	Adresse des Kubernetes API Servers

	Adresse der Cluster Firewall
	Service Type Load Balancer Adressen
	Adresse der Cloud Native API

	Cluster- und Node-Updates mit Zero Downtime
	Reduktion der Kopplung zu gemanageten Komponenten
	Simulation von Updateszenarien
	kubelet und Container Runtime
	MetalLB

	Nutzung von Worker Groups
	Upgrade von Kubernetes mit Hilfe von Worker Groups

	Auto-Updates
	Kubernetes Patch Version
	Machine Image Updates
	Firewall Image Updates

	Geo-redundante Software Deployments
	Q&A
	Weitere Hilfestellung

	Änderungshistorie

