
Cadence Programming Language

Bastian Müller, Dieter Shirley, Joshua Hannan

Table of Contents

Introduction

Terminology

Syntax and Behavior

Comments

Constants and Variable Declarations

Type Annotations

Naming

Conventions

Semicolons

Values and Types

Booleans

Numeric Literals

Integers

Fixed-Point Numbers

Floating-Point Numbers

Addresses

AnyStruct and AnyResource

Optionals

Nil-Coalescing Operator

Force Unwrap (!)

Force-assignment operator (<-!)

Conditional Downcasting Operator

Never

Strings and Characters

String Fields and Functions

Arrays

Array Types

Array Indexing

Array Fields and Functions

Variable-size Array Functions

Dictionaries

Dictionary Types

Dictionary Access

Dictionary Fields and Functions

Dictionary Keys

Operators

Negation

Assignment

Swapping

Arithmetic

Logical Operators

Comparison operators

Ternary Conditional Operator

Precedence and Associativity

Functions

Function Declarations

Function overloading

Function Expressions

Function Calls

Function Types

Closures

Argument Passing Behavior

Function Preconditions and Postconditions

Control flow

Conditional branching: if-statement

Optional Binding

Looping

while-statement

For-in statement

continue and break

Immediate function return: return-statement

Scope

Type Safety

Type Inference

Composite Types

Composite Type Declaration and Creation

Composite Type Fields

Composite Data Initializer Overloading

Composite Type Field Getters and Setters

Synthetic Composite Type Fields

Composite Type Functions

Composite Type Subtyping

Composite Type Behaviour

Structures

Accessing Fields and Functions of Composite Types Using Optional Chaining

Resources

Resource Variables

Resource Destructors

Nested Resources

Resources in Closures

Resources in Arrays and Dictionaries

Unbound References / Nulls

Inheritance and Abstract Types

Access control

Interfaces

Interface Declaration

Interface Implementation

Interfaces in Types

Interface Implementation Requirements

Interface Nesting

Nested Type Requirements

Equatable Interface

Hashable Interface

Restricted Types

References

Imports

Accounts

Account Storage

Capability-based Access Control

Contracts

Deploying and Updating Contracts

Contract Interfaces

Events

Emitting events

Transactions

Importing and using Deployed Contract Code

Built-in Functions

Block and Transaction Information

panic

Example

assert

Introduction

The Cadence Programming Language is a new high-level programming language intended for smart contract development.

The language's goals are, in order of importance:

Safety and security: Provide a strong static type system, design by contract (preconditions and postconditions), and resources (inspired by

linear types).

Auditability: Focus on readability: Make it easy to verify what the code is doing, and make intentions explicit, at a small cost of verbosity.

Simplicity: Focus on developer productivity and usability: Make it easy to write code, provide good tooling.

Terminology

In this document, the following terminology is used to describe syntax or behavior that is not allowed in the language:

Invalid means that the invalid program will not even be allowed to run. The program error is detected and reported statically by the type

checker.

Run-time error means that the erroneous program will run, but bad behavior will result in the execution of the program being aborted.

Syntax and Behavior

Much of the language's syntax is inspired by Swift, Kotlin, and TypeScript.

Much of the syntax, types, and standard library is inspired by Swift, which popularized e.g. optionals, argument labels, and provides safe handling

of integers and strings.

Resources are based on liner types which were popularized by Rust.

Events are inspired by Solidity.

Disclaimer: In real Cadence code, all type definitions and code must be declared and contained in contracts or transactions, but we omit these

containers in examples for simplicity.

Comments

Comments can be used to document code. A comment is text that is not executed.

Single-line comments start with two slashes (//). These comments can go on a line by themselves or they can go directly after a line of code.

// This is a comment on a single line.
// Another comment line that is not executed.

let x = 1 // Here is another comment after a line of code.

Multi-line comments start with a slash and an asterisk (/*) and end with an asterisk and a slash (*/):

/* This is a comment which
spans multiple lines. */

Comments may be nested.

/* /* this */ is a valid comment */

Mutli-line comments are balanced.

/* this is a // comment up to here */ this is not part of the comment */

Constants and Variable Declarations

Constants and variables are declarations that bind a value and type to an identifier. Constants are initialized with a value and cannot be reassigned

afterwards. Variables are initialized with a value and can be reassigned later. Declarations can be created in any scope, including the global scope

Constant means that the identifier's association is constant, not the value itself – the value may still be changed if is mutable.

Constants are declared using the let keyword. Variables are declared using the var keyword. The keywords are followed by the identifier, an

optional type annotation, an equals sign = , and the initial value.

// Declare a constant named `a`.
//
let a = 1

// Invalid: re-assigning to a constant.
//
a = 2

// Declare a variable named `b`.
//
var b = 3

// Assign a new value to the variable named `b`.
//
b = 4

Variables and constants must be initialized.

// Invalid: the constant has no initial value.
//
let a

The names of the variable or constant declarations in each scope must be unique. Declaring another variable or constant with a name that is

already declared in the current scope is invalid, regardless of kind or type.

// Declare a constant named `a`.
//
let a = 1

// Invalid: cannot re-declare a constant with name `a`,
// as it is already used in this scope.
//
let a = 2

// Declare a variable named `b`.
//
var b = 3

// Invalid: cannot re-declare a variable with name `b`,
// as it is already used in this scope.
//
var b = 4

// Invalid: cannot declare a variable with the name `a`,
// as it is already used in this scope,
// and it is declared as a constant.
//
var a = 5

However, variables can be redeclared in sub-scopes.

// Declare a constant named `a`.
//
let a = 1

if true {
 // Declare a constant with the same name `a`.
 // This is valid because it is in a sub-scope.

 // This variable is not visible to the outer scope.

 let a = 2
}

// `a` is `1`

A variable cannot be used as its own initial value.

// Invalid: Use of variable in its own initial value.
let a = a

Type Annotations

When declaring a constant or variable, an optional type annotation can be provided, to make it explicit what type the declaration has.

If no type annotation is provided, the type of the declaration is inferred from the initial value.

// Declare a variable named `boolVarWithAnnotation`, which has an explicit type annotation.
//
// `Bool` is the type of booleans.
//
var boolVarWithAnnotation: Bool = false

// Declare a constant named `integerWithoutAnnotation`, which has no type annotation
// and for which the type is inferred to be `Int`, the type of arbitrary-precision integers.
//
// This is based on the initial value which is an integer literal.
// Integer literals are always inferred to be of type `Int`.
//
let integerWithoutAnnotation = 1

// Declare a constant named `smallIntegerWithAnnotation`, which has an explicit type annotation.
// Because of the explicit type annotation, the type is not inferred.
// This declaration is valid because the integer literal `1` fits into the range of the type `Int8`,
// the type of 8-bit signed integers.
//
let smallIntegerWithAnnotation: Int8 = 1

If a type annotation is provided, the initial value must be of this type. All new values assigned to variables must match its type. This type safety is

explained in more detail in a separate section.

// Invalid: declare a variable with an explicit type `Bool`,
// but the initial value has type `Int`.
//
let booleanConstant: Bool = 1

// Declare a variable that has the inferred type `Bool`.
//
var booleanVariable = false

// Invalid: assign a value with type `Int` to a variable which has the inferred type `Bool`.
//
booleanVariable = 1

Naming

Names may start with any upper or lowercase letter (A-Z, a-z) or an underscore (_). This may be followed by zero or more upper and lower case
letters, underscores, and numbers (0-9). Names may not begin with a number.

// Valid: title-case
//
PersonID

// Valid: with underscore
//
token_name

// Valid: leading underscore and characters
//
_balance

// Valid: leading underscore and numbers
_8264

// Valid: characters and number
//
account2

// Invalid: leading number
//
1something

// Invalid: invalid character #
_#1

// Invalid: various invalid characters
//
!@#$%^&*

Conventions

By convention, variables, constants, and functions have lowercase names; and types have title-case names.

Semicolons

Semicolons (;) are used as statement separators. A semicolon can be placed after any statement, but can be omitted if only one statement

appears on the line. Semicolons must be used to separate multiple statements if they appear on the same line – exactly one semicolon between

each pair of statements.

// Declare a constant, without a semicolon.
//
let a = 1

// Declare a variable, with a semicolon.
//
var b = 2;

// Declare a constant and a variable on a single line, separated by semicolons.
//
let d = 1; var e = 2

// Invalid: Multiple semicolons between statements.
let f = 1;; let g = 2

Values and Types

Values are objects, like for example booleans, integers, or arrays. Values are typed.

Booleans

The two boolean values true and false have the type Bool .

Numeric Literals

Numbers can be written in various bases. Numbers are assumed to be decimal by default. Non-decimal literals have a specific prefix.

Numeral system Prefix Characters

Numeral system Prefix Characters

Decimal None one or more numbers (0 to 9)

Binary 0b one or more zeros or ones (0 or 1)

Octal 0o one or more numbers in the range 0 to 7

Hexadecimal 0x one or more numbers, or characters a to f , lowercase or uppercase

// A decimal number
//
1234567890 // is `1234567890`

// A binary number
//
0b101010 // is `42`

// An octal number
//
0o12345670 // is `2739128`

// A hexadecimal number
//
0x1234567890ABCabc // is `1311768467294898876`

// Invalid: unsupported prefix 0z
//
0z0

// A decimal number with leading zeros. Not an octal number!
00123 // is `123`

// A binary number with several trailing zeros.
0b001000 // is `8`

Decimal numbers may contain underscores (_) to logically separate components.

let largeNumber = 1_000_000

// Invalid: Value is not a number literal, but a variable.
let notNumber = _123

Underscores are allowed for all numeral systems.

let binaryNumber = 0b10_11_01

Integers

Integers are numbers without a fractional part. They are either signed (positive, zero, or negative) or unsigned (positive or zero).

Signed integer types which check for overflow and underflow have an Int prefix and can represent values in the following ranges:

Int8 : −2^7 through 2^7 − 1 (-128 through 127)

Int16 : −2^15 through 2^15 − 1 (-32768 through 32767)

Int32 : −2^31 through 2^31 − 1 (-2147483648 through 2147483647)

Int64 : −2^63 through 2^63 − 1 (-9223372036854775808 through 9223372036854775807)

Int128 : −2^127 through 2^127 − 1

Int256 : −2^255 through 2^255 − 1

Unsigned integer types which check for overflow and underflow have a UInt prefix and can represent values in the following ranges:

UInt8 : 0 through 2^8 − 1 (255)

UInt16 : 0 through 2^16 − 1 (65535)

UInt32 : 0 through 2^32 − 1 (4294967295)

UInt64 : 0 through 2^64 − 1 (18446744073709551615)

UInt128 : 0 through 2^128 − 1

UInt256 : 0 through 2^256 − 1

Unsigned integer types which do not check for overflow and underflow, i.e. wrap around, have the Word prefix and can represent values in the

following ranges:

Word8 : 0 through 2^8 − 1 (255)

Word16 : 0 through 2^16 − 1 (65535)

Word32 : 0 through 2^32 − 1 (4294967295)

Word64 : 0 through 2^64 − 1 (18446744073709551615)

The types are independent types, i.e. not subtypes of each other.

See the section about artihmetic operators for further information about the behavior of the different integer types.

// Declare a constant that has type `UInt8` and the value 10.
let smallNumber: UInt8 = 10

// Invalid: negative literal cannot be used as an unsigned integer
//
let invalidNumber: UInt8 = -10

In addition, the arbitrary precision integer type Int is provided.

let veryLargeNumber: Int = 10000000000000000000000000000000

Integer literals are inferred to have type Int , or if the literal occurs in a position that expects an explicit type, e.g. in a variable declaration with an
explicit type annotation.

let someNumber = 123

// `someNumber` has type `Int`

Negative integers are encoded in two's complement representation.

Integer types are not converted automatically. Types must be explicitly converted, which can be done by calling the constructor of the type with

the integer type.

let x: Int8 = 1
let y: Int16 = 2

// Invalid: the types of the operands, `Int8` and `Int16` are incompatible.
let z = x + y

// Explicitly convert `x` from `Int8` to `Int16`.
let a = Int16(x) + y

// `a` has type `Int16`

// Invalid: The integer literal is expected to be of type `UInt8`,
// but the large integer literal does not fit in the range of `UInt8`.
//
let b = x + 1000000000000000000000000

Fixed-Point Numbers

🚧 Status: Currently only the 64-bit wide Fix64 and UFix64 types are available. More fixed-point number types will be added in a future

release.

Fixed-point numbers are useful for representing fractional values. They have a fixed number of digits after decimal point.

They are essentially integers which are scaled by a factor. For example, the value 1.23 can be represented as 1230 with a scaling factor of 1/1000.

The scaling factor is the same for all values of the same type and stays the same during calculations.

Fixed-point numbers in Cadence have a scaling factor with a power of 10, instead of a power of 2, i.e. they are decimal, not binary.

Signed fixed-point number types have the prefix Fix , have the following factors, and can represent values in the following ranges:

Fix64 : Factor 1/100,000,000; -92233720368.54775808 through 92233720368.54775807

Unsigned fixed-point number types have the prefix UFix , have the following factors, and can represent values in the following ranges:

UFix64 : Factor 1/100,000,000; 0.0 through 184467440737.09551615

Floating-Point Numbers

There is no support for floating point numbers.

Smart Contracts are not intended to work with values with error margins and therefore floating point arithmetic is not appropriate here.

Instead, consider using fixed point numbers.

Addresses

The type Address represents an address. Addresses are unsigned integers with a size of 160 bits (20 bytes). Hexadecimal integer literals can be

used to create address values.

// Declare a constant that has type `Address`.
//
let someAddress: Address = 0x06012c8cf97bead5deae237070f9587f8e7a266d

// Invalid: Initial value is not compatible with type `Address`,
// it is not a number.
//
let notAnAddress: Address = ""

// Invalid: Initial value is not compatible with type `Address`.
// The integer literal is valid, however, it is larger than 160 bits.
//
let alsoNotAnAddress: Address = 0x06012c8cf97bead5deae237070f9587f8e7a266d123456789

Integer literals are not inferred to be an address.

// Declare a number. Even though it happens to be a valid address,
// it is not inferred as it.
//
let aNumber = 0x06012c8cf97bead5deae237070f9587f8e7a266d
// `aNumber` has type `Int`

AnyStruct and AnyResource

AnyStruct is the top type of all non-resource types, i.e., all non-resource types are a subtype of it.

AnyResource is the top type of all resource types.

// Declare a variable that has the type `AnyStruct`.
// Any non-resource typed value can be assigned to it, for example an integer,
// but not resoure-typed values.
//
var someStruct: AnyStruct = 1

// Assign a value with a different non-resource type, `Bool`.
someStruct = true

// Declare a structure named `TestStruct`, create an instance of it,

// and assign it to the `AnyStruct`-typed variable
//
struct TestStruct {}

let testStruct = TestStruct()

someStruct = testStruct

// Declare a resource named `TestResource`

resource Test {}

// Declare a variable that has the type `AnyResource`.
// Any resource-typed value can be assigned to it,
// but not non-resource typed values.
//
var someResource: @AnyResource <- create Test()

// Invalid: Resource-typed values can not be assigned
// to `AnyStruct`-typed variables
//
someStruct <- create Test()

// Invalid: Non-resource typed values can not be assigned
// to `AnyResource`-typed variables
//
someResource = 1

However, using AnyStruct and AnyResource does not opt-out of type checking. It is invalid to access fields and call functions on these types,

as they have no fields and functions.

// Declare a variable that has the type `AnyStruct`.
// The initial value is an integer,
// but the variable still has the explicit type `AnyStruct`.
//
let a: AnyStruct = 1

// Invalid: Operator cannot be used for an `AnyStruct` value (`a`, left-hand side)
// and an `Int` value (`2`, right-hand side).
//
a + 2

AnyStruct and AnyResource may be used like other types, for example, they may be the element type of arrays or be the element type of an

optional type.

// Declare a variable that has the type `[AnyStruct]`,
// i.e. an array of elements of any non-resource type.
//
let anyValues: [AnyStruct] = [1, "2", true]

// Declare a variable that has the type `AnyStruct?`,
// i.e. an optional type of any non-resource type.
//
var maybeSomething: AnyStruct? = 42

maybeSomething = "twenty-four"

maybeSomething = nil

AnyStruct is also the super-type of all non-resource optional types, and AnyResource is the super-type of all resource optional types.

let maybeInt: Int? = 1
let anything: AnyStruct = maybeInt

Conditional downcasting allows coercing a value which has the type AnyStruct or AnyResource back to its orignal type.

Optionals

Optionals are values which can represent the absence of a value. Optionals have two cases: either there is a value, or there is nothing.

An optional type is declared using the ? suffix for another type. For example, Int is a non-optional integer, and Int? is an optional integer, i.e.

either nothing, or an integer.

The value representing nothing is nil .

// Declare a constant which has an optional integer type,
// with nil as its initial value.
//
let a: Int? = nil

// Declare a constant which has an optional integer type,
// with 42 as its initial value.
//
let b: Int? = 42

// Invalid: `b` has type `Int?`, which does not support arithmetic.
b + 23

// Invalid: Declare a constant with a non-optional integer type `Int`,
// but the initial value is `nil`, which in this context has type `Int?`.
//
let x: Int = nil

Optionals can be created for any value, not just for literals.

// Declare a constant which has a non-optional integer type,
// with 1 as its initial value.
//
let x = 1

// Declare a constant which has an optional integer type.
// An optional with the value of `x` is created.
//
let y: Int? = x

// Declare a variable which has an optional any type, i.e. the variable
// may be `nil`, or any other value.
// An optional with the value of `x` is created.
//
var z: AnyStruct? = x

A non-optional type is a subtype of its optional type.

var a: Int? = nil
let b = 2
a = b

// `a` is `2`

Optional types may be contained in other types, for example arrays or even optionals.

// Declare a constant which has an array type of optional integers.
let xs: [Int?] = [1, nil, 2, nil]

// Declare a constant which has a double optional type.
//
let doubleOptional: Int?? = nil

Nil-Coalescing Operator

The nil-coalescing operator ?? returns the value inside an optional if it contains a value, or returns an alternative value if the optional has no value

i.e., the optional value is nil .

If the left-hand side is non-nil, the right-hand side is not evaluated.

// Declare a constant which has an optional integer type
//
let a: Int? = nil

// Declare a constant with a non-optional integer type,
// which is initialized to `a` if it is non-nil, or 42 otherwise.
//
let b: Int = a ?? 42
// `b` is 42, as `a` is nil

The nil-coalescing operator can only be applied to values which have an optional type.

// Declare a constant with a non-optional integer type.
//
let a = 1

// Invalid: nil-coalescing operator is applied to a value which has a non-optional type
// (a has the non-optional type `Int`).
//
let b = a ?? 2

// Invalid: nil-coalescing operator is applied to a value which has a non-optional type
// (the integer literal is of type `Int`).
//
let c = 1 ?? 2

The type of the right-hand side of the operator (the alternative value) must be a subtype of the type of left-hand side, i.e. the right-hand side of

the operator must be the non-optional or optional type matching the type of the left-hand side.

// Declare a constant with an optional integer type.
//
let a: Int? = nil
let b: Int? = 1
let c = a ?? b
// `c` is `1` and has type `Int?`

// Invalid: nil-coalescing operator is applied to a value of type `Int?`,
// but the alternative has type `Bool`.
//
let d = a ?? false

Force Unwrap (!)

The force-unwrap operator (!) returns the value inside an optional if it contains a value, or panics and aborts the execution if the optional has no
value, i.e., the optional value is nil .

// Declare a constant which has an optional integer type
//
let a: Int? = nil

// Declare a constant with a non-optional integer type,
// which is initialized to `a` if `a` is non-nil.
// If `a` is nil, the program aborts.
//
let b: Int = a!
// The program aborts because `a` is nil.

// Declare another optional integer constant
let c: Int? = 3

// Declare a non-optional integer
// which is initialized to `c` if `a` is non-nil.
// If `c` is nil, the program aborts.
let d: Int = c!
// `d` is initialized to 3 because c isn't nil.

The force-unwrap operator can only be applied to values which have an optional type.

// Declare a constant with a non-optional integer type.
//
let a = 1

// Invalid: force-unwrap operator is applied to a value which has a
// non-optional type (`a` has the non-optional type `Int`).
//
let b = a!

// Invalid: The force-unwrap operator is applied
// to a value which has a non-optional type
// (the integer literal is of type `Int`).
//
let c = 1!

Force-assignment operator (<-!)

The force-assignment operator (<-!) assigns a resource-typed value to an optional-typed variable if the variable is nil. If the variable being
assigned to is non-nil, the execution of the program aborts.

The force-assignment operator is only used for resource types and the move operator (<-), which are covered the resources section of this
document.

Conditional Downcasting Operator

🚧 Status: The conditional downcasting operator as? is implemented, but it only supports values that have the type AnyStruct and

AnyResource .

The conditional downcasting operator as? can be used to type cast a value to a type. The operator returns an optional. If the value has a type

that is a subtype of the given type that should be casted to, the operator returns the value as the given type, otherwise the result is nil .

The cast and check is performed at run-time, i.e. when the program is executed, not statically, i.e. when the program is checked.

// Declare a constant named `something` which has type `AnyStruct`,
// with an initial value which has type `Int`.
//
let something: AnyStruct = 1

// Conditionally downcast the value of `something` to `Int`.
// The cast succeeds, because the value has type `Int`.
//
let number = something as? Int
// `number` is `1` and has type `Int?`

// Conditionally downcast the value of `something` to `Bool`.
// The cast fails, because the value has type `Int`,
// and `Bool` is not a subtype of `Int`.
//
let boolean = something as? Bool
// `boolean` is `nil` and has type `Bool?`

Downcasting works for nested types (e.g. arrays), interfaces (if a resource interface not to a concrete resource), and optionals.

// Declare a constant named `values` which has type `[AnyStruct]`,
// i.e. an array of arbitrarily typed values.
//

let values: [AnyStruct] = [1, true]

let first = values[0] as? Int
// `first` is `1` and has type `Int?`

let second = values[1] as? Bool
// `second` is `true` and has type `Bool?`

Never

Never is the bottom type, i.e., it is a subtype of all types. There is no value that has type Never . Never can be used as the return type for

functions that never return normally. For example, it is the return type of the function panic .

// Declare a function named `crashAndBurn` which will never return,
// because it calls the function named `panic`, which never returns.
//
fun crashAndBurn(): Never {
 panic("An unrecoverable error occurred")
}

// Invalid: Declare a constant with a `Never` type, but the initial value is an integer.
//
let x: Never = 1

// Invalid: Declare a function which returns an invalid return value `nil`,
// which is not a value of type `Never`.
//
fun returnNever(): Never {
 return nil
}

Strings and Characters

Strings are collections of characters. Strings have the type String , and characters have the type Character . Strings can be used to work with
text in a Unicode-compliant way. Strings are immutable.

String and character literals are enclosed in double quotation marks (").

let someString = "Hello, world!"

String literals may contain escape sequences. An escape sequence starts with a backslash (\):

\0 : Null character

\\ : Backslash

\t : Horizontal tab

\n : Line feed

\r : Carriage return

\" : Double quotation mark

\' : Single quotation mark

\u : A Unicode scalar value, written as \u{x} , where x is a 1–8 digit hexadecimal number which needs to be a valid Unicode scalar value,

i.e., in the range 0 to 0xD7FF and 0xE000 to 0x10FFFF inclusive

// Declare a constant which contains two lines of text
// (separated by the line feed character `\n`), and ends
// with a thumbs up emoji, which has code point U+1F44D (0x1F44D).
//
let thumbsUpText =
 "This is the first line.\nThis is the second line with an emoji: \u{1F44D}"

The type Character represents a single, human-readable character. Characters are extended grapheme clusters, which consist of one or more

Unicode scalars.

For example, the single character ü can be represented in several ways in Unicode. First, it can be represented by a single Unicode scalar value

ü ("LATIN SMALL LETTER U WITH DIAERESIS", code point U+00FC). Second, the same single character can be represented by two Unicode

scalar values: u ("LATIN SMALL LETTER U", code point U+0075), and "COMBINING DIAERESIS" (code point U+0308). The combining Unicode

scalar value is applied to the scalar before it, which turns a u into a ü .

Still, both variants represent the same human-readable character ü .

let singleScalar: Character = "\u{FC}"
// `singleScalar` is `ü`
let twoScalars: Character = "\u{75}\u{308}"
// `twoScalars` is `ü`

Another example where multiple Unicode scalar values are rendered as a single, human-readable character is a flag emoji. These emojis consist o

two "REGIONAL INDICATOR SYMBOL LETTER" Unicode scalar values.

// Declare a constant for a string with a single character, the emoji
// for the Canadian flag, which consists of two Unicode scalar values:
// - REGIONAL INDICATOR SYMBOL LETTER C (U+1F1E8)
// - REGIONAL INDICATOR SYMBOL LETTER A (U+1F1E6)
//
let canadianFlag: Character = "\u{1F1E8}\u{1F1E6}"
// `canadianFlag` is `� `

String Fields and Functions

Strings have multiple built-in functions you can use.

let length: Int : Returns the number of characters in the string as an integer.

let example = "hello"

// Find the number of elements of the string.
let length = example.length
// `length` is `5`

fun concat(_ other: String): String : Concatenates the string other to the end of the original string, but does not modify the origina

string. This function creates a new string whose length is the sum of the lengths of the string the function is called on and the string given as

a parameter.

let example = "hello"
let new = "world"

// Concatenate the new string onto the example string and return the new string.
let helloWorld = example.concat(new)
// `helloWorld` is now `"helloworld"`

fun slice(from: Int, upTo: Int): String : Returns a string slice of the characters in the given string from start index from up to, but

not including, the end index upTo . This function creates a new string whose length is upto - from . It does not modify the original string. If
either of the parameters are out of the bounds of the string, the function will fail.

let example = "helloworld"

// Create a new slice of part of the original string.
let slice = example.slice(from: 3, upTo: 6)
// `slice` is now `"lowo"`

// Run-time error: Out of bounds index, the program aborts.
let outOfBounds = example.slice(from: 2, upTo: 10)

Arrays

Arrays are mutable, ordered collections of values. All values in an array must have the same type. Arrays may contain a value multiple times. Array

literals start with an opening square bracket [and end with a closing square bracket] .

// An empty array
//
[]

// An array with integers
//
[1, 2, 3]

// Invalid: mixed types
//
[1, true, 2, false]

Array Types

Arrays either have a fixed size or are variably sized, i.e., elements can be added and removed.

Fixed-size arrays have the form [T; N] , where T is the element type, and N is the size of the array. N has to be statically known, meaning tha

it needs to be an integer literal. For example, a fixed-size array of 3 Int8 elements has the type [Int8; 3] .

Variable-size arrays have the form [T] , where T is the element type. For example, the type [Int16] specifies a variable-size array of elements

that have type Int16 .

It is important to understand that arrays are value types and are only ever copied when used as an initial value for a constant or variable, when

assigning to a variable, when used as function argument, or when returned from a function call.

let size = 2
// Invalid: Array-size must be an integer literal
let numbers: [Int; size] = []

// Declare a fixed-sized array of integers
// which always contains exactly two elements.
//
let array: [Int8; 2] = [1, 2]

// Declare a fixed-sized array of fixed-sized arrays of integers.
// The inner arrays always contain exactly three elements,
// the outer array always contains two elements.
//
let arrays: [[Int16; 3]; 2] = [
 [1, 2, 3],
 [4, 5, 6]
]

// Declare a variable length array of integers
var variableLengthArray: [Int] = []

Array types are covariant in their element types. For example, [Int] is a subtype of [AnyStruct] . This is safe because arrays are value types
and not reference types.

Array Indexing

To get the element of an array at a specific index, the indexing syntax can be used: The array is followed by an opening square bracket [, the
indexing value, and ends with a closing square bracket] .

Indexes start at 0 for the first element in the array.

Accessing an element which is out of bounds results in a fatal error at run-time and aborts the program.

// Declare an array of integers.
let numbers = [42, 23]

// Get the first number of the array.
//
numbers[0] // is `42`

// Get the second number of the array.
//

numbers[1] // is `23`

// Run-time error: Index 2 is out of bounds, the program aborts.
//
numbers[2]

// Declare an array of arrays of integers, i.e. the type is `[[Int]]`.
let arrays = [[1, 2], [3, 4]]

// Get the first number of the second array.
//
arrays[1][0] // is `3`

To set an element of an array at a specific index, the indexing syntax can be used as well.

// Declare an array of integers.
let numbers = [42, 23]

// Change the second number in the array.
//
// NOTE: The declaration `numbers` is constant, which means that
// the *name* is constant, not the *value* – the value, i.e. the array,
// is mutable and can be changed.
//
numbers[1] = 2

// `numbers` is `[42, 2]`

Array Fields and Functions

Arrays have multiple built-in fields and functions that can be used to get information about and manipulate the contents of the array.

The field length , and the functions concat , and contains are available for both variable-sized and fixed-sized or variable-sized arrays.

let length: Int : Returns the number of elements in the array.

// Declare an array of integers.
let numbers = [42, 23, 31, 12]

// Find the number of elements of the array.
let length = numbers.length

// `length` is `4`

fun concat(_ array: T): T : Concatenates the parameter array to the end of the array the function is called on, but does not modify

that array.

Both arrays must be the same type T .

This function creates a new array whose length is the sum of the length of the array the function is called on and the length of the array given

as the parameter.

// Declare two arrays of integers.
let numbers = [42, 23, 31, 12]
let moreNumbers = [11, 27]

// Concatenate the array `moreNumbers` to the array `numbers`
// and declare a new variable for the result.
//
let allNumbers = numbers.concat(moreNumbers)

// `allNumbers` is `[42, 23, 31, 12, 11, 27]`
// `numbers` is still `[42, 23, 31, 12]`
// `moreNumbers` is still `[11, 27]`

fun contains(_ element: T): Bool : Indicates whether the given element of type T is in the array.

// Declare an array of integers.
let numbers = [42, 23, 31, 12]

// Check if the array contains 11.
let containsEleven = numbers.contains(11)
// `containsEleven` is `false`

// Check if the array contains 12.
let containsTwelve = numbers.contains(12)
// `containsTwelve` is `true`

// Invalid: Check if the array contains the string "Kitty".
// This results in a type error, as the array only contains integers.
//
let containsKitty = numbers.contains("Kitty")

Variable-size Array Functions

The following functions can only be used on variable-sized arrays. It is invalid to use one of these functions on a fixed-sized array.

fun append(_ element: T): Void : Adds the new element element of type T to the end of the array.

The new element must be the same type as all the other elements in the array.

// Declare an array of integers.
let numbers = [42, 23, 31, 12]

// Add a new element to the array.
numbers.append(20)
// `numbers` is now `[42, 23, 31, 12, 20]`

// Invalid: The parameter has the wrong type `String`.
numbers.append("SneakyString")

fun insert(at index: Int, _ element: T): Void : Inserts the new element element of type T at the given index of the array.

The new element must be of the same type as the other elements in the array.

The index must be within the bounds of the array. If the index is outside the bounds, the program aborts.

The existing element at the supplied index is not overwritten.

All the elements after the new inserted element are shifted to the right by one.

// Declare an array of integers.
let numbers = [42, 23, 31, 12]

// Insert a new element at position 1 of the array.
numbers.insert(at: 1, 20)
// `numbers` is now `[42, 20, 23, 31, 12]`

// Run-time error: Out of bounds index, the program aborts.
numbers.insert(at: 12, 39)

fun remove(at index: Int): T : Removes the element at the given index from the array and returns it.

The index must be within the bounds of the array. If the index is outside the bounds, the program aborts.

// Declare an array of integers.
let numbers = [42, 23, 31]

// Remove element at position 1 of the array.
let twentyThree = numbers.remove(at: 1)
// `numbers` is now `[42, 31]`
// `twentyThree` is `23`

// Run-time error: Out of bounds index, the program aborts.
numbers.remove(at: 19)

fun removeFirst(): T : Removes the first element from the array and returns it.

The array must not be empty. If the array is empty, the program aborts.

// Declare an array of integers.
let numbers = [42, 23]

// Remove the first element of the array.
let fortytwo = numbers.removeFirst()
// `numbers` is now `[23]`
// `fortywo` is `42`

// Remove the first element of the array.
let twentyThree = numbers.removeFirst()
// `numbers` is now `[]`
// `twentyThree` is `23`

// Run-time error: The array is empty, the program aborts.
numbers.removeFirst()

fun removeLast(): T : Removes the last element from the array and returns it.

The array must not be empty. If the array is empty, the program aborts.

// Declare an array of integers.
let numbers = [42, 23]

// Remove the last element of the array.
let twentyThree = numbers.removeLast()
// `numbers` is now `[42]`
// `twentyThree` is `23`

// Remove the last element of the array.
let fortyTwo = numbers.removeLast()
// `numbers` is now `[]`
// `fortyTwo` is `42`

// Run-time error: The array is empty, the program aborts.
numbers.removeLast()

Dictionaries

Dictionaries are mutable, unordered collections of key-value associations. In a dictionary, all keys must have the same type, and all values must

have the same type. Dictionaries may contain a key only once and may contain a value multiple times.

Dictionary literals start with an opening brace { and end with a closing brace } . Keys are separated from values by a colon, and key-value

associations are separated by commas.

// An empty dictionary
//
{}

// A dictionary which associates integers with booleans
//
{
 1: true,
 2: false
}

// Invalid: mixed types
//
{
 1: true,
 false: 2
}

Dictionary Types

Dictionaries have the form {K: V} , where K is the type of the key, and V is the type of the value. For example, a dictionary with Int keys and

Bool values has type {Int: Bool} .

// Declare a constant that has type `{Int: Bool}`,
// a dictionary mapping integers to booleans.
//
let booleans = {
 1: true,
 0: false
}

// Declare a constant that has type `{Bool: Int}`,
// a dictionary mapping booleans to integers.
//
let integers = {
 true: 1,
 false: 0
}

Dictionary types are covariant in their key and value types. For example, [Int: String] is a subtype of [AnyStruct: String] and also a

subtype of [Int: AnyStruct] . This is safe because dictionaries are value types and not reference types.

Dictionary Access

To get the value for a specific key from a dictionary, the access syntax can be used: The dictionary is followed by an opening square bracket [,
the key, and ends with a closing square bracket] .

Accessing a key returns an optional: If the key is found in the dictionary, the value for the given key is returned, and if the key is not found, nil is

returned.

// Declare a constant that has type `{Bool: Int}`,
// a dictionary mapping integers to booleans.
//
let booleans = {
 1: true,
 0: false
}

// The result of accessing a key has type `Bool?`.
//
booleans[1] // is `true`
booleans[0] // is `false`
booleans[2] // is `nil`

// Invalid: Accessing a key which does not have type `Int`.
//
booleans["1"]

// Declare a constant that has type `{Bool: Int}`,
// a dictionary mapping booleans to integers.
//
let integers = {
 true: 1,
 false: 0
}

// The result of accessing a key has type `Int?`
//
integers[true] // is `1`
integers[false] // is `0`

To set the value for a key of a dictionary, the access syntax can be used as well.

// Declare a constant that has type `{Int: Bool}`,
// a dictionary mapping booleans to integers.
//

let booleans = {
 1: true,
 0: false
}

// Assign new values for the keys `1` and `0`.
//
booleans[1] = false
booleans[0] = true
// `booleans` is `{1: false, 0: true}`

Dictionary Fields and Functions

fun length: Int : Returns the number of entries in the dictionary.

// Declare a dictionary mapping strings to integers.
let numbers = {"fortyTwo": 42, "twentyThree": 23}

// Find the number of entries of the dictionary.
let length = numbers.length

// `length` is `2`

fun remove(key: K): V? : Removes the value for the given key of type K from the dictionary.

Returns the value of type V as an optional if the dictionary contained the key, otherwise nil .

// Declare a dictionary mapping strings to integers.
let numbers = {"fortyTwo": 42, "twentyThree": 23}

// Remove the key `"fortyTwo"` from the dictionary.
// The key exists in the dictionary,
// so the value associated with the key is returned.
//
let fortyTwo = numbers.remove(key: "fortyTwo")

// `fortyTwo` is `42`
// `numbers` is `{"twentyThree": 23}`

// Remove the key `"oneHundred"` from the dictionary.
// The key does not exist in the dictionary, so `nil` is returned.
//
let oneHundred = numbers.remove(key: "oneHundred")

// `oneHundred` is `nil`
// `numbers` is `{"twentyThree": 23}`

let keys: [K] : Returns an array of the keys of type K in the dictionary. This does not modify the dictionary, just returns a copy of the keys

as an array. If the dictionary is empty, this returns an empty array.

// Declare a dictionary mapping strings to integers.
let numbers = {"fortyTwo": 42, "twentyThree": 23}

// Find the keys of the dictionary.
let keys = numbers.keys

// `keys` has type `[String]` and is `["fortyTwo","twentyThree"]`

let values: [V] : Returns an array of the values of type V in the dictionary. This does not modify the dictionary, just returns a copy of the

values as an array. If the dictionary is empty, this returns an empty array.

This field is not available if V is a resource type.

// Declare a dictionary mapping strings to integers.
let numbers = {"fortyTwo": 42, "twentyThree": 23}

// Find the values of the dictionary.

let values = numbers.values

// `values` has type [Int] and is `[42, 23]`

Dictionary Keys

Dictionary keys must be hashable and equatable, i.e., must implement the Hashable and Equatable interfaces.

Most of the built-in types, like booleans and integers, are hashable and equatable, so can be used as keys in dictionaries.

Operators

Operators are special symbols that perform a computation for one or more values. They are either unary, binary, or ternary.

Unary operators perform an operation for a single value. The unary operator symbol appears before the value.

Binary operators operate on two values. The binary operator symbol appears between the two values (infix).

Ternary operators operate on three values. The first operator symbol appears between the first and second value, the second operator

symbol appears between the second and third value (infix).

Negation

The - unary operator negates an integer:

let a = 1
-a // is `-1`

The ! unary operator logically negates a boolean:

let a = true
!a // is `false`

Assignment

The binary assignment operator = can be used to assign a new value to a variable. It is only allowed in a statement and is not allowed in

expressions.

var a = 1
a = 2
// `a` is `2`

var b = 3
var c = 4

// Invalid: The assignment operation cannot be used in an expression.
a = b = c

// Instead, the intended assignment must be written in multiple statements.
b = c
a = b

Assignments to constants are invalid.

let a = 1
// Invalid: Assignments are only for variables, not constants.
a = 2

The left-hand side of the assignment operand must be an identifier. For arrays and dictionaries, this identifier can be followed by one or more inde

or access expressions.

// Declare an array of integers.
let numbers = [1, 2]

// Change the first element of the array.
//
numbers[0] = 3

// `numbers` is `[3, 2]`

// Declare an array of arrays of integers.
let arrays = [[1, 2], [3, 4]]

// Change the first element in the second array
//
arrays[1][0] = 5

// `arrays` is `[[1, 2], [5, 4]]`

let dictionaries = {
 true: {1: 2},
 false: {3: 4}
}

dictionaries[false][3] = 0

// `dictionaries` is `{
// true: {1: 2},
// false: {3: 0}
//}`

Swapping

The binary swap operator <-> can be used to exchange the values of two variables. It is only allowed in a statement and is not allowed in

expressions.

var a = 1
var b = 2
a <-> b
// `a` is `2`
// `b` is `1`

var c = 3

// Invalid: The swap operation cannot be used in an expression.
a <-> b <-> c

// Instead, the intended swap must be written in multiple statements.
b <-> c
a <-> b

Both sides of the swap operation must be variable, assignment to constants is invalid.

var a = 1
let b = 2

// Invalid: Swapping is only possible for variables, not constants.
a <-> b

Both sides of the swap operation must be an identifier, followed by one or more index or access expressions.

Arithmetic

There are four arithmetic operators:

Addition: +

Subtraction: -

Multiplication: *

Division: /

Remainder: %

let a = 1 + 2
// `a` is `3`

The arguments for the operators need to be of the same type. The result is always the same type as the arguments.

The division and remainder operators abort the program when the divisor is zero.

Arithmetic operations on the signed integer types Int8 , Int16 , Int32 , Int64 , Int128 , Int256 , and on the unsigned integer types
UInt8 , UInt16 , UInt32 , UInt64 , UInt128 , UInt256 , do not cause values to overflow or underflow.

let a: UInt8 = 255

// Run-time error: The result `256` does not fit in the range of `UInt8`,
// thus a fatal overflow error is raised and the program aborts
//
let b = a + 1

let a: Int8 = 100
let b: Int8 = 100

// Run-time error: The result `10000` does not fit in the range of `Int8`,
// thus a fatal overflow error is raised and the program aborts
//
let c = a * b

let a: Int8 = -128

// Run-time error: The result `128` does not fit in the range of `Int8`,
// thus a fatal overflow error is raised and the program aborts
//
let b = -a

Arithmetic operations on the unsigned integer types Word8 , Word16 , Word32 , Word64 may cause values to overflow or underflow.

For example, the maximum value of an unsigned 8-bit integer is 255 (binary 11111111). Adding 1 results in an overflow, truncation to 8 bits, and the

value 0.

// 11111111 = 255
// + 1
// = 100000000 = 0

let a: Word8 = 255
a + 1 // is `0`

Similarly, for the minimum value 0, subtracting 1 wraps around and results in the maximum value 255.

// 00000000
// - 1
// = 11111111 = 255

let b: Word8 = 0
b - 1 // is `255`

Logical Operators

Logical operators work with the boolean values true and false .

Logical AND: a && b

true && true // is `true`

true && false // is `false`

false && true // is `false`

false && false // is `false`

If the left-hand side is false, the right-hand side is not evaluated.

Logical OR: a || b

true || true // is `true`

true || false // is `true`

false || true // is `true`

false || false // is `false`

If the left-hand side is true, the right-hand side is not evaluated.

Comparison operators

Comparison operators work with boolean and integer values.

Equality: == , for booleans and integers

Both sides of the equality operator may be optional, even of different levels, so it is for example possible to compare a non-optional with a

double-optional (??).

1 == 1 // is `true`

1 == 2 // is `false`

true == true // is `true`

true == false // is `false`

let x: Int? = 1
x == nil // is `false`

let x: Int = 1
x == nil // is `false`

// Comparisons of different levels of optionals are possible.
let x: Int? = 2
let y: Int?? = nil
x == y // is `false`

// Comparisons of different levels of optionals are possible.
let x: Int? = 2
let y: Int?? = 2
x == y // is `true`

Inequality: != , for booleans and integers (possibly optional)

Both sides of the inequality operator may be optional, even of different levels, so it is for example possible to compare a non-optional with a

double-optional (??).

1 != 1 // is `false`

1 != 2 // is `true`

true != true // is `false`

true != false // is `true`

let x: Int? = 1
x != nil // is `true`

let x: Int = 1
x != nil // is `true`

// Comparisons of different levels of optionals are possible.
let x: Int? = 2
let y: Int?? = nil
x != y // is `true`

// Comparisons of different levels of optionals are possible.
let x: Int? = 2
let y: Int?? = 2
x != y // is `false`

Less than: < , for integers

1 < 1 // is `false`

1 < 2 // is `true`

2 < 1 // is `false`

Less or equal than: <= , for integers

1 <= 1 // is `true`

1 <= 2 // is `true`

2 <= 1 // is `false`

Greater than: > , for integers

1 > 1 // is `false`

1 > 2 // is `false`

2 > 1 // is `true`

Greater or equal than: >= , for integers

1 >= 1 // is `true`

1 >= 2 // is `false`

2 >= 1 // is `true`

Ternary Conditional Operator

There is only one ternary conditional operator, the ternary conditional operator (a ? b : c).

It behaves like an if-statement, but is an expression: If the first operator value is true, the second operator value is returned. If the first operator

value is false, the third value is returned.

The first value must be a boolean (must have the type Bool). The second value and third value can be of any type. The result type is the least
common supertype of the second and third value.

let x = 1 > 2 ? 3 : 4
// `x` is `4` and has type `Int`

let y = 1 > 2 ? nil : 3
// `y` is `3` and has type `Int?`

Precedence and Associativity

Operators have the following precedences, highest to lowest:

Multiplication precedence: * , &* , / , %

Addition precedence: + , &+ , - , &-

Relational precedence: < , <= , > , >=

Equality precedence: == , !=

Logical conjunction precedence: &&

Logical disjunction precedence: ||

Ternary precedence: ? :

All operators are left-associative, except for the ternary operator, which is right-associative.

Expressions can be wrapped in parentheses to override precedence conventions, i.e. an alternate order should be indicated, or when the default

order should be emphasized e.g. to avoid confusion. For example, (2 + 3) * 4 forces addition to precede multiplication, and 5 + (6 * 7)
reinforces the default order.

Functions

Functions are sequences of statements that perform a specific task. Functions have parameters (inputs) and an optional return value (output).

Functions are typed: the function type consists of the parameter types and the return type.

Functions are values, i.e., they can be assigned to constants and variables, and can be passed as arguments to other functions. This behavior is

often called "first-class functions".

Function Declarations

Functions can be declared by using the fun keyword, followed by the name of the declaration, the parameters, the optional return type, and the

code that should be executed when the function is called.

The parameters need to be enclosed in parentheses. The return type, if any, is separated from the parameters by a colon (:). The function code
needs to be enclosed in opening and closing braces.

Each parameter must have a name, which is the name that the argument value will be available as within the function.

An additional argument label can be provided to require function calls to use the label to provide an argument value for the parameter.

Argument labels make code more explicit and readable. For example, they avoid confusion about the order of arguments when there are multiple

arguments that have the same type.

Argument labels should be named so they make sense from the perspective of the function call.

Argument labels precede the parameter name. The special argument label _ indicates that a function call can omit the argument label. If no

argument label is declared in the function declaration, the parameter name is the argument label of the function declaration, and function calls

must use the parameter name as the argument label.

Each parameter needs to have a type annotation, which follows the parameter name after a colon.

Function calls may provide arguments for parameters which are subtypes of the parameter types.

There is no support for optional parameters, i.e. default values for parameters, and variadic functions, i.e. functions that take an arbitrary amount

of arguments.

// Declare a function named `double`, which multiples a number by two.
//
// The special argument label _ is specified for the parameter,
// so no argument label has to be provided in a function call.
//
fun double(_ x: Int): Int {
 return x * 2
}

// Call the function named `double` with the value 4 for the first parameter.
//
// The argument label can be omitted in the function call as the declaration
// specifies the special argument label _ for the parameter.
//
double(2) // is `4`

It is possible to require argument labels for some parameters, and not require argument labels for other parameters.

// Declare a function named `clamp`. The function takes an integer value,
// the lower limit, and the upper limit. It returns an integer between
// the lower and upper limit.
//
// For the first parameter the special argument label _ is used,
// so no argument label has to be given for it in a function call.
//
// For the second and third parameter no argument label is given,
// so the parameter names are the argument labels, i.e., the parameter names
// have to be given as argument labels in a function call.
//
fun clamp(_ value: Int, min: Int, max: Int): Int {
 if value > max {
 return max
 }

 if value < min {
 return min
 }

 return value
}

// Declare a constant which has the result of a call to the function
// named `clamp` as its initial value.
//
// For the first argument no label is given, as it is not required by
// the function declaration (the special argument label `_` is specified).
//
// For the second and this argument the labels must be provided,
// as the function declaration does not specify the special argument label `_`
// for these two parameters.
//
// As the function declaration also does not specify argument labels
// for these parameters, the parameter names must be used as argument labels.
//
let clamped = clamp(123, min: 0, max: 100)
// `clamped` is `100`

// Declare a function named `send`, which transfers an amount
// from one account to another.
//
// The implementation is omitted for brevity.
//
// The first two parameters of the function have the same type, so there is
// a potential that a function call accidentally provides arguments in
// the wrong order.
//
// While the parameter names `senderAddress` and `receiverAddress`
// are descriptive inside the function, they might be too verbose
// to require them as argument labels in function calls.
//
// For this reason the shorter argument labels `from` and `to` are specified,
// which still convey the meaning of the two parameters without being overly
// verbose.
//
// The name of the third parameter, `amount`, is both meaningful inside
// the function and also in a function call, so no argument label is given,
// and the parameter name is required as the argument label in a function call.
//
fun send(from senderAddress: Address, to receivingAddress: Address, amount: Int) {
 // The function code is omitted for brevity.
 // ...
}

// Declare a constant which refers to the sending account's address.
//
// The initial value is omitted for brevity.
//
let sender: Address = // ...

// Declare a constant which refers to the receiving account's address.
//
// The initial value is omitted for brevity.
//
let receiver: Address = // ...

// Call the function named `send`.
//
// The function declaration requires argument labels for all parameters,
// so they need to be provided in the function call.
//
// This avoids ambiguity. For example, in some languages (like C) it is
// a convention to order the parameters so that the receiver occurs first,
// followed by the sender. In other languages, it is common to have
// the sender be the first parameter, followed by the receiver.
//
// Here, the order is clear – send an amount from an account to another account.
//
send(from: sender, to: receiver, amount: 100)

The order of the arguments in a function call must match the order of the parameters in the function declaration.

// Declare a function named `test`, which accepts two parameters, named `first` and `second`
//
fun test(first: Int, second: Int) {
 // ...
}

// Invalid: the arguments are provided in the wrong order,
// even though the argument labels are provided correctly.
//
test(second: 1, first: 2)

Functions can be nested, i.e., the code of a function may declare further functions.

// Declare a function which multiplies a number by two, and adds one.
//
fun doubleAndAddOne(_ x: Int): Int {

 // Declare a nested function which multiplies a number by two.
 //
 fun double(_ x: Int) {
 return x * 2
 }

 return double(x) + 1
}

doubleAndAddOne(2) // is `5`

Function overloading

🚧 Status: Function overloading is not implemented.

It is possible to declare functions with the same name, as long as they have different sets of argument labels. This is known as function

overloading.

// Declare a function named "assert" which requires a test value
// and a message argument.
//
fun assert(_ test: Bool, message: String) {
 // ...
}

// Declare a function named "assert" which only requires a test value.
// The function calls the `assert` function declared above.
//
fun assert(_ test: Bool) {
 assert(test, message: "test is false")
}

Function Expressions

Functions can be also used as expressions. The syntax is the same as for function declarations, except that function expressions have no name,

i.e., they are anonymous.

// Declare a constant named `double`, which has a function as its value.
//
// The function multiplies a number by two when it is called.
//
// This function's type is `((Int): Int)`.
//
let double =
 fun (_ x: Int): Int {
 return x * 2
 }

Function Calls

Functions can be called (invoked). Function calls need to provide exactly as many argument values as the function has parameters.

fun double(_ x: Int): Int {
 return x * 2
}

// Valid: the correct amount of arguments is provided.
//
double(2) // is `4`

// Invalid: too many arguments are provided.

//
double(2, 3)

// Invalid: too few arguments are provided.
//
double()

Function Types

Function types consist of the function's parameter types and the function's return type.

The parameter types need to be enclosed in parentheses, followed by a colon (:), and end with the return type. The whole function type needs
to be enclosed in parentheses.

// Declare a function named `add`, with the function type `((Int, Int): Int)`.
//
fun add(a: Int, b: Int): Int {
 return a + b
}

// Declare a constant named `add`, with the function type `((Int, Int): Int)`
//
let add: ((Int, Int): Int) =
 fun (a: Int, b: Int): Int {
 return a + b
 }

If the function has no return type, it implicitly has the return type Void .

// Declare a constant named `doNothing`, which is a function
// that takes no parameters and returns nothing.
//
let doNothing: ((): Void) =
 fun () {}

Parentheses also control precedence. For example, a function type ((Int): ((): Int)) is the type for a function which accepts one argument

with type Int , and which returns another function, that takes no arguments and returns an Int .

The type [((Int): Int); 2] specifies an array type of two functions, which accept one integer and return one integer.

Argument labels are not part of the function type. This has the advantage that functions with different argument labels, potentially written by

different authors are compatible as long as the parameter types and the return type match. It has the disadvantage that function calls to plain

function values, cannot accept argument labels.

// Declare a function which takes one argument that has type `Int`.
// The function has type `((Int): Void)`.
//
fun foo1(x: Int) {}

// Call function `foo1`. This requires an argument label.
foo1(x: 1)

// Declare another function which takes one argument that has type `Int`.
// The function also has type `((Int): Void)`.
//
fun foo2(y: Int) {}

// Call function `foo2`. This requires an argument label.
foo2(y: 2)

// Declare a variable which has type `((Int): Void)` and use `foo1`
// as its initial value.
//
var someFoo: ((Int): Void) = foo1

// Call the function assigned to variable `someFoo`.
// This is valid as the function types match.
// This does neither require nor allow argument labels.
//
someFoo(3)

// Assign function `foo2` to variable `someFoo`.
// This is valid as the function types match.
//
someFoo = foo2

// Call the function assigned to variable `someFoo`.
// This does neither require nor allow argument labels.
//
someFoo(4)

Closures

A function may refer to variables and constants of its outer scopes in which it is defined. It is called a closure, because it is closing over those

variables and constants. A closure can can read from the variables and constants and assign to the variables it refers to.

// Declare a function named `makeCounter` which returns a function that
// each time when called, returns the next integer, starting at 1.
//
fun makeCounter(): ((): Int) {
 var count = 0
 return fun (): Int {
 // NOTE: read from and assign to the non-local variable
 // `count`, which is declared in the outer function.
 //
 count = count + 1
 return count
 }
}

let test = makeCounter()
test() // is `1`
test() // is `2`

Argument Passing Behavior

When arguments are passed to a function, they are copied. Therefore, values that are passed into a function are unchanged in the caller's scope

when the function returns. This behavior is known as call-by-value.

// Declare a function that changes the first two elements
// of an array of integers.
//
fun change(_ numbers: [Int]) {
 // Change the elements of the passed in array.
 // The changes are only local, as the array was copied.
 //
 numbers[0] = 1
 numbers[1] = 2
 // `numbers` is `[1, 2]`
}

let numbers = [0, 1]

change(numbers)
// `numbers` is still `[0, 1]`

Parameters are constant, i.e., it is not allowed to assign to them.

fun test(x: Int) {
 // Invalid: cannot assign to a parameter (constant)
 //

https://en.wikipedia.org/w/index.php?title=Evaluation_strategy&oldid=896280571#Call_by_value

 x = 2
}

Function Preconditions and Postconditions

Functions may have preconditions and may have postconditions. Preconditions and postconditions can be used to restrict the inputs (values for

parameters) and output (return value) of a function.

Preconditions must be true right before the execution of the function. Preconditions are part of the function and introduced by the pre keyword,

followed by the condition block.

Postconditions must be true right after the execution of the function. Postconditions are part of the function and introduced by the post
keyword, followed by the condition block. Postconditions may only occur after preconditions, if any.

A conditions block consists of one or more conditions. Conditions are expressions evaluating to a boolean. They may not call functions, i.e., they

cannot have side-effects and must be pure expressions. Also, conditions may not contain function expressions.

Conditions may be written on separate lines, or multiple conditions can be written on the same line, separated by a semicolon. This syntax follows

the syntax for statements.

Following each condition, an optional description can be provided after a colon. The condition description is used as an error message when the

condition fails.

In postconditions, the special constant result refers to the result of the function.

fun factorial(_ n: Int): Int {
 pre {
 // Require the parameter `n` to be greater than or equal to zero.
 //
 n >= 0:
 "factorial is only defined for integers greater than or equal to zero"
 }
 post {
 // Ensure the result will be greater than or equal to 1.
 //
 result >= 1:
 "the result must be greater than or equal to 1"
 }

 if n < 1 {
 return 1
 }

 return n * factorial(n - 1)
}

factorial(5) // is `120`

// Run-time error: The given argument does not satisfy
// the precondition `n >= 0` of the function, the program aborts.
//
factorial(-2)

In postconditions, the special function before can be used to get the value of an expression just before the function is called.

var n = 0

fun incrementN() {
 post {
 // Require the new value of `n` to be the old value of `n`, plus one.
 //
 n == before(n) + 1:
 "n must be incremented by 1"
 }

 n = n + 1
}

Control flow

Control flow statements control the flow of execution in a function.

Conditional branching: if-statement

If-statements allow a certain piece of code to be executed only when a given condition is true.

The if-statement starts with the if keyword, followed by the condition, and the code that should be executed if the condition is true inside

opening and closing braces. The condition expression must be Bool The braces are required and not optional. Parentheses around the condition

are optional.

let a = 0
var b = 0

if a == 0 {
 b = 1
}

// Parentheses can be used around the condition, but are not required.
if (a != 0) {
 b = 2
}

// `b` is `1`

An additional, optional else-clause can be added to execute another piece of code when the condition is false. The else-clause is introduced by

the else keyword followed by braces that contain the code that should be executed.

let a = 0
var b = 0

if a == 1 {
 b = 1
} else {
 b = 2
}

// `b` is `2`

The else-clause can contain another if-statement, i.e., if-statements can be chained together. In this case the braces can be omitted.

let a = 0
var b = 0

if a == 1 {
 b = 1
} else if a == 2 {
 b = 2
} else {
 b = 3
}

// `b` is `3`

if a == 1 {
 b = 1
} else {
 if a == 0 {
 b = 2
 }
}

// `b` is `2`

Optional Binding

Optional binding allows getting the value inside an optional. It is a variant of the if-statement.

If the optional contains a value, the first branch is executed and a temporary constant or variable is declared and set to the value contained in the

optional; otherwise, the else branch (if any) is executed.

Optional bindings are declared using the if keyword like an if-statement, but instead of the boolean test value, it is followed by the let or var
keywords, to either introduce a constant or variable, followed by a name, the equal sign (=), and the optional value.

let maybeNumber: Int? = 1

if let number = maybeNumber {
 // This branch is executed as `maybeNumber` is not `nil`.
 // The constant `number` is `1` and has type `Int`.
} else {
 // This branch is *not* executed as `maybeNumber` is not `nil`
}

let noNumber: Int? = nil

if let number = noNumber {
 // This branch is *not* executed as `noNumber` is `nil`.
} else {
 // This branch is executed as `noNumber` is `nil`.
 // The constant `number` is *not* available.
}

Looping

while-statement

While-statements allow a certain piece of code to be executed repeatedly, as long as a condition remains true.

The while-statement starts with the while keyword, followed by the condition, and the code that should be repeatedly executed if the condition

is true inside opening and closing braces. The condition must be boolean and the braces are required.

The while-statement will first evaluate the condition. If the condition is false, the execution is done. If it is true, the piece of code is executed and

the evaluation of the condition is repeated. Thus, the piece of code is executed zero or more times.

var a = 0
while a < 5 {
 a = a + 1
}

// `a` is `5`

For-in statement

For-in statements allow a certain piece of code to be executed repeatedly for each element in an array.

The for-in statement starts with the for keyword, followed by the name of the element that is used in each iteration of the loop, followed by the

in keyword, and then followed by the array that is being iterated through in the loop.

Then, the code that should be repeatedly executed in each iteration of the loop is enclosed in curly braces.

If there are no elements in the data structure, the code in the loop will not be executed at all. Otherwise, the code will execute as many times as

there are elements in the array.

var array = ["Hello", "World", "Foo", "Bar"]
for element in array {
 log(element)
}

// The loop would log:
// "Hello"
// "World"
// "Foo"
// "Bar"

continue and break

In for-loops and while-loops, the continue statement can be used to stop the current iteration of a loop and start the next iteration.

var i = 0
var x = 0
while i < 10 {
 i = i + 1
 if i < 3 {
 continue
 }
 x = x + 1
}
// `x` is `8`

let array = [2, 2, 3]
var sum = 0
for element in array {
 if element == 2 {
 continue
 }
 sum = sum + element
}

// `sum` is `3`

The break statement can be used to stop the execution of a for-loop or a while-loop.

var x = 0
while x < 10 {
 x = x + 1
 if x == 5 {
 break
 }
}
// `x` is `5`

let array = [1, 2, 3]
var sum = 0
for element in array {
 if element == 2 {
 break
 }
 sum = sum + element
}

// `sum` is `1`

Immediate function return: return-statement

The return-statement causes a function to return immediately, i.e., any code after the return-statement is not executed. The return-statement

starts with the return keyword and is followed by an optional expression that should be the return value of the function call.

Scope

Every function and block ({ ... }) introduces a new scope for declarations. Each function and block can refer to declarations in its scope or any

of the outer scopes.

let x = 10

fun f(): Int {
 let y = 10
 return x + y
}

f() // is `20`

// Invalid: the identifier `y` is not in scope.
//
y

fun doubleAndAddOne(_ n: Int): Int {
 fun double(_ x: Int) {
 return x * 2
 }
 return double(n) + 1
}

// Invalid: the identifier `double` is not in scope.
//
double(1)

Each scope can introduce new declarations, i.e., the outer declaration is shadowed.

let x = 2

fun test(): Int {
 let x = 3
 return x
}

test() // is `3`

Scope is lexical, not dynamic.

let x = 10

fun f(): Int {
 return x
}

fun g(): Int {
 let x = 20
 return f()
}

g() // is `10`, not `20`

Declarations are not moved to the top of the enclosing function (hoisted).

let x = 2

fun f(): Int {
 if x == 0 {
 let x = 3
 return x
 }
 return x
}
f() // is `2`

Type Safety

The Cadence programming language is a type-safe language.

When assigning a new value to a variable, the value must be the same type as the variable. For example, if a variable has type Bool , it can only b
assigned a value that has type Bool , and not for example a value that has type Int .

// Declare a variable that has type `Bool`.
var a = true

// Invalid: cannot assign a value that has type `Int` to a variable which has type `Bool`.
//
a = 0

When passing arguments to a function, the types of the values must match the function parameters' types. For example, if a function expects an

argument that has type Bool , only a value that has type Bool can be provided, and not for example a value which has type Int .

fun nand(_ a: Bool, _ b: Bool): Bool {
 return !(a && b)
}

nand(false, false) // is `true`

// Invalid: The arguments of the function calls are integers and have type `Int`,
// but the function expects parameters booleans (type `Bool`).
//
nand(0, 0)

Types are not automatically converted. For example, an integer is not automatically converted to a boolean, nor is an Int32 automatically

converted to an Int8 , nor is an optional integer Int? automatically converted to a non-optional integer Int , or vice-versa.

fun add(_ a: Int8, _ b: Int8): Int8 {
 return a + b
}

// The arguments are not declared with a specific type, but they are inferred
// to be `Int8` since the parameter types of the function `add` are `Int8`.
add(1, 2) // is `3`

// Declare two constants which have type `Int32`.
//
let a: Int32 = 3_000_000_000
let b: Int32 = 3_000_000_000

// Invalid: cannot pass arguments which have type `Int32` to parameters which have type `Int8`.
//
add(a, b)

Type Inference

🚧 Status: Only basic type inference is implemented.

If a variable or constant declaration is not annotated explicitly with a type, the declaration's type is inferred from the initial value.

Integer literals are inferred to type Int .

let a = 1

// `a` has type `Int`

Array literals are inferred based on the elements of the literal, and to be variable-size.

let integers = [1, 2]
// `integers` has type `[Int]`

// Invalid: mixed types
//
let invalidMixed = [1, true, 2, false]

Dictionary literals are inferred based on the keys and values of the literal.

let booleans = {
 1: true,
 2: false
}
// `booleans` has type `{Int: Bool}`

// Invalid: mixed types
//
let invalidMixed = {
 1: true,
 false: 2
}

Functions are inferred based on the parameter types and the return type.

let add = (a: Int8, b: Int8): Int {
 return a + b
}

// `add` has type `((Int8, Int8): Int)`

Type inference is performed for each expression / statement, and not across statements.

There are cases where types cannot be inferred. In these cases explicit type annotations are required.

// Invalid: not possible to infer type based on array literal's elements.
//
let array = []

// Instead, specify the array type and the concrete element type, e.g. `Int`.
//
let arrary: [Int] = []

// Invalid: not possible to infer type based on dictionary literal's keys and values.
//
let dictionary = {}

// Instead, specify the dictionary type and the concrete key
// and value types, e.g. `String` and `Int`.
//
let dictionary: {String: Int} = {}

// Invalid: not possible to infer type based on nil literal.
//
let maybeSomething = nil

// Instead, specify the optional type and the concrete element type, e.g. `Int`.
//
let maybeSomething: Int? = nil

Composite Types

Composite types allow composing simpler types into more complex types, i.e., they allow the composition of multiple values into one. Composite

types have a name and consist of zero or more named fields, and zero or more functions that operate on the data. Each field may have a different

type.

Composite types can only be declared within a contract and nowhere else.

There are two kinds of composite types. The kinds differ in their usage and the behaviour when a value is used as the initial value for a constant o

variable, when the value is assigned to a variable, when the value is passed as an argument to a function, and when the value is returned from a

function:

Structures are copied, they are value types.

Structures are useful when copies with independent state are desired.

Resources are moved, they are linear types and must be used exactly once.

Resources are useful when it is desired to model ownership (a value exists exactly in one location and it should not be lost).

Certain constructs in a blockchain represent assets of real, tangible value, as much as a house or car or bank account. We have to worry

about literal loss and theft, perhaps even on the scale of millions of dollars.

Structures are not an ideal way to represent this ownership because they are copied. This would mean that there could be a risk of having

multiple copies of certain assets floating around, which breaks the scarcity requirements needed for these assets to have real value.

A structure is much more useful for representing information that can be grouped together in a logical way, but doesn't have value or a need

to be able to be owned or transferred.

A structure could for example be used to contain the information associated with a division of a company, but a resource would be used to

represent the assets that have been allocated to that organization for spending.

Nesting of resources is only allowed within other resource types, or in data structures like arrays and dictionaries, but not in structures, as that

would allow resources to be copied.

Composite Type Declaration and Creation

Structures are declared using the struct keyword and resources are declared using the resource keyword. The keyword is followed by the

name.

pub struct SomeStruct {
 // ...
}

pub resource SomeResource {
 // ...
}

Structures and resources are types.

Structures are created (instantiated) by calling the type like a function.

// instantiate a new struct object and assign it to a constant
let a = SomeStruct()

The constructor function may require parameters if the initializer of the composite type requires them.

Composite types can only be declared within contracts and not locally in functions. They can also not be nested.

Resource must be created (instantiated) by using the create keyword and calling the type like a function.

Resources can only be created in functions and types that are declared in the same contract in which the resource is declared.

// instantiate a new resource object and assign it to a constant
let b <- create SomeResource()

Composite Type Fields

Fields are declared like variables and constants. However, the initial values for fields are set in the initializer, not in the field declaration. All fields

must be initialized in the initializer, exactly once.

Having to provide initial values in the initializer might seem restrictive, but this ensures that all fields are always initialized in one location, the

initializer, and the initialization order is clear.

The initialization of all fields is checked statically and it is invalid to not initialize all fields in the initializer. Also, it is statically checked that a field is

definitely initialized before it is used.

The initializer's main purpose is to initialize fields, though it may also contain other code. Just like a function, it may declare parameters and may

contain arbitrary code. However, it has no return type, i.e., it is always Void .

The initializer is declared using the init keyword.

The initializer always follows any fields.

There are three kinds of fields:

Constant fields are also stored in the composite value, but after they have been initialized with a value they cannot have new values assigne

to them afterwards. A constant field must be initialized exactly once.

Constant fields are declared using the let keyword.

Variable fields are stored in the composite value and can have new values assigned to them.

Variable fields are declared using the var keyword.

Synthetic fields are not stored in the composite value, i.e. they are derived/computed from other values. They can have new values assigned

to them.

Synthetic fields are declared using the synthetic keyword.

Synthetic fields must have a getter and a setter. Getters and setters are explained in the next section. Synthetic fields are explained in a

separate section.

Field Kind Stored in memory Assignable Keyword

Variable field Yes Yes var

Constant field Yes No let

Synthetic field No Yes synthetic

In initializers, the special constant self refers to the composite value that is to be initialized.

Fields can be read (if they are constant or variable) and set (if they are variable), using the access syntax: the composite value is followed by a dot

(.) and the name of the field.

// Declare a structure named `Token`, which has a constant field
// named `id` and a variable field named `balance`.
//
// Both fields are initialized through the initializer.
//
// The public access modifier `pub` is used in this example to allow
// the fields to be read in outer scopes. Fields can also be declared
// private so they cannot be accessed in outer scopes.
// Access control will be explained in a later section.
//
pub struct Token {
 pub let id: Int
 pub var balance: Int

 init(id: Int, balance: Int) {
 self.id = id

 self.balance = balance
 }
}

Note that it is invalid to provide the initial value for a field in the field declaration.

pub struct StructureWithConstantField {
 // Invalid: It is invalid to provide an initial value in the field declaration.
 // The field must be initialized by setting the initial value in the initializer.
 //
 pub let id: Int = 1
}

The field access syntax must be used to access fields – fields are not available as variables.

pub struct Token {
 pub let id: Int

 init(initialID: Int) {
 // Invalid: There is no variable with the name `id` available.
 // The field `id` must be initialized by setting `self.id`.
 //
 id = initialID
 }
}

The initializer is not automatically derived from the fields, it must be explicitly declared.

pub struct Token {
 pub let id: Int

 // Invalid: Missing initializer initializing field `id`.
}

A composite value can be created by calling the constructor and providing the field values as arguments.

The value's fields can be accessed on the object after it is created.

let token = Token(id: 42, balance: 1_000_00)

token.id // is `42`
token.balance // is `1_000_000`

token.balance = 1
// `token.balance` is `1`

// Invalid: assignment to constant field
//
token.id = 23

Resources have the implicit field let owner: PublicAccount? . If the resource is currently stored in an account, then the field contains the
publicly accessible portion of the account. Otherwise the field is nil .

The field's value changes when the resource is moved from outside account storage into account storage, when it is moved from the storage of

one account to the storage of another account, and when it is moved out of account storage.

Composite Data Initializer Overloading

🚧 Status: Initializer overloading is not implemented yet.

Initializers support overloading. This allows for example providing default values for certain parameters.

// Declare a structure named `Token`, which has a constant field
// named `id` and a variable field named `balance`.
//
// The first initializer allows initializing both fields with a given value.
//
// A second initializer is provided for convenience to initialize the `id` field
// with a given value, and the `balance` field with the default value `0`.
//
pub struct Token {
 let id: Int
 var balance: Int

 init(id: Int, balance: Int) {
 self.id = id
 self.balance = balance
 }

 init(id: Int) {
 self.id = id
 self.balance = 0
 }
}

Composite Type Field Getters and Setters

Fields may have an optional getter and an optional setter. Getters are functions that are called when a field is read, and setters are functions that

are called when a field is written. Only certain assignments are allowed in getters and setters.

Getters and setters are enclosed in opening and closing braces, after the field's type.

Getters are declared using the get keyword. Getters have no parameters and their return type is implicitly the type of the field.

pub struct GetterExample {

 // Declare a variable field named `balance` with a getter
 // which ensures the read value is always non-negative.
 //
 pub var balance: Int {
 get {
 if self.balance < 0 {
 return 0
 }

 return self.balance
 }
 }

 init(balance: Int) {
 self.balance = balance
 }
}

let example = GetterExample(balance: 10)
// `example.balance` is `10`

example.balance = -50
// The stored value of the field `example` is `-50` internally,
// though `example.balance` is `0` because the getter for `balance` returns `0` instead.

Setters are declared using the set keyword, followed by the name for the new value enclosed in parentheses. The parameter has implicitly the

type of the field. Another type cannot be specified. Setters have no return type.

The types of values assigned to setters must always match the field's type.

pub struct SetterExample {

 // Declare a variable field named `balance` with a setter
 // which requires written values to be positive.

 //
 pub var balance: Int {
 set(newBalance) {
 pre {
 newBalance >= 0
 }
 self.balance = newBalance
 }
 }

 init(balance: Int) {
 self.balance = balance
 }
}

let example = SetterExample(balance: 10)
// `example.balance` is `10`

// Run-time error: The precondition of the setter for the field `balance` fails,
// the program aborts.
//
example.balance = -50

Synthetic Composite Type Fields

🚧 Status: Synthetic fields are not implemented yet.

Fields which are not stored in the composite value are synthetic, i.e., the field value is computed. Synthetic can be either read-only, or readable

and writable.

Synthetic fields are declared using the synthetic keyword.

Synthetic fields are read-only when only a getter is provided.

struct Rectangle {
 pub var width: Int
 pub var height: Int

 // Declare a synthetic field named `area`,
 // which computes the area based on the `width` and `height` fields.
 //
 pub synthetic area: Int {
 get {
 return width * height
 }
 }

 // Declare an initializer which accepts width and height.
 // As `area` is synthetic and there is only a getter provided for it,
 // the `area` field cannot be assigned a value.
 //
 init(width: Int, height: Int) {
 self.width = width
 self.height = height
 }
}

Synthetic fields are readable and writable when both a getter and a setter is declared.

// Declare a struct named `GoalTracker` which stores a number
// of target goals, a number of completed goals,
// and has a synthetic field to provide the left number of goals.
//
// NOTE: the tracker only implements some functionality to demonstrate
// synthetic fields, it is incomplete (e.g. assignments to `goal` are not handled properly).
//
pub struct GoalTracker {

 pub var goal: Int

 pub var completed: Int

 // Declare a synthetic field which is both readable and writable.
 //
 // When the field is read from (in the getter), the number
 // of left goals is computed from the target number of goals
 // and the completed number of goals.
 //
 // When the field is written to (in the setter), the number
 // of completed goals is updated, based on the number
 // of target goals and the new remaining number of goals.
 //
 pub synthetic left: Int {
 get {
 return self.goal - self.completed
 }

 set(newLeft) {
 self.completed = self.goal - newLeft
 }
 }

 init(goal: Int, completed: Int) {
 self.goal = goal
 self.completed = completed
 }
}

let tracker = GoalTracker(goal: 10, completed: 0)
// `tracker.goal` is `10`
// `tracker.completed` is `0`
// `tracker.left` is `10`

tracker.completed = 1
// `tracker.left` is `9`

tracker.left = 8
// `tracker.completed` is `2`

It is invalid to declare a synthetic field with only a setter.

Composite Type Functions

🚧 Status: Function overloading is not implemented yet.

Composite types may contain functions. Just like in the initializer, the special constant self refers to the composite value that the function is

called on.

// Declare a structure named "Rectangle", which represents a rectangle
// and has variable fields for the width and height.
//
pub struct Rectangle {
 pub var width: Int
 pub var height: Int

 init(width: Int, height: Int) {
 self.width = width
 self.height = height
 }

 // Declare a function named "scale", which scales
 // the rectangle by the given factor.
 //
 pub fun scale(factor: Int) {
 self.width = self.width * factor
 self.height = self.height * factor
 }
}

let rectangle = Rectangle(width: 2, height: 3)

rectangle.scale(factor: 4)
// `rectangle.width` is `8`
// `rectangle.height` is `12`

Functions support overloading.

// Declare a structure named "Rectangle", which represents a rectangle
// and has variable fields for the width and height.
//
pub struct Rectangle {
 pub var width: Int
 pub var height: Int

 init(width: Int, height: Int) {
 self.width = width
 self.height = height
 }

 // Declare a function named "scale", which independently scales
 // the width by a given factor and the height by a given factor.
 //
 pub fun scale(widthFactor: Int, heightFactor: Int) {
 self.width = self.width * widthFactor
 self.height = self.height * heightFactor
 }

 // Declare a another function also named "scale", which scales
 // both width and height by a given factor.
 // The function calls the `scale` function declared above.
 //
 pub fun scale(factor: Int) {
 self.scale(
 widthFactor: factor,
 heightFactor: factor
)
 }
}

Composite Type Subtyping

Two composite types are compatible if and only if they refer to the same declaration by name, i.e., nominal typing applies instead of structural

typing.

Even if two composite types declare the same fields and functions, the types are only compatible if their names match.

// Declare a structure named `A` which has a function `test`
// which has type `((): Void)`.
//
struct A {
 fun test() {}
}

// Declare a structure named `B` which has a function `test`
// which has type `((): Void)`.
//
struct B {
 fun test() {}
}

// Declare a variable named which accepts values of type `A`.
//
var something: A = A()

// Invalid: Assign a value of type `B` to the variable.
// Even though types `A` and `B` have the same declarations,
// a function with the same name and type, the types' names differ,
// so they are not compatible.
//
something = B()

// Valid: Reassign a new value of type `A`.
//
something = A()

Composite Type Behaviour

Structures

Structures are copied when used as an initial value for constant or variable, when assigned to a different variable, when passed as an argument to

a function, and when returned from a function.

Accessing a field or calling a function of a structure does not copy it.

// Declare a structure named `SomeStruct`, with a variable integer field.
//
pub struct SomeStruct {
 pub var value: Int

 init(value: Int) {
 self.value = value
 }

 fun increment() {
 self.value = self.value + 1
 }
}

// Declare a constant with value of structure type `SomeStruct`.
//
let a = SomeStruct(value: 0)

// *Copy* the structure value into a new constant.
//
let b = a

b.value = 1
// NOTE: `b.value` is 1, `a.value` is *`0`*

b.increment()
// `b.value` is 2, `a.value` is `0`

Accessing Fields and Functions of Composite Types Using Optional Chaining

If a composite type with fields and functions is wrapped in an optional, optional chaining can be used to get those values or call the function

without having to get the value of the optional first.

Optional chaining is used by adding a ? before the . access operator for fields or functions of an optional composite type.

When getting a field value or calling a function with a return value, the access returns the value as an optional. If the object doesn't exist, the value

will always be nil

When calling a function on an optional like this, if the object doesn't exist, nothing will happen and the execution will continue.

It is still invalid to access an undeclared field of an optional composite type.

// Declare a struct with a field and method.
pub struct Value {
 pub var number: Int

 init() {
 self.number = 2
 }

 pub fun set(new: Int) {
 self.number = new
 }

 pub fun setAndReturn(new: Int): Int {
 self.number = new
 return new
 }
}

// Create a new instance of the struct as an optional
let value: Value? = Value()
// Create another optional with the same type, but nil
let noValue: Value? = nil

// Access the `number` field using optional chaining
let twoOpt = value?.number
// Because `value` is an optional, `twoOpt` has type `Int?`
let two = zeroOpt ?? 0
// `two` is `2`

// Try to access the `number` field of `noValue`, which has type `Value?`
// This still returns an `Int?`
let nilValue = noValue?.number
// This time, since `noValue` is `nil`, `nilValue` will also be `nil`

// Call the `set` function of the struct
// whether or not the object exists, this will not fail
value?.set(new: 4)
noValue?.set(new: 4)

// Call the `setAndReturn` function, which returns an `Int`
// Because `value` is an optional, the return value is type `Int?`
let sixOpt = value?.setAndReturn(new: 6)
let six = sixOpt ?? 0
// `six` is `6`

This is also possible by using the force-unwrap operator (!).

Forced-Optional chaining is used by adding a ! before the . access operator for fields or functions of an optional composite type.

When getting a field value or calling a function with a return value, the access returns the value. If the object doesn't exist, the execution will panic

and revert.

It is still invalid to access an undeclared field of an optional composite type.

// Declare a struct with a field and method.
pub struct Value {
 pub var number: Int

 init() {
 self.number = 2
 }

 pub fun set(new: Int) {
 self.number = new
 }

 pub fun setAndReturn(new: Int): Int {
 self.number = new
 return new
 }
}

// Create a new instance of the struct as an optional
let value: Value? = Value()
// Create another optional with the same type, but nil
let noValue: Value? = nil

// Access the `number` field using force-optional chaining
let two = value!.number
// `two` is `2`

// Try to access the `number` field of `noValue`, which has type `Value?`

// Run-time error: This time, since `noValue` is `nil`,
// the program execution will revert
let number = noValue!.number

// Call the `set` function of the struct

// This succeeds and sets the value to 4
value!.set(new: 4)

// Run-time error: Since `noValue` is nil, the value is not set
// and the program execution reverts.
noValue!.set(new: 4)

// Call the `setAndReturn` function, which returns an `Int`
// Because we use force-unwrap before calling the function,
// the return value is type `Int`
let six = value!.setAndReturn(new: 6)
// `six` is `6`

Resources

Resources are types that can only exist in one location at a time and must be used exactly once.

Resources must be created (instantiated) by using the create keyword.

At the end of a function which has resources (variables, constants, parameters) in scope, the resources must be either moved or destroyed.

They are moved when used as an initial value for a constant or variable, when assigned to a different variable, when passed as an argument to a

function, and when returned from a function.

Resources can be explicitly destroyed using the destroy keyword.

Accessing a field or calling a function of a resource does not move or destroy it.

When the resource is moved, the constant or variable that referred to the resource before the move becomes invalid. An invalid resource cannot

be used again.

To make the usage and behaviour of resource types explicit, the prefix @ must be used in type annotations of variable or constant declarations,

parameters, and return types.

To make moves of resources explicit, the move operator <- must be used when the resource is the initial value of a constant or variable, when it

is moved to a different variable, when it is moved to a function as an argument, and when it is returned from a function.

// Declare a resource named `SomeResource`, with a variable integer field.
//
pub resource SomeResource {
 pub var value: Int

 init(value: Int) {
 self.value = value
 }
}

// Declare a constant with value of resource type `SomeResource`.
//
let a: @SomeResource <- create SomeResource(value: 0)

// *Move* the resource value to a new constant.
//
let b <- a

// Invalid: Cannot use constant `a` anymore as the resource that it referred to
// was moved to constant `b`.
//
a.value

// Constant `b` owns the resource.
//
b.value // equals 0

// Declare a function which accepts a resource.
//
// The parameter has a resource type, so the type annotation must be prefixed with `@`.
//
pub fun use(resource: @SomeResource) {
 // ...
}

// Call function `use` and move the resource into it.
//
use(resource: <-b)

// Invalid: Cannot use constant `b` anymore as the resource
// it referred to was moved into function `use`.
//
b.value

A resource object cannot go out of scope and be dynamically lost. The program must either explicitly destroy it or move it to another context.

{
 // Declare another, unrelated value of resource type `SomeResource`.
 //
 let c <- create SomeResource(value: 10)

 // Invalid: `c` is not used before the end of the scope, but must be.
 // It cannot be lost.
}

// Declare another, unrelated value of resource type `SomeResource`.
//
let d <- create SomeResource(value: 20)

// Destroy the resource referred to by constant `d`.
//
destroy d

// Invalid: Cannot use constant `d` anymore as the resource
// it referred to was destroyed.
//
d.value

To make it explicit that the type is a resource type and must follow the rules associated with resources, it must be prefixed with @ in all type

annotations, e.g. for variable declarations, parameters, or return types.

// Declare a constant with an explicit type annotation.
//
// The constant has a resource type, so the type annotation must be prefixed with `@`.
//
let someResource: @SomeResource <- create SomeResource(value: 5)

// Declare a function which consumes a resource and destroys it.
//
// The parameter has a resource type, so the type annotation must be prefixed with `@`.
//
pub fun use(resource: @SomeResource) {
 destroy resource
}

// Declare a function which returns a resource.
//
// The return type is a resource type, so the type annotation must be prefixed with `@`.
// The return statement must also use the `<-` operator to make it explicit the resource is moved.
//
pub fun get(): @SomeResource {
 let newResource <- create SomeResource()
 return <-newResource
}

Resources must be used exactly once.

// Declare a function which consumes a resource but does not use it.
// This function is invalid, because it would cause a loss of the resource.
//
pub fun forgetToUse(resource: @SomeResource) {
 // Invalid: The resource parameter `resource` is not used, but must be.
}

// Declare a constant named `res` which has the resource type `SomeResource`.
let res <- create SomeResource()

// Call the function `use` and move the resource `res` into it.
use(resource: <-res)

// Invalid: The resource constant `res` cannot be used again,
// as it was moved in the previous function call.
//
use(resource: <-res)

// Invalid: The resource constant `res` cannot be used again,
// as it was moved in the previous function call.
//
res.value

// Declare a function which has a resource parameter but does not use it.
// This function is invalid, because it would cause a loss of the resource.
//
pub fun forgetToUse(resource: @SomeResource) {
 // Invalid: The resource parameter `resource` is not used, but must be.
}

// Declare a function which has a resource parameter.
// This function is invalid, because it does not always use the resource parameter,
// which would cause a loss of the resource.
//
pub fun sometimesDestroy(resource: @SomeResource, destroy: Bool) {
 if destroyResource {
 destroy resource
 }
 // Invalid: The resource parameter `resource` is not always used, but must be.
 // The destroy statement is not always executed, so at the end of this function
 // it might have been destroyed or not.
}

// Declare a function which has a resource parameter.
// This function is valid, as it always uses the resource parameter,
// and does not cause a loss of the resource.
//
pub fun alwaysUse(resource: @SomeResource, destroyResource: Bool) {
 if destroyResource {
 destroy resource
 } else {
 use(resource: <-resource)
 }
 // At the end of the function the resource parameter was definitely used:
 // It was either destroyed or moved in the call of function `use`.
}

// Declare a function which has a resource parameter.
// This function is invalid, because it does not always use the resource parameter,
// which would cause a loss of the resource.
//
pub fun returnBeforeDestroy(: Bool) {

 let res <- create SomeResource(value: 1)
 if move {
 use(resource: <-res)
 return
 } else {
 // Invalid: When this function returns here, the resource variable
 // `res` was not used, but must be.
 return
 }
 // Invalid: the resource variable `res` was potentially moved in the
 // previous if-statement, and both branches definitely return,
 // so this statement is unreachable.
 destroy res
}

Resource Variables

Resource variables cannot be assigned to, as that would lead to the loss of the variable's current resource value.

Instead, use a swap statement (<->) or shift statement (<- target <-) to replace the resource variable with another resource.

pub resource R {}

var x <- create R()
var y <- create R()

// Invalid: Cannot assign to resource variable `x`,
// as its current resource would be lost
//
x <- y

// Instead, use a swap statement.
//
var replacement <- create R()
x <-> replacement
// `x` is the new resource.
// `replacement` is the old resource.

// Or use the shift statement (`<- target <-`)
// This statement moves the resource out of `x` and into `oldX`,
// and at the same time assigns `x` with the new value on the right-hand side.
let oldX <- x <- create R()
// oldX still needs to be explicitly handled after this statement
destroy oldX

Resource Destructors

Resource may have a destructor, which is executed when the resource is destroyed. Destructors have no parameters and no return value and are

declared using the destroy name. A resource may have only one destructor.

var destructorCalled = false

pub resource Resource {

 // Declare a destructor for the resource, which is executed
 // when the resource is destroyed.
 //
 destroy() {
 destructorCalled = true
 }
}

let res <- create Resource()
destroy res
// `destructorCalled` is `true`

Nested Resources

Fields in composite types behave differently when they have a resource type.

If a resource type has fields that have a resource type, it must declare a destructor, which must invalidate all resource fields, i.e. move or destroy

them.

pub resource Child {
 let name: String

 init(name: String)
 self.name = name
 }
}

// Declare a resource with a resource field named `child`.
// The resource *must* declare a destructor
// and the destructor *must* invalidate the resource field.
//
pub resource Parent {
 let name: String
 var child: @Child

 init(name: String, child: @Child) {
 self.name = name
 self.child <- child
 }

 // Declare a destructor which invalidates the resource field
 // `child` by destroying it.
 //
 destroy() {
 destroy self.child
 }
}

Accessing a field or calling function on a resource field is valid, however moving a resource out of a variable resource field is not allowed. Instead,

use a swap statement to replace the resource with another resource.

let child <- create Child(name: "Child 1")
let parent <- create Parent(name: "Parent", child: <-child)

child.name // is "Child"
parent.child.name // is "Child"

// Invalid: Cannot move resource out of variable resource field.
let childAgain <- parent.child

// Instead, use a swap statement.
//
var otherChild <- create Child(name: "Child 2")
parent.child <-> otherChild
// `parent.child` is the second child, Child 2.
// `otherChild` is the first child, Child 1.

Resources in Closures

Resources can not be captured in closures, as that could potentially result in duplications.

resource R {}

// Invalid: Declare a function which returns a closure which refers to
// the resource parameter `resource`. Each call to the returned function
// would return the resource, which should not be possible.
//
fun makeCloner(resource: @R): ((): @R) {
 return fun (): @R {
 return <-resource
 }

}

let test = makeCloner(resource: <-create R())

Resources in Arrays and Dictionaries

Arrays and dictionaries behave differently when they contain resources: It is not allowed to index into an array to read an element at a certain inde

or assign to it, or index into a dictionary to read a value for a certain key or set a value for the key.

Instead, use a swap statement (<->) or shift statement (<- target <-) to replace the accessed resource with another resource.

resource R {}

// Declare a constant for an array of resources.
// Create two resources and move them into the array.
//
let resources <- [
 <-create R(),
 <-create R()
]

// Invalid: Reading an element from a resource array is not allowed.
//
let firstResource <- resources[0]

// Invalid: Setting an element in a resource array is not allowed,
// as it would result in the loss of the current value.
//
resources[0] <- create R()

// Instead, when attempting to either read an element or update an element
// in a resource array, use a swap statement with a variable to replace
// the accessed element.
//
var res <- create R()
resources[0] <-> res
// `resources[0]` now contains the new resource.
// `res` now contains the old resource.

// Use the shift statement to move the new resource into
// the array at the same time that the old resource is being moved out
let oldRes <- resources[0] <- create R()
// The old object still needs to be handled
destroy oldRes

The same applies to dictionaries.

// Declare a constant for a dictionary of resources.
// Create two resources and move them into the dictionary.
//
let resources <- {
 "r1": <-create R(),
 "r2": <-create R()
}

// Invalid: Reading an element from a resource dictionary is not allowed.
// It's not obvious that an access like this would have to remove
// the key from the dictionary.
//
let firstResource <- resources["r1"]

// Instead, make the removal explicit by using the `remove` function.
let firstResource <- resources.remove(key: "r1")

// Invalid: Setting an element in a resource dictionary is not allowed,
// as it would result in the loss of the current value.
//
resources["r1"] <- create R()

// Instead, when attempting to either read an element or update an element
// in a resource dictionary, use a swap statement with a variable to replace
// the accessed element.
//
var res <- create R()
resources["r1"] <-> res
// `resources["r1"]` now contains the new resource.
// `res` now contains the old resource.

// Use the shift statement to move the new resource into
// the dictionary at the same time that the old resource is being moved out
let oldRes <- resources["r2"] <- create R()
// The old object still needs to be handled
destroy oldRes

Resources cannot be moved into arrays and dictionaries multiple times, as that would cause a duplication.

let resource <- create R()

// Invalid: The resource variable `resource` can only be moved into the array once.
//
let resources <- [
 <-resource,
 <-resource
]

let resource <- create R()

// Invalid: The resource variable `resource` can only be moved into the dictionary once.
let resources <- {
 "res1": <-resource,
 "res2": <-resource
}

Resource arrays and dictionaries can be destroyed.

let resources <- [
 <-create R(),
 <-create R()
]
destroy resources

let resources <- {
 "r1": <-create R(),
 "r2": <-create R()
}
destroy resources

The variable array functions like append , insert , and remove behave like for non-resource arrays. Note however, that the result of the

remove functions must be used.

let resources <- [<-create R()]
// `resources.length` is `1`

resources.append(<-create R())
// `resources.length` is `2`

let first <- resource.remove(at: 0)
// `resources.length` is `1`
destroy first

resources.insert(at: 0, <-create R())
// `resources.length` is `2`

// Invalid: The statement ignores the result of the call to `remove`,

// which would result in a loss.
resource.remove(at: 0)

destroy resources

The variable array function contains is not available, as it is impossible: If the resource can be passed to the contains function, it is by

definition not in the array.

The variable array function concat is not available, as it would result in the duplication of resources.

The dictionary functions like insert and remove behave like for non-resource dictionaries. Note however, that the result of these functions

must be used.

let resources <- {"r1": <-create R()}
// `resources.length` is `1`

let first <- resource.remove(key: "r1")
// `resources.length` is `0`
destroy first

let old <- resources.insert(key: "r1", <-create R())
// `old` is nil, as there was no value for the key "r1"
// `resources.length` is `1`

let old2 <- resources.insert(key: "r1", <-create R())
// `old2` is the old value for the key "r1"
// `resources.length` is `2`

destroy old
destroy old2
destroy resources

Unbound References / Nulls

There is no support for null .

Inheritance and Abstract Types

There is no support for inheritance. Inheritance is a feature common in other programming languages, that allows including the fields and

functions of one type in another type.

Instead, follow the "composition over inheritance" principle, the idea of composing functionality from multiple individual parts, rather than building

an inheritance tree.

Furthermore, there is also no support for abstract types. An abstract type is a feature common in other programming languages, that prevents

creating values of the type and only allows the creation of values of a subtype. In addition, abstract types may declare functions, but omit the

implementation of them and instead require subtypes to implement them.

Instead, consider using interfaces.

Access control

Access control allows making certain parts of the program accessible/visible and making other parts inaccessible/invisible.

In Flow and Cadence, there are two types of access control:

1. Access control on objects in account storage using capability security.

Within Flow, a caller is not able to access an object unless it owns the object or has a specific reference to that object. This means that

nothing is truly public by default. Other accounts can not read or write the objects in an account unless the owner of the account has granted

them access by providing references to the objects.

2. Access control within contracts and objects using pub and access keywords.

For the explanations of the following keywords, we assume that the defining type is either a contract, where capability security doesn't apply,

or that the caller would have valid access to the object governed by capability security.

The high-level reference-based security (point 1 above) will be covered in a later section.

Top-level declarations (variables, constants, functions, structures, resources, interfaces) and fields (in structures, and resources) are always only

able to be written to in the scope where it is defined (self).

There are four levels of access control defined in the code that specify where a declaration can be accessed or called.

Public or access(all) means the declaration is accessible/visible in all scopes.

This includes the current scope, inner scopes, and the outer scopes.

For example, a public field in a type can be accessed using the access syntax on an instance of the type in an outer scope. This does not

allow the declaration to be publicly writable though.

An element is made public by using the pub or access(all) keywords.

access(account) means the declaration is only accessible/visible in the scope of the entire account where it is defined. This means that othe

contracts in the account are able to access it,

An element is specified with account access by using the access(account) keyword.

access(contract) means the declaration is only accessible/visible in the scope of the contract that defined it. This means that other types

and functions that are defined in the same contract can access it, but not other contracts in the same account.

An element is specified with contract access by using the access(contract) keyword.

Private or access(self) means the declaration is only accessible/visible in the current and inner scopes.

For example, an access(self) field can only be accessed by functions of the type is part of, not by code in an outer scope.

This level is specified by using the access(self) keyword.

Access level must be specified for each declaration

The (set) suffix can be used to make variables also publicly writable.

To summarize the behavior for variable declarations, constant declarations, and fields:

Declaration kind Access modifier Read scope Write scope

let access(self) Current and inner None

let access(contract) Current, inner, and its contract None

let access(account) Current, inner, and account contracts None

let pub , access(all) All None

var access(self) Current and inner Current and inner

var access(contract) Current, inner, and its contract Current and inner

var access(account) Current, inner, and account contracts Current and inner

var pub , access(all) All Current and inner

var pub(set) All All

To summarize the behavior for functions, structures, resources, and interfaces:

Declaration kind Access modifier Access scope

fun , struct , resource , struct interface , resource interface access(self) Current and inner

fun , struct , resource , struct interface , resource interface access(contract) Current, inner, and its contract

Declaration kind Access modifier Access scope

fun , struct , resource , struct interface , resource interface access(account) Current, inner, and account contracts

fun , struct , resource , struct interface , resource interface pub , access(all) All

Currently, all contract defined types must have an access declaration, but only code within the contract in which the type is declared is allowed to

create instances of the type. See the linked contracts section for more information.

// Declare a private constant, inaccessible/invisible in outer scope.
//
access(self) let a = 1

// Declare a public constant, accessible/visible in all scopes.
//
pub let b = 2

// Declare a public struct, accessible/visible in all scopes.
//
pub struct SomeStruct {

 // Declare a private constant field which is only readable
 // in the current and inner scopes.
 //
 access(self) let a: Int

 // Declare a public constant field which is readable in all scopes.
 //
 pub let b: Int

 // Declare a private variable field which is only readable
 // and writable in the current and inner scopes.
 //
 access(self) var c: Int

 // Declare a public variable field which is not settable,
 // so it is only writable in the current and inner scopes,
 // and readable in all scopes.
 //
 pub var d: Int

 // Declare a public variable field which is settable,
 // so it is readable and writable in all scopes.
 //
 pub(set) var e: Int

 // The initializer is omitted for brevity.

 // Declare a private function which is only callable
 // in the current and inner scopes.
 //
 access(self) fun privateTest() {
 // ...
 }

 // Declare a public function which is callable in all scopes.
 //
 pub fun privateTest() {
 // ...
 }

 // The initializer is omitted for brevity.

}

let some = SomeStruct()

// Invalid: cannot read private constant field in outer scope.
//
some.a

// Invalid: cannot set private constant field in outer scope.
//
some.a = 1

// Valid: can read public constant field in outer scope.
//
some.b

// Invalid: cannot set public constant field in outer scope.
//
some.b = 2

// Invalid: cannot read private variable field in outer scope.
//
some.c

// Invalid: cannot set private variable field in outer scope.
//
some.c = 3

// Valid: can read public variable field in outer scope.
//
some.d

// Invalid: cannot set public variable field in outer scope.
//
some.d = 4

// Valid: can read publicly settable variable field in outer scope.
//
some.e

// Valid: can set publicly settable variable field in outer scope.
//
some.e = 5

Interfaces

An interface is an abstract type that specifies the behavior of types that implement the interface. Interfaces declare the required functions and

fields, the access control for those declarations, and preconditions and postconditions that implementing types need to provide.

There are three kinds of interfaces:

Structure interfaces: implemented by structures

Resource interfaces: implemented by resources

Contract interfaces: implemented by contracts

Structure, resource, and contract types may implement multiple interfaces.

Nominal typing applies to composite types that implement interfaces. This means that a type only implements an interface if it has explicitly

declared it.

Interfaces consist of the function and field requirements that a type implementing the interface must provide implementations for. Interface

requirements, and therefore also their implementations, must always be at least public.

Variable field requirements may be annotated to require them to be publicly settable.

Function requirements consist of the name of the function, parameter types, an optional return type, and optional preconditions and

postconditions.

Field requirements consist of the name and the type of the field. Field requirements may optionally declare a getter requirement and a setter

requirement, each with preconditions and postconditions.

Calling functions with preconditions and postconditions on interfaces instead of concrete implementations can improve the security of a program

as it ensures that even if implementations change, some aspects of them will always hold.

Interface Declaration

Interfaces are declared using the struct , resource , or contract keyword, followed by the interface keyword, the name of the interface,

and the requirements, which must be enclosed in opening and closing braces.

Field requirements can be annotated to require the implementation to be a variable field, by using the var keyword; require the implementation t

be a constant field, by using the let keyword; or the field requirement may specify nothing, in which case the implementation may either be a

variable field, a constant field, or a synthetic field.

Field requirements and function requirements must specify the required level of access. The access must be at least be public, so the pub
keyword must be provided. Variable field requirements can be specified to also be publicly settable by using the pub(set) keyword.

Interfaces can be used in types. This is explained in detail in the section Interfaces in Types. For now, the syntax {I} can be read as the type of

any value that implements the interface I .

// Declare a resource interface for a fungible token.
// Only resources can implement this resource interface.
//
pub resource interface FungibleToken {

 // Require the implementing type to provide a field for the balance
 // that is readable in all scopes (`pub`).
 //
 // Neither the `var` keyword, nor the `let` keyword is used,
 // so the field may be implemented as either a variable field,
 // a constant field, or a synthetic field.
 //
 // The read balance must always be positive.
 //
 // NOTE: no requirement is made for the kind of field,
 // it can be either variable or constant in the implementation.
 //
 pub balance: Int {
 set(newBalance) {
 pre {
 newBalance >= 0:
 "Balances are always set as non-negative numbers"
 }
 }
 }

 // Require the implementing type to provide an initializer that
 // given the initial balance, must initialize the balance field.
 //
 init(balance: Int) {
 pre {
 balance >= 0:
 "Balances are always non-negative"
 }
 post {
 self.balance == balance:
 "the balance must be initialized to the initial balance"
 }

 // NOTE: The declaration contains no implementation code.
 }

 // Require the implementing type to provide a function that is
 // callable in all scopes, which withdraws an amount from
 // this fungible token and returns the withdrawn amount as
 // a new fungible token.
 //
 // The given amount must be positive and the function implementation
 // must add the amount to the balance.
 //
 // The function must return a new fungible token.
 // The type `{FungibleToken}` is the type of any resource
 // that implements the resource interface `FungibleToken`.
 //
 pub fun withdraw(amount: Int): @{FungibleToken} {

 pre {
 amount > 0:
 "the amount must be positive"
 amount <= self.balance:
 "insufficient funds: the amount must be smaller or equal to the balance"
 }
 post {
 self.balance == before(self.balance) - amount:
 "the amount must be deducted from the balance"
 }

 // NOTE: The declaration contains no implementation code.
 }

 // Require the implementing type to provide a function that is
 // callable in all scopes, which deposits a fungible token
 // into this fungible token.
 //
 // No precondition is required to check the given token's balance
 // is positive, as this condition is already ensured by
 // the field requirement.
 //
 // The parameter type `{FungibleToken}` is the type of any resource
 // that implements the resource interface `FungibleToken`.
 //
 pub fun deposit(_ token: @{FungibleToken}) {
 post {
 self.balance == before(self.balance) + token.balance:
 "the amount must be added to the balance"
 }

 // NOTE: The declaration contains no implementation code.
 }
}

Note that the required initializer and functions do not have any executable code.

Struct and resource Interfaces can only be declared directly inside contracts, i.e. not inside of functions. Contract interfaces can only be declared

globally and not inside contracts.

Interface Implementation

Declaring that a type implements (conforms) to an interface is done in the type declaration of the composite type (e.g., structure, resource): The

kind and the name of the composite type is followed by a colon (:) and the name of one or more interfaces that the composite type implements.

This will tell the checker to enforce any requirements from the specified interfaces onto the declared type.

A type implements (conforms to) an interface if it declares the implementation in its signature, provides field declarations for all fields required by

the interface, and provides implementations for all functions required by the interface.

The field declarations in the implementing type must match the field requirements in the interface in terms of name, type, and declaration kind

(e.g. constant, variable) if given. For example, an interface may require a field with a certain name and type, but leaves it to the implementation

what kind the field is.

The function implementations must match the function requirements in the interface in terms of name, parameter argument labels, parameter

types, and the return type.

// Declare a resource named `ExampleToken` that has to implement
// the `FungibleToken` interface.
//
// It has a variable field named `balance`, that can be written
// by functions of the type, but outer scopes can only read it.
//
pub resource ExampleToken: FungibleToken {

 // Implement the required field `balance` for the `FungibleToken` interface.
 // The interface does not specify if the field must be variable, constant,
 // so in order for this type (`ExampleToken`) to be able to write to the field,
 // but limit outer scopes to only read from the field, it is declared variable,

 // and only has public access (non-settable).
 //
 pub var balance: Int

 // Implement the required initializer for the `FungibleToken` interface:
 // accept an initial balance and initialize the `balance` field.
 //
 // This implementation satisfies the required postcondition.
 //
 // NOTE: the postcondition declared in the interface
 // does not have to be repeated here in the implementation.
 //
 init(balance: Int) {
 self.balance = balance
 }

 // Implement the required function named `withdraw` of the interface
 // `FungibleToken`, that withdraws an amount from the token's balance.
 //
 // The function must be public.
 //
 // This implementation satisfies the required postcondition.
 //
 // NOTE: neither the precondition nor the postcondition declared
 // in the interface have to be repeated here in the implementation.
 //
 pub fun withdraw(amount: Int): @ExampleToken {
 self.balance = self.balance - amount
 return create ExampleToken(balance: amount)
 }

 // Implement the required function named `deposit` of the interface
 // `FungibleToken`, that deposits the amount from the given token
 // to this token.
 //
 // The function must be public.
 //
 // NOTE: the type of the parameter is `{FungibleToken}`,
 // i.e., any resource that implements the resource interface `FungibleToken`,
 // so any other token – however, we want to ensure that only tokens
 // of the same type can be deposited.
 //
 // This implementation satisfies the required postconditions.
 //
 // NOTE: neither the precondition nor the postcondition declared
 // in the interface have to be repeated here in the implementation.
 //
 pub fun deposit(_ token: @{FungibleToken}) {
 if let exampleToken = token as? ExampleToken {
 self.balance = self.balance + exampleToken.balance
 destroy exampleToken
 } else {
 panic("cannot deposit token which is not an example token")
 }
 }
}

// Declare a constant which has type `ExampleToken`,
// and is initialized with such an example token.
//
let token <- create ExampleToken(balance: 100)

// Withdraw 10 units from the token.
//
// The amount satisfies the precondition of the `withdraw` function
// in the `FungibleToken` interface.
//
// Invoking a function of a resource does not destroy the resource,
// so the resource `token` is still valid after the call of `withdraw`.
//
let withdrawn <- token.withdraw(amount: 10)

// The postcondition of the `withdraw` function in the `FungibleToken`

// interface ensured the balance field of the token was updated properly.
//
// `token.balance` is `90`
// `withdrawn.balance` is `10`

// Deposit the withdrawn token into another one.
let receiver: @ExampleToken <- // ...
receiver.deposit(<-withdrawn)

// Run-time error: The precondition of function `withdraw` in interface
// `FungibleToken` fails, the program aborts: the parameter `amount`
// is larger than the field `balance` (100 > 90).
//
token.withdraw(amount: 100)

// Withdrawing tokens so that the balance is zero does not destroy the resource.
// The resource has to be destroyed explicitly.
//
token.withdraw(amount: 90)

The access level for variable fields in an implementation may be less restrictive than the interface requires. For example, an interface may require

field to be at least public (i.e. the pub keyword is specified), and an implementation may provide a variable field which is public, but also publicly

settable (the pub(set) keyword is specified).

pub struct interface AnInterface {
 // Require the implementing type to provide a publicly readable
 // field named `a` that has type `Int`. It may be a constant field,
 // a variable field, or a synthetic field.
 //
 pub a: Int
}

pub struct AnImplementation: AnInterface {
 // Declare a publicly settable variable field named `a` that has type `Int`.
 // This implementation satisfies the requirement for interface `AnInterface`:
 // The field is at least publicly readable, but this implementation also
 // allows the field to be written to in all scopes.
 //
 pub(set) var a: Int

 init(a: Int) {
 self.a = a
 }
}

Interfaces in Types

Interfaces can be used in types: The type {I} is the type of all objects that implement the interfaace I .

This is called a restricted type: Only the functionality (members and functions) of the interface can be used when accessing a value of such a type

// Declare an interface named `Shape`.
//
// Require implementing types to provide a field which returns the area,
// and a function which scales the shape by a given factor.
//
pub struct interface Shape {
 pub fun getArea(): Int
 pub fun scale(factor: Int)
}

// Declare a structure named `Square` the implements the `Shape` interface.
//
pub struct Square: Shape {
 // In addition to the required fields from the interface,
 // the type can also declare additional fields.
 //
 pub var length: Int

 // Provided the field `area` which is required to conform
 // to the interface `Shape`.
 //
 // Since `area` was not declared as a constant, variable,
 // field in the interface, it can be declared.
 //
 pub fun getArea(): Int {
 return self.length * self.length
 }

 pub init(length: Int) {
 self.length = length
 }

 // Provided the implementation of the function `scale`
 // which is required to conform to the interface `Shape`.
 //
 pub fun scale(factor: Int) {
 self.length = self.length * factor
 }
}

// Declare a structure named `Rectangle` that also implements the `Shape` interface.
//
pub struct Rectangle: Shape {
 pub var width: Int
 pub var height: Int

 // Provided the field `area which is required to conform
 // to the interface `Shape`.
 //
 pub fun getArea(): Int {
 return self.width * self.height
 }

 pub init(width: Int, height: Int) {
 self.width = width
 self.height = height
 }

 // Provided the implementation of the function `scale`
 // which is required to conform to the interface `Shape`.
 //
 pub fun scale(factor: Int) {
 self.width = self.width * factor
 self.height = self.height * factor
 }
}

// Declare a constant that has type `Shape`, which has a value that has type `Rectangle`.
//
var shape: {Shape} = Rectangle(width: 10, height: 20)

Values implementing an interface are assignable to variables that have the interface as their type.

// Assign a value of type `Square` to the variable `shape` that has type `Shape`.
//
shape = Square(length: 30)

// Invalid: cannot initialize a constant that has type `Rectangle`.
// with a value that has type `Square`.
//
let rectangle: Rectangle = Square(length: 10)

Fields declared in an interface can be accessed and functions declared in an interface can be called on values of a type that implements the

interface.

// Declare a constant which has the type `Shape`.
// and is initialized with a value that has type `Rectangle`.
//

let shape: {Shape} = Rectangle(width: 2, height: 3)

// Access the field `area` declared in the interface `Shape`.
//
shape.area // is `6`

// Call the function `scale` declared in the interface `Shape`.
//
shape.scale(factor: 3)

shape.area // is `54`

Interface Implementation Requirements

Interfaces can require implementing types to also implement other interfaces of the same kind. Interface implementation requirements can be

declared by following the interface name with a colon (:) and one or more names of interfaces of the same kind, separated by commas.

// Declare a structure interface named `Shape`.
//
pub struct interface Shape {}

// Declare a structure interface named `Polygon`.
// Require implementing types to also implement the structure interface `Shape`.
//
pub struct interface Polygon: Shape {}

// Declare a structure named `Hexagon` that implements the `Polygon` interface.
// This also is required to implement the `Shape` interface,
// because the `Polygon` interface requires it.
//
pub struct Hexagon: Polygon {}

Interface Nesting

🚧 Status: Currently only contracts and contract interfaces support nested interfaces.

Interfaces can be arbitrarily nested. Declaring an interface inside another does not require implementing types of the outer interface to provide an

implementation of the inner interfaces.

// Declare a resource interface `OuterInterface`, which declares
// a nested structure interface named `InnerInterface`.
//
// Resources implementing `OuterInterface` do not need to provide
// an implementation of `InnerInterface`.
//
// Structures may just implement `InnerInterface`.
//
resource interface OuterInterface {

 struct interface InnerInterface {}
}

// Declare a resource named `SomeOuter` that implements the interface `OuterInterface`
//
// The resource is not required to implement `OuterInterface.InnerInterface`.
//
resource SomeOuter: OuterInterface {}

// Declare a structure named `SomeInner` that implements `InnerInterface`,
// which is nested in interface `OuterInterface`.
//
struct SomeInner: OuterInterface.InnerInterface {}

Nested Type Requirements

🚧 Status: Currently only contracts and contract interfaces support nested type requirements.

Interfaces can require implementing types to provide concrete nested types. For example, a resource interface may require an implementing type

to provide a resource type.

// Declare a resource interface named `FungibleToken`.
//
// Require implementing types to provide a resource type named `Vault`
// which must have a field named `balance`.
//
resource interface FungibleToken {

 pub resource Vault {
 pub balance: Int
 }
}

// Declare a resource named `ExampleToken` that implements the `FungibleToken` interface.
//
// The nested type `Vault` must be provided to conform to the interface.
//
resource ExampleToken: FungibleToken {

 pub resource Vault {
 pub var balance: Int

 init(balance: Int) {
 self.balance = balance
 }
 }
}

Equatable Interface

🚧 Status: The Equatable interface is not implemented yet.

An equatable type is a type that can be compared for equality. Types are equatable when they implement the Equatable interface.

Equatable types can be compared for equality using the equals operator (==) or inequality using the unequals operator (!=).

Most of the built-in types are equatable, like booleans and integers. Arrays are equatable when their elements are equatable. Dictionaries are

equatable when their values are equatable.

To make a type equatable the Equatable interface must be implemented, which requires the implementation of the function equals , which
accepts another value that the given value should be compared for equality.

struct interface Equatable {
 pub fun equals(_ other: {Equatable}): Bool
}

// Declare a struct named `Cat`, which has one field named `id`
// that has type `Int`, i.e., the identifier of the cat.
//
// `Cat` also will implement the interface `Equatable`
// to allow cats to be compared for equality.
//
struct Cat: Equatable {
 pub let id: Int

 init(id: Int) {
 self.id = id
 }

 pub fun equals(_ other: {Equatable}): Bool {
 if let otherCat = other as? Cat {
 // Cats are equal if their identifier matches.
 //
 return otherCat.id == self.id
 } else {

 return false
 }
 }
}

Cat(1) == Cat(2) // is `false`
Cat(3) == Cat(3) // is `true`

Hashable Interface

🚧 Status: The Hashable interface is not implemented yet.

A hashable type is a type that can be hashed to an integer hash value, i.e., it is distilled into a value that is used as evidence of inequality. Types ar

hashable when they implement the Hashable interface.

Hashable types can be used as keys in dictionaries.

Hashable types must also be equatable, i.e., they must also implement the Equatable interface. This is because the hash value is only evidence

for inequality: two values that have different hash values are guaranteed to be unequal. However, if the hash values of two values are the same,

then the two values could still be unequal and just happen to hash to the same hash value. In that case equality still needs to be determined

through an equality check. Without Equatable , values could be added to a dictionary, but it would not be possible to retrieve them.

Most of the built-in types are hashable, like booleans and integers. Arrays are hashable when their elements are hashable. Dictionaries are

hashable when their values are equatable.

Hashing a value means passing its essential components into a hash function. Essential components are those that are used in the type's

implementation of Equatable .

If two values are equal because their equals function returns true, then the implementation must return the same integer hash value for each of

the two values.

The implementation must also consistently return the same integer hash value during the execution of the program when the essential

components have not changed. The integer hash value must not necessarily be the same across multiple executions.

struct interface Hashable: Equatable {
 pub hashValue: Int
}

// Declare a structure named `Point` with two fields
// named `x` and `y` that have type `Int`.
//
// `Point` is declared to implement the `Hashable` interface,
// which also means it needs to implement the `Equatable` interface.
//
struct Point: Hashable {

 pub(set) var x: Int
 pub(set) var y: Int

 init(x: Int, y: Int) {
 self.x = x
 self.y = y
 }

 // Implementing the function `equals` will allow points to be compared
 // for equality and satisfies the `Equatable` interface.
 //
 pub fun equals(_ other: {Equatable}): Bool {
 if let otherPoint = other as? Point {
 // Points are equal if their coordinates match.
 //
 // The essential components are therefore the fields `x` and `y`,
 // which must be used in the implementation of the field requirement
 // `hashValue` of the `Hashable` interface.
 //
 return otherPoint.x == self.x
 && otherPoint.y == self.y

 } else {
 return false
 }
 }

 // Providing an implementation for the hash value field
 // satisfies the `Hashable` interface.
 //
 pub synthetic hashValue: Int {
 get {
 // Calculate a hash value based on the essential components,
 // the fields `x` and `y`.
 //
 var hash = 7
 hash = 31 * hash + self.x
 hash = 31 * hash + self.y
 return hash
 }
 }
}

Restricted Types

Structure and resource types can be restricted. Restrictions are interfaces. Restricted types only allow access to a subset of the members and

functions of the type that is restricted, indicated by the restrictions.

The syntax of a restriced type is T{U1, U2, ... Un} , where T is the restricted type, a concrete resource or strucure type, and the types U1 to

Un are the restrictions, interfaces that T conforms to.

Only the members and functions of the union of the set of restrictions are available.

Restricted types are useful for increasing the safety in functions that are suposed to only work on a subset of the type. For example, by using a

restricted type for a parameter's type, the function may only access the functionality of the restriction: If the function accidentally attempts to

access other functionality, this is prevented by the static checker.

// Declare a resource interface named `HasCount`,
// which has a read-only `count` field
//
resource interface HasCount {
 pub let count: Int
}

// Declare a resource named `Counter`, which has a writeable `count` field,
// and conforms to the resource interface `HasCount`
//
pub resource Counter: HasCount {
 pub var count: Int

 init(count: Int) {
 self.count = count
 }

 pub fun increment() {
 self.count = self.count + 1
 }
}

// Create an instance of the resource `Counter`
let counter: @Counter <- create Counter(count: 42)

counterRef.count // is `42`

counterRef.increment()

counterRef.count // is `43`

// Move the resource in variable `counter` to a new variable `restrictedCounter`,
// but typed with the restricted type `Counter{HasCount}`:
// The variable may hold any `Counter`, but only the functionality

// defined in the given restriction, the interface `HasCount`, may be accessed
//
let restrictedCounter: @Counter{Count} <- counter

// Invalid: Only functionality of restriction `Count` is available,
// i.e. the read-only field `count`, but not the function `increment` of `Counter`
//
restrictedCounter.increment()

// Move the resource in variable `restrictedCounter` to a new variable `unrestrictedCounter`,
// again typed as `Counter`, i.e. all functionality of the counter is available
//
let unrestrictedCounter: @Counter <- restrictedCounter

// Valid: The variable `unrestrictedCounter` has type `Counter`,
// so all its functionality is available, including the function `increment`
//
unrestrictedCounter.increment()

// Declare another resource type named `Strings`
// which implements the resource interface `HasCount`
//
pub resource Strings: HasCount {
 pub var count: Int
 access(self) var strings: [String]

 init() {
 self.count = 0
 self.strings = []
 }

 pub fun append(_ string: String) {
 self.strings.append(string)
 self.count = self.count + 1
 }
}

// Invalid: The resource type `Strings` is not compatible
// with the restricted type `Counter{HasCount}`.
// Even though the resource `Strings` implements the resource interface `HasCount`,
// it is not compatible with `Counter`
//
let counter2: @Counter{HasCount} <- create Strings()

In addition to restricting concrete types is also possible to restrict the built-in types AnyStruct , the supertype of all structures, and
AnyResource , the supertype of all resources. For example, restricted type AnyResource{HasCount} is any resource type for which only the

functionality of the HasCount resource interface can be used.

The restricted types AnyStruct and AnyResource can be ommited. For example, the type {HasCount} is any resource that implements the

resource interface HasCount .

pub struct interface HasID {
 pub let id: String
}

pub struct A: HasID {
 pub let name: String

 init(name: String) {
 self.name = name
 }
}

pub struct B: HasID {
 pub let name: String

 init(name: String) {
 self.name = name
 }
}

// Create two instances, one of type `A`, and one of type `B`.
// Both types conform to interface `HasID`, so the structs can be assigned
// to variables with type `AnyResource{HasID}`: Some resource type which only allows
// access to the functionality of resource interface `HasID`

let hasID1: {HasID} = A(name: "1")
let hasID2: {HasID} = B(name: "2")

// Declare a function named `getID` which has one parameter with type `{HasID}`.
// The type `{HasID}` is a short-hand for `AnyStruct{HasID}`:
// Some structure which only allows access to the functionality of interface `HasID`.
//
pub fun getID(_ value: {HasID}): String {
 return value.id
}

let id1 = getID(hasID1)
// `id1` is "1"

let id2 = getID(hasID2)
// `id2` is "2"

Only concrete types may be restriced, e.g., the restricted type may not be an array, the type [T]{U} is invalid.

Restricted types are also useful when giving access to resources and structures to potentially untrusted third-party programs through references

which are discussed in the next section.

References

It is possible to create references to objects, i.e. resources or structures. A reference can be used to access fields and call functions on the

referenced object.

References are copied, i.e. they are value types.

References are created by using the & operator, followed by the object, the as keyword, and the type through which they should be accessed.

The given type must be a supertype of the referenced object's type.

References have the type &T , where T is the type of the referenced object.

let hello = "Hello"

// Create a reference to the "Hello" string, typed as a `String`
//
let helloRef: &String = &hello as &String

helloRef.length // is `5`

// Invalid: Cannot create a reference to `hello`
// typed as `&Int`, as it has type `String`
//
let intRef: &Int = &hello as &Int

References are covariant in their base types. For example, &T is a subtype of &U , if T is a subtype of U .

// Declare a resource interface named `HasCount`,
// that has a field `count`
//
resource interface HasCount {
 count: Int
}

// Declare a resource named `Counter` that conforms to `HasCount`
//
resource Counter: HasCount {
 pub var count: Int

 pub init(count: Int) {
 self.count = count
 }

 pub fun increment() {
 self.count = self.count + 1
 }
}

// Create a new instance of the resource type `Counter`
// and create a reference to it, typed as `&Counter`,
// so the reference allows access to all fields and functions
// of the counter
//
let counter <- create Counter(count: 42)
let counterRef: &Counter = &counter as &Counter

counterRef.count // is `42`

counterRef.increment()

counterRef.count // is `43`

References may be authorized or unauthorized.

Authorized references have the auth modifier, i.e. the full syntax is auth &T , whereas unauthorized references do not have a modifier.

Authorized references can be freely upcasted and downcasted, whereas unauthorized references can only be upcasted. Also, authorized

references are subtypes of unauthorized references.

// Create an unauthorized reference to the counter,
// typed with the restricted type `&{HasCount}`,
// i.e. some resource that conforms to the `HasCount` interface
//
let countRef: &{HasCount} = &counter as &{HasCount}

countRef.count // is `43`

// Invalid: The function `increment` is not available
// for the type `&{HasCount}`
//
countRef.increment()

// Invalid: Cannot failably downcast to reference type `&Counter`,
// as the reference `countRef` is unauthorized.
//
// The counter value has type `Counter`, which is a subtype of `{HasCount}`,
// but as the reference is unauthorized, the cast is not allowed.
// It is not possible to "look under the covers"
//
let counterRef2: &Counter = countRef as? &Counter

// Create an authorized reference to the counter,
// again with the restricted type `{HasCount}`, i.e. some resource
// that conforms to the `HasCount` interface
//
let authCountRef: auth &{HasCount} = &counter as auth &{HasCount}

// Failably downcast to reference type `&Counter`.
// This is valid, because the reference `authCountRef` is authorized
//
let counterRef3: &Counter = authCountRef as? &Counter

counterRef3.count // is `43`

counterRef3.increment()

counterRef3.count // is `44`

Imports

Programs can import declarations (types, functions, variables, etc.) from other programs.

Imports are declared using the import keyword.

It can either be followed by a location, which imports all declarations; or it can be followed by the names of the declarations that should be

imported, followed by the from keyword, and then followed by the location.

If importing a local file, the location is a string literal, and the path to the file.

🚧 Status: Imports from local files are not currently implemented.

If importing an external type in a different account, the location is an address literal, and the address of the account where the declarations are

deployed to and published.

// Import the type `Counter` from a local file.
//
import Counter from "examples/counter.cdc"

// Import the type `Counter` from an external account.
//
import Counter from 0x299F20A29311B9248F12

Accounts

Every account can be accessed through two types:

As a Public Account with the type PublicAccount , which represents the publicly available portion of an account.

struct PublicAccount {

 let address: Address

 // Storage operations

 fun getCapability(at: Path): Capability?
 fun getLinkTarget(_ path: Path): Path?
}

Any code can get the PublicAccount for an account address using the built-in getAccount function:

fun getAccount(_ address: Address): PublicAccount

As an Authorized Account with type AuthAccount , which represents the authorized portion of an account.

Access to an AuthAccount means having full access to its storage, public keys, and code.

Only signed transactions can get the AuthAccount for an account. For each script signer of the transaction, the corresponding

AuthAccount is passed to the prepare phase of the transaction.

struct AuthAccount {

 let address: Address

 // Contract code

 fun setCode(_ code: [Int])

 // Key management

 fun addPublicKey(_ publicKey: [Int])
 fun removePublicKey(_ index: Int)

 // Storage operations

 fun save<T>(_ value: T, to: Path)
 fun load<T>(from: Path): T?
 fun copy<T: AnyStruct>(from: Path): T?

 fun borrow<T: &Any>(from: Path): T?

 fun link<T: &Any>(_ newCapabilityPath: Path, target: Path): Capability?
 fun getLinkTarget(_ path: Path): Path?
 fun unlink(_ path: Path)

 fun getCapability(at: Path): Capability?
 }

Account Storage

All accounts have storage.

Objects are stored under paths in storage. Paths consist of a domain and an identifier.

Paths start with the character / , followed by the domain, the path separator / , and finally the identifier. For example, the path /storage/test
has the domain storage and the identifier test .

There are only three valid domains: storage , private , and public .

Objects in storage are always stored in the storage domain.

Both resources and structures can be stored in account storage.

Account storage is accessed through the following functions of AuthAccount . This means that any code that has access to the authorized
account has access to all its stored objects.

fun save<T>(_ value: T, to: Path) :

Saves an object to account storage. Resources are moved into storage, and structures are copied.

T is the type parameter for the object type. It can be inferred from the argument's type.

If there is already an object stored under the given path, the program aborts.

The path must be a storage path, i.e., only the domain storage is allowed.

fun load<T>(from: Path): T? :

Loads an object from account storage. If no object is stored under the given path, the function returns nil . If there is an object stored, the
stored resource or structure is moved out of storage and returned as an optional. When the function returns, the storage no longer contains

an object under the given path.

T is the type parameter for the object type. A type argument for the parameter must be provided explicitly.

The type T must be a supertype of the type of the loaded object. If it is not, the function returns nil . The given type must not necessarily
be exactly the same as the type of the loaded object.

The path must be a storage path, i.e., only the domain storage is allowed.

fun copy<T>(from: Path): T? , where T is the type parameter for the value type:

Returns a copy of a structure stored in account storage, without removing it from storage.

If no strucure is stored under the given path, the function returns nil . If there is a structure stored, it is copied. The structure stays stored in
storage after the function returns.

T is the type parameter for the structure type. A type argument for the parameter must be provided explicitly.

The type T must be a supertype of the type of the copied structure. If it is not, the function returns nil . The given type must not
necessarily be exactly the same as the type of the copied structure structure.

The path must be a storage path, i.e., only the domain storage is allowed.

// Declare a resource named `Counter`.
//
resource Counter {
 pub var count: Int

 pub init(count: Int) {
 self.count = count
 }
}

// In this example an authorized account is available through the constant `authAccount`.

// Create a new instance of the resource type `Counter`
// and save it in the storage of the account.
//
// The path `/storage/counter` is used to refer to the stored value.
// Its identifier `counter` was chosen freely and could be something else.
//
authAccount.save(<-create Counter(count: 42), to: /storage/counter)

// Run-time error: Storage already contains an object under path `/storage/counter`
//
authAccount.save(<-create Counter(count: 123), to: /storage/counter)

// Load the `Counter` resource from storage path `/storage/counter`.
//
// The new constant `counter` has the type `Counter?`, i.e., it is an optional,
// and its value is the counter resource, that was saved at the beginning
// of the example.
//
let counter <- authAccount.load<@Counter>(from: /storage/counter)

// The storage is now empty, there is no longer an object stored
// under the path `/storage/counter`.

// Load the `Counter` resource again from storage path `/storage/counter`.
//
// The new constant `counter2` has the type `Counter?` and is `nil`,
// as nothing is stored under the path `/storage/counter` anymore,
// because the previous load moved the counter out of storage.
//
let counter2 <- authAccount.load<@Counter>(from: /storage/counter)

// Create another new instance of the resource type `Counter`
// and save it in the storage of the account.
//
// The path `/storage/otherCounter` is used to refer to the stored value.
//
authAccount.save(<-create Counter(count: 123), to: /storage/otherCounter)

// Load the `Vault` resource from storage path `/storage/otherCounter`.
//
// The new constant `vault` has the type `Vault?` and its value is `nil`,
// as there is a resource with type `Counter` stored under the path,
// which is not a subtype of the requested type `Vault`.
//
let vault <- authAccount.load<@Vault>(from: /storage/otherCounter)

// The storage still stores a `Counter` resource under the path `/storage/otherCounter`.

// Save the string "Hello, World" in storage
// under the path `/storage/helloWorldMessage`.

authAccount.save("Hello, world!", to: /storage/helloWorldMessage)

// Copy the stored message from storage.
//
// After the copy, the storage still stores the string under the path.
// Unlike `load`, `copy` does not remove the object from storage.
//

let message = authAccount.copy<String>(from: /storage/helloWorldMessage)

// Create a new instance of the resource type `Vault`
// and save it in the storage of the account.
//
authAccount.save(<-createEmptyVault(), to: /storage/vault)

// Invalid: Cannot copy a resource, as this would allow arbitrary duplication.
//
let vault <- authAccount.copy<@Vault>(from: /storage/vault)

As it is convenient to work with objects in storage without having to move them out of storage, as it is necessary for resources, it is also possible t

create references to objects in storage: This is possible using the borrow function of an AuthAccount :

fun borrow<T: &Any>(from: Path): T?

Returns a reference to an object in storage without removing it from storage. If no object is stored under the given path, the function returns

nil . If there is an object stored, a reference is returned as an optional.

T is the type parameter for the object type. A type argument for the parameter must be provided explicitly. The type argument must be a

reference to any type (&Any ; Any is the supertype of all types). It must be possible top create the given reference type T for the stored /

borrowed object. If it is not, the function returns nil . The given type must not necessarily be exactly the same as the type of the borrowed
object.

The path must be a storage path, i.e., only the domain storage is allowed.

// Declare a resource interface named `HasCount`, that has a field `count`
//
resource interface HasCount {
 count: Int
}

// Declare a resource named `Counter` that conforms to `HasCount`
//
resource Counter: HasCount {
 pub var count: Int

 pub init(count: Int) {
 self.count = count
 }
}

// In this example an authorized account is available through the constant `authAccount`.

// Create a new instance of the resource type `Counter`
// and save it in the storage of the account.
//
// The path `/storage/counter` is used to refer to the stored value.
// Its identifier `counter` was chosen freely and could be something else.
//
authAccount.save(<-create Counter(count: 42), to: /storage/counter)

// Create a reference to the object stored under path `/storage/counter`,
// typed as `&Counter`.
//
// `counterRef` has type `&Counter?` and is a valid reference, i.e. non-`nil`,
// because the borrow succeeded:
//
// There is an object stored under path `/storage/counter`
// and it has type `Counter`, so it can be borrowed as `&Counter`
//
let counterRef = authAccount.borrow<&Counter>(from: /storage/counter)

counterRef?.count // is `42`

// Create a reference to the object stored under path `/storage/counter`,
// typed as `&{HasCount}`.
//
// `hasCountRef` is non-`nil`, as there is an object stored under path `/storage/counter`,
// and the stored value of type `Counter` conforms to the requested type `{HasCount}`:

// the type `Counter` implements the restricted type's restriction `HasCount`

let hasCountRef = authAccount.borrow<&{HasCount}>(from: /storage/counter)

// Create a reference to the object stored under path `/storage/counter`,
// typed as `&{SomethingElse}`.
//
// `otherRef` is `nil`, as there is an object stored under path `/storage/counter`,
// but the stored value of type `Counter` does not conform to to the requested type `{Other}`:
// the type `Counter` does not implement the restricted type's restriction `Other`

let otherRef = authAccount.borrow<&{Other}>(from: /storage/counter)

// Create a reference to the object stored under path `/storage/nonExistent`,
// typed as `&{HasCount}`.
//
// `nonExistentRef` is `nil`, as there is nothing stored under path `/storage/nonExistent`
//
let nonExistentRef = authAccount.borrow<&{HasCount}>(from: /storage/nonExistent)

Capability-based Access Control

Users will often want to make it so that specific other users or even anyone else can access certain fields and functions of a stored object. This

can be done by creating a capability.

As was mentioned before, access to stored objects is governed by the tenets of Capability Security. This means that if an account wants to be

able to access another account's stored objects, it must have a valid capability to that object.

Capabilities are identified by a path and link to a target path, not directly to an object. Capabilities are either public (any user can get access), or

private (access to/from the authorized user is necessary).

Public capabilities are created using public paths, i.e. they have the domain public . After creation they can be obtained from both authorized

accounts (AuthAccount) and public accounts (PublicAccount).

Private capabilities are created using private paths, i.e. they have the domain private . After creation they can be obtained from authorized

accounts (AuthAccount), but not from public accounts (PublicAccount).

Once a capability is created and obtained, it can be borrowed to get a reference to the stored object. When a capability is created, a type is

specified that determines as what type the capability can be borrowed. This allows exposing and hiding certain functionality of a stored object.

Capabilities are created using the link function of an authorized account (AuthAccount):

fun link<T: &Any>(_ newCapabilityPath: Path, target: Path): Capability?

newCapabilityPath is the public or private path identifiying the new capability.

target is any public, private, or storage path that leads to the object that will provide the functionality defined by this capability.

T is the type parameter for the capability type. A type argument for the parameter must be provided explicitly.

The type parameter defines how the capability can be borrowed, i.e., how the stored value can be accessed.

The link function returns nil if a link for the given capability path already exists, or the newly created capability if not.

It is not necessary for the target path to lead to a valid object; the target path could be empty, or could lead to an object which does not

provide the necessary type interface:

The link function does not check if the target path is valid/exists at the time the capability is created and does not check if the target value

conforms to the given type.

The link is latent. The target value might be stored after the link is created, and the target value might be moved out after the link has been

created.

Capabilities can be removed using the unlink function of an authorized account (AuthAccount):

fun unlink(_ path: Path) :

https://en.wikipedia.org/wiki/Capability-based_security

path is the public or private path identifying the capability that should be removed.

To get the target path for a capability, the getLinkTarget function of an authorized account (AuthAccount) can be used:

fun getLinkTarget(_ path: Path): Path?

path is the public or private path identifying the capability. The function returns the link target path, if a capability exists at the given path, o

nil if it does not.

Existing capabilities can be obtained by using the getCapability function of authorized accounts (AuthAccount) and public accounts
(PublicAccount):

fun getCapability(_ at: Path): Capability?

For public accounts, the function returns a capability if the given path is public. It is not possible to obtain private capabilities from public

accounts. If the path is private or a storage path, the function returns nil .

For authorized accounts, the function returns a capability if the given path is public or private. If the path is a storage path, the function

returns nil .

The getCapability function does not check if the target exists. The link is latent. To check if the target exists currently and could be borrowed,

the check function of the capability can be used:

fun check<T: &Any>(): Bool

T is the type parameter for the reference type. A type argument for the parameter must be provided explicitly.

The function returns true if the capability currently targets an object that satisfies the given type, i.e. could be borrowed using the given type.

Finally, the capability can be borrowed to get a reference to the stored object. This can be done using the borrow function of the capability:

fun borrow<T: &Any>(): T?

The function returns a reference to the object targeted by the capability, provided it can be borrowed using the given type.

T is the type parameter for the reference type. A type argument for the parameter must be provided explicitly.

The function returns nil if the targeted path is empty, i.e. nothing is stored under it, if the requested type exceeds what is allowed by the

capability (or any interim capabilities)

// Declare a resource interface named `HasCount`, that has a field `count`
//
resource interface HasCount {
 count: Int
}

// Declare a resource named `Counter` that conforms to `HasCount`
//
resource Counter: HasCount {
 pub var count: Int

 pub init(count: Int) {
 self.count = count
 }
}

// In this example an authorized account is available through the constant `authAccount`.

// Create a new instance of the resource type `Counter`
// and save it in the storage of the account.
//
// The path `/storage/counter` is used to refer to the stored value.
// Its identifier `counter` was chosen freely and could be something else.
//
authAccount.save(<-create Counter(count: 42), to: /storage/counter)

// Create a public capability that allows access to the stored counter object

// as the type `{HasCount}`, i.e. only the functionality of reading the field
//
authAccount.link<&{HasCount}>(/public/hasCount, target: /storage/counter)

To get the published portion of an account, the getAccount function can be used.

Imagine that the next example is from a different account as before.

// Get the public account for the address that stores the counter
//
let publicAccount = getAccount(0x42)

// Get a capability for the counter that is made publicly accessible
// through the path `/public/hasCount`
//
let countCap = publicAccount.getCapability(/public/hasCount)!

// Borrow the capability to get a reference to the stored counter.
// Use the type `&{HasCount}`, as this is the type that the capability can be borrowed as.
// See the example below for borrowing using the type `&Counter`
//
// This borrow succeeds, i.e. the result is not `nil`,
// it is a valid reference, because:
//
// 1. Dereferencing the path chain results in a stored object
// (`/public/hasCount` links to `/storage/counter`,
// and there is an object stored under `/storage/counter`)
//
// 2. The stored value is a subtype of the requested type `{HasCount}`
// (the stored object has type `Counter` which conforms to interface `HasCount`)
//
let countRef = countCap.borrow<&{HasCount}>()!

countRef.count // is `43`

// Invalid: The `increment` function is not accessible for the reference,
// because it has the type `&{HasCount}`
//
countRef.increment()

// Attempt to borrow the capability with the type `&Counter`.
// This results in `nil`, i.e. the borrow fails,
// because the capability was created/linked using the type `&{HasCount}`.
//
// The resource type `Counter` implements the resource interface `HasCount`,
// so `Counter` is a subtype of `{HasCount}`, but the capability only allows
// borrowing using unauthorized references of `{HasCount}` (`&{HasCount}`)
// instead of authorized references (`auth &{HasCount}`),
// so users of the capability are not allowed to borrow using subtypes,
// and they can't escalate the type by casting the reference either.
//
// This shows how parts of the functionality of stored objects
// can be safely exposed to other code
//
let counterRef = countCap.borrow<&Counter>()

// `counterRef` is `nil`

// Invalid: Cannot access the counter object in storage directly,
// the `borrow` function is not available for public accounts
//
let counterRef2 = publicAccount.borrow<&Counter>(/storage/counter)

Contracts

A contract in Cadence is a collection of type definitions of interfaces, structs, resources, data (its state), and code (its functions) that lives in the

contract storage area of an account in Flow. Contracts are where all composite types like structs, resources, events, and interfaces for these type

in Cadence have to be defined. Therefore, an object of one of these types cannot exist without having been defined in a deployed Cadence

contract.

Contracts can be created, updated, and deleted using the setCode function of accounts. Contract creation is also possible when creating

accounts, i.e. when using the Account constructor. This functionality is covered in the next section

Contracts are types. They are similar to composite types, but are stored differently than structs or resources and cannot be used as values,

copied, or moved like resources or structs.

Contract stay in an account's contract storage area and can only be updated or deleted by the account owner with special commands.

Contracts are declared using the contract keyword. The keyword is followed by the name of the contract.

pub contract SomeContract {
 // ...
}

Contracts cannot be nested in each other.

pub contract Invalid {

 // Invalid: Contracts cannot be nested in any other type.
 //
 pub contract Nested {
 // ...
 }
}

One of the simplest forms of a contract would just be one with a state field,
a function, and an `init` function that initializes the field:

```cadence,file=contract-hello.cdc
// HelloWorldResource.cdc

pub contract HelloWorld {

    // Declare a stored state field in HelloWorld
    //
    pub let greeting: String

    // Declare a function that can be called by anyone
    // who imports the contract
    //
    pub fun hello(): String {
        return self.greeting
    }

    init() {
        self.greeting = "Hello World!"
    }
}

This contract could be deployed to an account and live permanently in the contract storage. Transactions and other contracts can interact with

contracts by importing them at the beginning of a transaction or contract definition.

Anyone could call the above contract's hello  function by importing the contract from the account it was deployed to and using the imported

object to call the hello function.

import HelloWorld from 0x42

// Invalid: The contract does not know where hello comes from
//
log(hello())        // Error

// Valid: Using the imported contract object to call the hello
// function
//
log(HelloWorld.hello())    // prints "Hello World!"



// Valid: Using the imported contract object to read the greeting
// field.
log(HelloWorld.greeting)   // prints "Hello World!"

// Invalid: Cannot call the init function after the contract has been created.
//
HelloWorld.init()    // Error

There can be any number of contracts per account and they can include an arbitrary amount of data. This means that a contract can have any

number of fields, functions, and type definitions, but they have to be in the contract and not another top-level definition.

// Invalid: Top-level declarations are restricted to only be contracts
//          or contract interfaces. Therefore, all of these would be invalid
//          if they were deployed to the account contract storage and
//          the deployment would be rejected.
//
pub resource Vault {}
pub struct Hat {}
pub fun helloWorld(): String {}
let num: Int

Another important feature of contracts is that instances of resources and events that are declared in contracts can only be created/emitted within

functions or types that are declared in the same contract.

It is not possible create instances of resources and events outside the contract.

The contract below defines a resource interface Receiver  and a resource Vault  that implements that interface. The way this example is

written, there is no way to create this resource, so it would not be usable.

// Valid
pub contract FungibleToken {

    pub resource interface Receiver {

        pub balance: Int

        pub fun deposit(from: @Receiver) {
            pre {
                from.balance > 0:
                    "Deposit balance needs to be positive!"
            }
            post {
                self.balance == before(self.balance) + before(from.balance):
                    "Incorrect amount removed"
            }
        }
    }

    pub resource Vault: Receiver {

        // keeps track of the total balance of the accounts tokens
        pub var balance: Int

        init(balance: Int) {
            self.balance = balance
        }

        // withdraw subtracts amount from the vaults balance and
        // returns a vault object with the subtracted balance
        pub fun withdraw(amount: Int): @Vault {
            self.balance = self.balance - amount
            return <-create Vault(balance: amount)
        }

        // deposit takes a vault object as a parameter and adds
        // its balance to the balance of the Account's vault, then
        // destroys the sent vault because its balance has been consumed
        pub fun deposit(from: @Receiver) {



            self.balance = self.balance + from.balance
            destroy from
        }
    }
}

If a user tried to run a transaction that created an instance of the Vault  type, the type checker would not allow it because only code in the

FungibleToken  contract can create new Vault s.

import FungibleToken from 0x42

// Invalid: Cannot create an instance of the `Vault` type outside
// of the contract that defines `Vault`
//
let newVault <- create FungibleToken.Vault(balance: 10)

The contract would have to either define a function that creates new Vault  instances or use its init  function to create an instance and store it

in the owner's account storage.

This brings up another key feature of contracts in Cadence. Contracts can interact with its account's storage  and published  objects to store

resources, structs, and references. They do so by using the special self.account  object that is only accessible within the contract.

Imagine that these were declared in the above FungibleToken  contract.

    pub fun createVault(initialBalance: Int): @Vault {
        return <-create Vault(balance: initialBalance)
    }

    init(balance: Int) {
        let vault <- create Vault(balance: 1000)
        self.account.save(<-vault, to: /storage/initialVault)
    }

Now, any account could call the createVault  function declared in the contract to create a Vault  object. Or the owner could call the withdraw
function on their own Vault  to send new vaults to others.

import FungibleToken from 0x42

// Valid: Create an instance of the `Vault` type by calling the contract's
// `createVault` function.
//
let newVault <- create FungibleToken.createVault(initialBalance: 10)

Contracts have the implicit field let account: Account , which is the account in which the contract is deployed too. This gives the contract the
ability to e.g. read and write to the account's storage.

Deploying and Updating Contracts

In order for a contract to be used in Cadence, it needs to be deployed to an account.

Contract can be deployed to an account using the setCode  function of the Account  type: setCode(_ code: [UInt8], ...) . The function's
code  parameter is the byte representation of the source code. Additional arguments are passed to the initializer of the contract.

For example, assuming the following contract code should be deployed:

contract Test {
    let message: String

    init(message: String) {



        self.message = message
    }
}

The contract can be deployed as follows:

let signer: Account = ...
signer.setCode(
    [0x63, 0x6f, 0x6e, 0x74, 0x72, 0x61/*, ... */],
    message: "I'm a new contract in an existing account"
)

The contract can also be deployed when creating an account by using the Account  constructor.

let newAccount = Account(
    publicKeys: [],
    code: [0x63, 0x6f, 0x6e, 0x74, 0x72, 0x61/*, ... */],
    message: "I'm a new contract in a new account"
)

Contract Interfaces

Like composite types, contracts can have interfaces that specify rules about their behavior, their types, and the behavior of their types.

Contract interfaces have to be declared globally. Declarations cannot be nested in other types.

If a contract interface declares a concrete type, implementations of it must also declare the same concrete type conforming to the type

requirement.

If a contract interface declares an interface type, the implementing contract does not have to also define that interface. They can refer to that

nested interface by saying {ContractInterfaceName}.{NestedInterfaceName}

// Declare a contract interface that declares an interface and a resource
// that needs to implement that interface in the contract implementation.
//
pub contract interface InterfaceExample {

    // Implementations do not need to declare this
    // They refer to it as InterfaceExample.NestedInterface
    //
    pub resource interface NestedInterface {}

    // Implementations must declare this type
    //
    pub resource Composite: NestedInterface {}
}

pub contract ExampleContract: InterfaceExample {

    // The contract doesn't need to redeclare the `NestedInterface` interface
    // because it is already declared in the contract interface

    // The resource has to refer to the resrouce interface using the name
    // of the contract interface to access it
    //
    pub resource Composite: InterfaceExample.NestedInterface {
    }
}

Events

Events are special values that can be emitted during the execution of a program.

An event type can be declared with the event  keyword.



event FooEvent(x: Int, y: Int)

The syntax of an event declaration is similar to that of a function declaration; events contain named parameters, each of which has an optional

argument label. Types that can be in event definitions are restricted to booleans, strings, integer, and arrays or dictionaries of these types.

Events can only be declared within a contract body. Events cannot be declared globally or within resource or struct types.

Resource argument types are not allowed because when a resource is used as an argument, it is moved. A piece of code would not want to move

a resource to emit an event, so it is not allowed as a parameter.

// Invalid: An event cannot be declared globally
//
event GlobalEvent(field: Int)

pub contract Events {
    // Event with explicit argument labels
    //
    event BarEvent(labelA fieldA: Int, labelB fieldB: Int)

    // Invalid: A resource type is not allowed to be used
    // because it would be moved and lost
    //
    event ResourceEvent(resourceField: @Vault)
}

Emitting events

To emit an event from a program, use the emit  statement:

pub contract Events {
    event FooEvent(x: Int, y: Int)

    // Event with argument labels
    event BarEvent(labelA fieldA: Int, labelB fieldB: Int)

    fun events() {
        emit FooEvent(x: 1, y: 2)

        // Emit event with explicit argument labels
        // Note that the emitted event will only contain the field names,
        // not the argument labels used at the invocation site.
        emit FooEvent(labelA: 1, labelB: 2)
    }
}

Emitting events has the following restrictions:

Events can only be invoked in an emit  statement.

This means events cannot be assigned to variables or used as function parameters.

Events can only be emitted from the location in which they are declared.

Transactions

Transactions are objects that are signed by one or more accounts and are sent to the chain to interact with it.

Transactions are structured as such:

First, the transaction can import any number of types from external accounts using the import syntax.

import FungibleToken from 0x01



The body is declared using the transaction  keyword and its contents are contained in curly braces.

Next is the body of the transaction, which first contains local variable declarations that are valid throughout the whole of the transaction.

transaction {
    // transaction contents
    let localVar: Int

    ...
}

then three optional main phases: Preparation, execution, and postconditions, only in that order. Each phase is a block of code that executes

sequentially.

The prepare phase (declared using the prepare  keyword) acts like the initializer in a composite type, i.e., it has to initialize the local fields of

the transaction that can then be used in the execution phase.

The prepare phase also has access to the authorized account objects ( AuthAccount ) of the accounts that signed it. These authorized
account objects have to be declared as parameters to the prepare phase, one for each signer of the transaction:

// There needs to be exactly as many `AuthAccount`-typed parameters
// as there are signers for the transaction.
// In this case, there would be two signers

prepare(signer1: AuthAccount, signer2: AuthAccount) {
    // ...
}

AuthAccount  objects have the permissions to read from and write to the private storage of the account, which cannot be directly accessed

anywhere else.

The execute phase (declared using the execute  keyword) is where interaction with other accounts and contracts should usually happen.

This usually involves interacting with contracts with public types and functions, calling functions using references to other accounts' objects,

and performing specific computation on these values.

This phase does not have access to any signer's authorized account object and can only access public contract fields and functions, public

account objects ( PublicAccount ) using the built-in getAccount  function, and any local transaction variables that were initialized in the

prepare  block.

  execute {
      // Invalid: Cannot access the authorized account object,
      // as `account1` is not in scope

      let resource <- account1.load<@Resource>(from: /storage/resource)
      destroy resource

      // Valid: Can access any account's public Account object

      let publicAccount = getAccount(0x03)
}

The postcondition phase (declared using the post  keyword) is where the transaction can check that its functionality was executed

correctly with specific condition checks.

If any of the condition checks result in false , the transaction will fail and be completely reverted.

Only condition checks are allowed in this section. No actual computation or modification of values is allowed.

  post {
      result.balance == 30: "Balance after transaction is incorrect!"
  }



// Optional: Importing external types from other accounts using `import`.
import HelloWorld from 0x01

transaction {

    // Optional: type declarations and fields, which must be initialized in `prepare`.

    // The prepare phase needs to have as many account parameters
    // as there are signers for the transaction.
    //
    prepare(signer1: AuthAccount) {
        // ...
    }

    execute {
        // ...
    }

    post {
        // ...
    }
}

Importing and using Deployed Contract Code

Deploying contract code to an account was covered in the Deploying and Updating Contracts section of the spec.

Once a contract or contract interface has been deployed to an account, anybody can import the type from the account where it was deployed to

and use it in their contracts or transactions.

Again, the type must be deployed to the account where it is being imported from.

Once code is deployed, it can be used in other code and in transactions.

Built-in Functions

Block and Transaction Information

To get the addresses of the signers of a transaction, use the address  field of each signing AuthAccount  that is passed to the transaction's

prepare  block.

There is currently no built-in function that allows getting the current block number, or timestamp. These are being worked on.

panic

fun panic(_ message: String): Never

Terminates the program unconditionally and reports a message which explains why the unrecoverable error occurred.

Example

let optionalAccount: Account? = // ...
let account = optionalAccount ?? panic("missing account")

assert

fun assert(_ condition: Bool, message: String)



Terminates the program if the given condition is false, and reports a message which explains how the condition is false. Use this function for

internal sanity checks.

The message argument is optional.


