
We use gravitational lensing of fast radio bursts (FRB) to try to constrain primordial black 
hole dark matter with the latest CHIME catalog and make a forecast for future results.
• Using the intrinsic burst width and a calibrated flux-ratio threshold per FRB. 
• Taking into account the uncertainty in dispersion measure and redshift relation.
• We outline an algorithm to detect lensed FRBs and to validate the possibility of detection.
• We demonstrate how stacking repeating FRBs can improve the 

constraints, especially for lower  masses.
• We Identified one FRB with a double peak as a candidate for 

strong  gravitational lensing.
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Introduction
FRBs are bursts of millisecond duration in radio frequencies. 
As the light interacts with charged particles as it propagates 
through the universe, the more energetic photons can push 
through the free electrons with little effect on their speed. 
This results in dispersion of the burst as seen in the figure to 
the Right [1]. Since the dispersion measure (DM) is 
proportional to the distance traveled, it can be used to 
estimate that distance and the redshift of the source 𝑧𝑆. We 
use the Macquart relation [2] to estimate 𝑧𝑆 from the dispersion
measure while taking into account the uncertainty in their relation.
We model the DM as consisting of:

𝐷𝑀 = 𝐷𝑀𝑀𝑊 + 𝐷𝑀𝐸𝐺

Where 𝐷𝑀𝑀𝑊 is the total Milky-Way contribution and the extra-galactic DM contribution is

𝐷𝑀𝐸𝐺 = 𝐷𝑀𝑐𝑜𝑠𝑚𝑖𝑐 +
𝐷𝑀ℎ𝑜𝑠𝑡 +𝐷𝑀𝑠𝑟𝑐

1 + 𝑧
𝐷𝑀𝑐𝑜𝑠𝑚𝑖𝑐 is the contribution of the intergalactic medium (IGM), and 𝐷𝑀ℎ𝑜𝑠𝑡 and 𝐷𝑀𝑠𝑟𝑐

result from the FRB host galaxy and source environment.

The probability that an FRB is lensed is approximately the lensing optical depth.
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Where 𝜒 𝑧 is the comoving distance at redshift 𝑧 and 𝑛𝐿 is the comoving number density of 
the lens. 𝜎(𝑀𝐿, 𝑧𝐿) is the effective cross section for lensing, it is an anulus defined by two 
requirements:
• The first is that the two images are completely separated, for this we require that the 

separation is greater than the width of the FRB. This gives us the minimal normalized 
impact parameter for lensing 𝑦𝑚𝑖𝑛. 

• The second is that the second image is strong enough to detect, this gives a maximal flux 
ratio between the two images 𝑅𝑓, we find it through our algorithm by simulating the 

bursts as lensed and finding the maximal 𝑅𝑓 that enables detecting the lensing, ത𝑅𝑓. From 

this we get the maximal normalized impact parameter for lensing 𝑦𝑚𝑎𝑥.

Summing over every source’s lensing optical depth gives the total optical depth of a lens with 
mass 𝑀𝐿, ҧ𝜏 𝑀𝐿 . 

ҧ𝜏(𝑀𝐿) =෍
𝑖
𝜏(𝑧𝑆,𝑖 , 𝑀𝐿, 𝑤𝑖 , ത𝑅𝑓,𝑖)

The sum is over all FRBs that pass our validation process and their optical depths are a 
function of their redshift, lens mass, intrinsic width and ത𝑅𝑓 that we find for each FRB.

If none of the events are lensed the bound we can place on the fraction 𝑓𝐷𝑀 of dark matter 

allowed in the form of PBHs is 𝑓𝐷𝑀 < 1/ ҧ𝜏.

Repeaters
For repeating FRBs we can stack their 𝑁 repetitions, so 
that the signal gets magnified by a factor of 𝑁, while the 

noise only gets magnified by a factor of 𝑁, therefore 

allowing to increase ത𝑅𝑓by a factor of 𝑁 and improve 
the sensitivity to strong lensing by PBHs. This relies on 
two assumptions: (i) one and all FRB repetitions are 
lensed by the intervening PBH; (ii) a meaningful fraction
of the repetitions have small intrinsic widths so that they 
can be efficiently stacked together. 
This figure shows 𝑓𝐷𝑀 for: 1000 non-repeating events (blue), 100 events that repeat 10 times 
(orange). We simplified and assumed all FRBs can be detected as lensed with 𝑅𝑓 = 5, in 

reality this is not the case. The full details of these calculations can be found in our paper. 
The dashed line is 30𝑀⊙, as you can see, fewer repeating events can constrain 𝑓𝐷𝑀 in low 
masses where many non-repeating events fail to give a constraint. 

Results
We focus on the range 10 − 100𝑀⊙ as it is motivated by 
LIGO and as there already are sufficient constraints above
100𝑀⊙.
We first make two gross cuts to the CHIME FRB data. 
We filter out FRBs with widths ≥ 6ms which are too 
wide to constrain PBHs in the desired mass range, and 
FRBs with 𝑆𝑁𝑅 < 25 as the noise in these FRBs is simply 
too large to allow a detection of a lensed echo.
This cut leaves us with only 143 FRBs to be validated using the
process described above. The 114 FRBs that pass our validation process are shown in the 
figure above with their width, SNR and ത𝑅𝑓.  

Lensing candidate 
We found two candidates for lensing 
and were able to rule one out due to 
different peak structure. The second
candidate is FRB20190627B, here are
Its light curve and autocorrelation. 
This double burst could be explained 
via strong lensing by a  𝒪(10𝑀⊙) PBH.

Forecast
With 1 FRB at most being lensed the 114 FRBs 
that pass the validation process are not enough 
to place a bound on 𝑓𝐷𝑀, as you can see in this
figure, it results in 𝑓𝐷𝑀 > 1 (red).
However with only three times the current data
we can constrain 𝑓𝐷𝑀 even at low masses 
(blue). The dashed line at 30𝑀⊙ is shown for 
orientation.
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Algorithm

Before ruling out FRBs as lensed, we want to see for what ത𝑅𝑓
they can be detected es lensed if they can indeed be detected.
To do this, we simulate the events as lensed with different 𝑅𝑓
and find the maximal one that allows detection. 
The lensing detection is done through autocorrelation.
First we define a threshold based on the autocorrelation of
unlensed burst. For the unlesed burst we take the burst 
(highlighted in orange in the Fig. 1) and its preceding
section of noise where we can be sure there is no echo from 
lensing. We then flip it to place the burst in the beginning 
(Fig. 2) and calculate its autocorrelation. Image 3 shows this autocorrelation. The beginning 
of the autocorrelation is high because of the burst overlapping with itself, we discard this 
part and only use the rest (the shaded part of Fig. 3) to calculate the mean 𝜇 and the 
standard deviation 𝜎 of the autocorrelation. We set the threshold at 𝜇 + 2.325𝜎
(corresponding to a detection of an outliner at 99%− 𝐶. 𝐿).
To simulate the lensing add the echo as follows: we subtract the mean of the noise from the 
burst, divide it by 𝑅𝑓 and shift it forward in time enough to ensure a full separation between 

the burst and the echo. The lensed signal is shown in Fig. 4 with the echo highlighted in 
orange. Fig. 5 shows the autocorrelations of the FRB in three cases: lensed with 𝑅𝑓 = 5, 

lensed with 𝑅𝑓 = 10, and unlensed. For an FRB to be considered valid at a certain 𝑅𝑓 we 

require the autocorrelation to pass the threshold (blue line in Fig.5) in the place we added 
the echo. 
An FRB is considered as a candidate for lensing if the autocorrelation of the original signal 
passes the threshold past the dashed line. This line marks the beginning of the lensing 
search, to its left the autocorrelation is high due to the burst overlapping with itself.
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