

Loss Cone Shielding

Odelia Teboul¹ (odelia.teboul1@mail.huji.ac.il), Nicholas C. Stone¹, Jeremiah P. Ostriker² ¹The Hebrew University of Jerusalem, ²Columbia University

Abstract

close

star

of

test

- Observed TDE rates: $\Gamma obs \sim 10^{-5} 10^{-4} / gal / yr$, (Holoien 16, van Velzen 18)
- Theoretically predicted rates: Γ theory ~ 10⁻³ 10⁻⁴ / gal / yr, (Merrit & Wang 04)
- E+A galaxies : are overrepresented by a factor of 22 (Hammerstein 21)
- **Observed rates for non E+A galaxies in higher tension with theoretical rate**

Introduction

- Radius of influence, total mass of the stars is equal to the massive black hole mass MBH, for a $10^6 M_{\odot}$ radius of influence ~ 1 pc
- Density cusp : $\rho \propto r^{-\gamma}$ will develop with
- Weak segragation: $\gamma_{\star} \approx 1.3 1.5$, $\gamma_{bh} = 1.75 2$ (e.g Bahcall & Wolf 77, Preto 10)
- Strong segregation: heavier objects settle to $\gamma_{bh} = 2-11/4$ (Alexander & Hopman)

Radius of influence: densest environments of the universe

- Most TDEs come from within the radius of influence, the densest environments of the universe
- Hence, rare close encounters: collisions, tidal captures and micro-TDEs are more common
- We analytically derive their rates and present some of them in rate of close encounters

arXiv:2211.05858

Classical loss cone theory

Classical Loss cone theory: two-body relaxation theory with weak deflections, slow evolution

Orbit-averaged Fokker-Planck $\frac{\partial f}{\partial \tau} = \frac{1}{4j} \frac{\partial}{\partial j} \left(j \frac{\partial f}{\partial j} \right)$

where $j \equiv J/J_c(\epsilon)$ is a dimensionless angular momentum variable and $\tau \equiv \mu(\epsilon)t \approx t/t_r$ is a dimensionless time, with $\mu(\varepsilon)$ the orbit-averaged diffusion coefficients

Rate of close encounters

Dominant mechanism at radius of influence: *strong scattering*

• Strong scattering: A scattering where the velocity of the star after the interaction is larger than the escape velocity at this radius

Revised loss cone theory

Revised Loss cone theory: two-body relaxation theory *and close encounters*: collisions, tidal captures and micro-TDEs **Orbit-averaged Fokker-Planck with sink term**

 $\frac{\partial f}{\partial \tau} = \frac{1}{4j} \frac{\partial}{\partial j} \left(j \frac{\partial f}{\partial j} \right) - \frac{\langle \dot{N}_{\rm ej} \rangle}{\mu(\epsilon)} f$

with $\langle N_{ej} \rangle$ the orbit-averaged rate of close encounters

Analytical solution of Fokker-Planck equation with sink term

Impact on TDE rate

Tidal disruption rates N_{TDE} measured in units of stars per year with (colored curves) and without (black curve) strong scattering. Results are plotted against MBH mass M., with the following parameters: $m_{\star} = 1M_{\odot}$, $\gamma_{\star} = 3/2$, $m_{bh} = 30M_{\odot}$ and different sBH density profile slopes: in particular, we show $\gamma_{bh} = 2$, $\gamma_{bh} = 9/4$, and $\gamma_{bh} = 5/2$ as green, blue, and orange curves,

Evolution of the distribution function $f(j;\varepsilon)$ as a function of the dimensionless angular momentum j at fixed energy ε , at dimensionless time, $\tau = 0.1$ for different slopes of the black holes. Here $\gamma_{\star} = 3/2$, the stellar mass black holes have a mass m = 30M_{\odot}, and different colors correspond to different sBH slopes γ_{bh} (see labels in figure). The dashed curves show numerical solutions of the 1D Fokker-Planck equation and solid lines show the approximate analytic solution obtained from the method of Frobenius

E+A preference

Why do TDEs prefer E+A galaxies?

One of the favorite explanation: a very steep stellar profile -> *less likely with* strong scattering

Conclusions

Rates of TDEs with strong scattering divided by the rates of TDEs without strong scattering, shown as a function of the MBH mass. Green lines are for $\gamma_{\star} = 9/4$, purple lines for $\gamma_{\star} = 5/2$. Full lines are at t = 10 Myr (15 Myr for $\gamma_{\star} = 9/4$), dashed lines are at t =100 Myr (150 Myr for $\gamma_{\star} = 9/4$), at those early times a very steep star power law has not yet relaxed to a broken power law configuration

Future works and Acknowledgements

- Impact on TDE rates of "less strong" strong scattering
- Funding: O.T. acknowledges support from the Einstein-Kaye Scholarship and the Ministry of Science