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Abstract
The “no-hair” theorem can, in principle, be tested at the center of the Milky
Way by measuring the spin and the quadrupole moment of Sgr A∗ with the
orbital precession of S-stars, measured over their full periods. Contrary to
the original method, we show why it is possible to test the no-hair theorem
using observations from only a single star, by measuring precession angles
over a half-orbit. There are observational and theoretical reasons to expect
S-stars to spin rapidly, and we have quantified the effect of stellar spin, via
spin-curvature coupling (the leading-order manifestation of the Mathisson-
Papapetrou-Dixon equations), on future quadrupole measurements. We
find that they will typically suffer from errors of order a few percentage
points, but for some orbital parameters, the error can be much higher. We
re-examine the more general problem of astrophysical noise sources that
may impede future quadrupole measurements, and find that a judicious
choice of measurable precession angles can often eliminate individual noise
sources. We have derived optimal combinations of observables to eliminate
the large noise source of mass precession, the novel noise of spin-curvature
coupling due to stellar spin, and the more complicated noise source arising
from transient quadrupole moments in the stellar potential.

Shifts and Half-Shifts
To test the no-hair theorem, we need to determine five parameters: the
mass of the black hole M•, the magnitude and two angles of its spin J•,
and the value of its quadrupole moment Q2•, and then verify or refute the
relation Q2• = − 1

c
J2
•

M•
[3, 4]. Using measurements of the S2 orbital period,

observers have already constrained the mass of Sgr A∗. Using orbital per-
turbation theory, we can calculate the precessions per orbit of a star’s Euler
angles (δϖ, δΩ and δi). We call these per-orbit precessions “full-shifts”.
Measuring the full-shifts of the ascending node and the inclination of two
S-stars orbits would allow us to calculate the four remaining parameters
J• and Q2• needed to test the no-hair theorem [1]. In this approach, two
stars are needed because there is not enough information in the full-shifts
of a single star.
However, there is more information contained in the relativistic orbital
motion that is hidden by a full orbit average. Specifically, we can use the
precession completed after a half-orbit (the “half-shifts”), which in some
cases are non-degenerate with the full-shifts. Combining the half-shifts
with the full-shifts we will have enough independent equations to calcu-
late the SMBH spin and quadrupole moment, to test the no-hair theorem
without the need for a second star.

Sources of Noise
Stellar Perturbations: Previous studies [2] showed that the presence of
other stars in the cluster around the SMBH can induce orbital precession at
the same order of magnitude as relativistic effects. To a first-order approxi-
mation, the stellar distribution can be approximated as a smooth spherical
cluster, which causes apsidal precession. Non-spherically symmetric per-
turbations, such as vector resonant relaxation (VRR), can also create a
source of error by changing the orientation of the orbital planes. The stel-
lar potential’s quadrupole, the lowest order aspherical contribution in the
multipole expansion, dominates over higher multipole moments. There-
fore, we only considered the leading-order multipole moment.
Spin-Curvature Coupling (MPD Effect): There is substantial direct
evidence that S-stars spin rapidly [7]. The spin of a test particle in a gravi-
tational field will cause deviations from geodesic motion. Those deviations
would add a new source of noise to the orbital precession measurements.
In Fig. 1 we notice that MPD effects due to the star’s spin are almost
always subdominant to precession from the SMBH quadrupole moment,
although spin-curvature coupling may set a noise floor of ∼ 1 − 10% in
future no-hair tests.
Tidal Force At very small pericenters, tidal interactions between the
SMBH and the star can cause a level of precession that overwhelms the
higher order GR shifts we are interested in. We show in Fig. 1 that tides
are highly subdominant in the radii of current interest.
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Sources of Noise (continued)
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Figure 1: Full-shifts plotted against the dimensionless pericenter distance, with different
effects color-coded. Top: The full-shift of the argument of the pericenter. Bottom: The
full-shift of the longitude of the ascending node.

Minimizing the Errors
By careful algebraic calculations, we can tailor combinations of full- and
half-shifts that by design will completely eliminate individual astrophysical
noise sources. In Fig. 2 we show the percentage errors in the calculation
of Q2• estimation for three combinations of astrophysical noise, and five
different combinations of observables:
1. The original method [1] using the full-shifts of two stars (δΩ and δi).
2. Using three full shifts (δϖ, δΩ and δi) and the nodal half-shift (δΩ 1

2
)

for a single star.
3. Using three full shifts (δϖ, δΩ and δi) and the half-shift of the pericenter
(δϖ 1

2
) for a single star.

4. Using two full shifts (δΩ and δi), the nodal half-shift (δΩ 1
2
), and the

subtraction δϖsub ≡ δϖ − 2δϖ 1
2
, for a single star.

5. Using shifts and half-shifts of two stars, in such a way as to remove the
stellar quadrupole and mass precession noise.
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a1). S2: MPD effect

(Most idealized)

b1). S4714: MPD effect

(Most idealized)

a2). S2: MPD effect + mass-precession

(More realistic)
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a3). S2: MPD effect + mass-precession + stellar quadrupole

(Most realistic)

b3). S4714: MPD effect + mass-precession + stellar quadrupole
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Figure 2: Histograms showing relative errors in the quadrupole measurements due to
top: MPD effects, middle: MPD effects and mass precession, and bottom: MPD effects,
mass precession and a stellar quadrupole moment, for left: S2-like orbit, and right:
S4714-like orbit [8].


