Feedback Dominated Accretion Flows

Shmuel Gilbaum, Nicholas C. Stone

shmuel.gilbaum@mail.huji.ac.il

Feedback from black holes in AGN accretion disks, may solve self consistancy issues with previous models and explain BBH merger population.

Shakura & Sunyaev (1973)

Model - Angular momentum exchange via local turbulence. Thermal stability - any heat gained from viscous interactions is radiated away.

Main issues with AGN scale disks:

- The outer region of the disk is unstable to density pertubations (Toomre parameter $Q_T < 1$).
- Viscous timescales are too long.

H is the scaleheight of the disk.

Sirko & Goodman (2003) Thompson et al. (2005)

Model - Stars are forming due to fragmentation of the disk. The feedback from the stars (SNe³ and winds) heats the disk and stabilizes it $(Q_T = 1)$

Main issues with this model:

- SNe are temporally and spatially discrete events, and might not heat the disk evenly.
- Neglects to consider the feedback from the black hole remnants of the SNe.

Main Attributes of our model:

- A combined regime, CMFI at small radii and pileup at large radii.
- A large number of embedded compact objects in the disk.
- Thicker disk large scale height of the disk
- Shorter viscous timescales.
- Mass growth of black holes beyond the mass gap.
- Mass growth of neutron stars which might collapse into black holes.

60

Mass (M_{\odot})

40

100

Gilbaum & Stone (2022)

If stars are formed in the disk \Rightarrow stellar mass black holes are formed. Black holes embedded in gas will accrete gas and in retun will heat the surrounding gas via radition:

$$L_{\bullet} = \eta c^2 \times \min\left(\dot{m}_{\mathrm{RBH}}, \dot{m}_{\mathrm{Edd}}\right)$$

 η is an efficiency prefactor and c is the speed of light $\dot{m}_{\rm RBH}, \dot{m}_{\rm Edd}$ - Are the Bondi-Hoyle-Lyttleton and Eddington accretion rates respectively.

With enough black hole we can define a number surface density of BHs - S_{\bullet} . Thus the total heating per unit area from accretion feedback is:

 $P = \frac{k_B}{\mu m_p} \rho T_c + \frac{\tau \sigma}{2c} T_c^4 \left(\frac{3}{8} \tau + \frac{1}{2} + \frac{1}{4\tau} \right)^{-1}$ $\nu = \alpha c_s H$

$$u = \alpha c_s H$$

$$\nu \Sigma = \frac{\dot{M}}{3\pi} \left(1 - \left[\frac{R_0}{R} \right]^{1/2} \right)$$

$$Q_T = 1 \quad \mathfrak{M}_{\varphi} > 1$$

 $\Sigma = 2\rho H$

Black hole numbers in our model compared to nuclear cluster

20

- 2 Binary Black Holes
- 3 Supernovae

0.0

* Toomre instability parameter, if $Q_T < 1$ gas is unstable to density perturbations and potentially stars may form.

Pressure ratio

