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Goal: Training an any-to-any vision foundation 
model

• Scaled in terms of number and format of 

modalities and tasks, model & dataset size

We perceive the world through modalities:

• Each provides a distinct view  

of the same physical reality

• Combined, they allow us to  

better understand our world

• Enables cross-modal learning  

as a form of (self) supervision

• Helps with developing more  

“grounded” models
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Any-to-any model
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Caption input: a metallic blue sphere to the left of a yellow box made of felt Caption input: a blue semi-truck and its trailer jumping over a row of motorcycles

Caption input: a black background with a large yellow circle and a small red square Caption input: a green pepper to the left of a red pepper
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Improved text understanding capabilities
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Motivation Overview of modalities Model

Multimodal generation & retrieval capabilities

• Fine-grained & controllable multimodal generation & retrieval

• Strong out-of-the-box (zero-shot) performance


1. Pseudo labeling

2. Modality-specific tokenization

3. Masked pre-training

🌐 4m.epfl.ch 
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Out-of-the-box capabilities

ViT
encoder VQ Diffusion

decoder

Spatial discrete VAE with diffusion decoder: RGB, normal, depth, edges

VQ-VAE quantization loss

Reconstruction loss

Noised image

ViT decoder

Spatial discrete VAE: Segmentation, CLIP, DINOv2, ImageBind, SAM inst.

MLP
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MLP discrete VAE: Human poses, DINOv2 & ImageBind global tokens

1 2 3 WordPiece WordPiece

Sequence tokenizer: Text, bounding boxes, metadata, color palette
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• Unifies representation space for scalable training

• Different modalities require different strategies

• Transfer well to downstream tasks (unimodal, multimodal)

• Maintains the performance of 4M-7 while solving 3x more tasks


http://4m.epf.ch

