
Models trained using 4M can:

• Perform a wide range of vision tasks out of the box

• Transfer well to unseen tasks and modalities  
• Function as flexible and steerable multimodal 

generative models
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4M: Massively Multimodal Masked Modeling

Motivation

2023

4M: A framework for training versatile multimodal models

Approach

Analysis & comparisons

Method Pre-training 
data

IN-1K 
Classif.

COCO 
Det. / Inst. Seg.

ADE20K  
Sem. Seg.

NYUv2 
Depth

T1 Acc. ↑ APbox ↑ APmask ↑ mIoU ↑ δ1 ↑

MAE B IN-1K 84.2 48.3 41.6 46.1 89.1
DeiT III B IN-21K 85.4 46.1 38.5 49.0 87.4
MultiMAE B IN-1K 84.0 44.1 37.8 46.2 89.0
4M-B CC12M 84.5 49.7 42.7 50.1 92.0
MAE L IN-1K 86.8 52.8 45.3 51.8 93.6
DEiT III L IN-21K 87.0 48.7 41.1 52.0 89.6
4M-L CC12M 86.6 53.7 46.4 53.4 94.4

Training framework: 
1. Pseudo labeling: Start from image-text pairs, then 

use specialized networks to generate an aligned 
multimodal dataset 

2. Tokenization: Unify the representation space by 
mapping all modalities into sets or sequences of 
discrete tokens = cross-entropy loss for everything


3. Multimodal masked pre-training: Train a single 
Transformer to predict a randomly selected subset of 
tokens, sampled from all modalities, from another 
random subset of tokens

At inference: Iteratively predict & sample tokens

Generation scheme depends on the modality (MaskGIT 
for 2D/images, autoregressive for sequences)

Summary

Anything in, anything out

Token-to-token transfer benchmark: Ablation of key 
design parameters by transferring to 25 different single-
modal & multimodal downstream tasks

Key findings:

• More diverse sets of 4M pre-training tasks improve 

transfer performance

• Masking strategy matters: Multimodal masking over the 

inputs & targets improves efficiency and performance

• Promising scaling trends in terms of dataset size, 

training length, and model size

RGB → X transfers:  
• 4M models also support pixel inputs (not just tokens)

• Can be used as ViT backbones & significantly 

outperform MAE and MultiMAE on standard vision tasks• 4M leads to models capable of generating any modality conditioned on any other(s)  
• Chained generation leads to self-consistent predictions

4M: a framework for training any-to-any multimodal 
foundation models

• Relies on tokenization & masking to scale to many 

diverse modalities

Goal: A training framework for 
multimodal foundation models

• Scalable in terms of number  

of modalities & tasks, model  
size, and dataset size


• Anything in, anything out (any-to-any)
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We perceive the world through various modalities:

• Each provides a distinct view  

of the same physical reality

• Combined, they allow us to  

better understand our world
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Caption:
an oil painting
of a blue flower

4M

Transfers to unseen modalities/tasks,
e.g. 2D edges→ 3D curvature

Multimodal transfers, e.g.
RGB + depth→ semantic

... transfer well to unseen tasks and modalities

... be easily fine-tuned into specialist variants

Super-
resolution
specialist

4M

Text-to-
image

specialist
4M

... perform a diverse set of vision tasks out of the box

A generalist vision model that can... A multimodal generative model that can...

RGB Surface
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Object

detection Captioning

Bounding boxes & caption→
RGB

Caption (strong) & depth (weak) → RGB

Segmentation→
depth & normals Normals / CLIP→ RGB

... generate any modalities conditioned on any other(s) ...

... with varying conditioning weights and from partial inputs ...

Original image Edit RGB and add caption Edited image

... enabling precise user control through multimodal editing chains

Predict depth and semantics In-paint RGB conditioned on
depth, segmentation, and caption

Caption & masked normals→ Normals
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