

Session #3: Educating the Future Engineer

Introducing the Circular Economy to Undergraduate Students

Jeffrey W. Fergus, Brian K. Via, M. Soledad Peresin, Nanette E. Chadwick, Auburn University

Contributors

- Jeffrey Fergus, Materials Engineering
 - 1-hour courses
- Nanette Chadwick, Academic Sustainability Programs
 - Sustainability Minor
- Brian Via and Soledad Peresin, School of Forestry & Wildlife Sciences
 - Sustainable Biomaterials and Packaging Major

Slide 2 Session #

Educational Needs – Industrial Survey

Topic	Ave.
Energy use and efficiency	2.28
Recycling and reuse	1.94
Life cycle analysis	1.90
Corporate social responsibility	1.85
Environmental law and responsibility	1.59
Carbon management and climate change	1.56
Industrial ecology	1.50
Social and community issues	1.50
Water and land use and reclamation	1.49

Fergus, Twigge-Molecey, McGuffin-Cawley, JOM 65[8] (2013) 935

Slide 3 Session #3

Enhancing Education in Sustainability

- Integration into existing courses
 - Maintain curricular content
 - Pressure to increase content / decrease hours
 - If content is added what is taken away?
 - Zero or negative sum game
- New courses
 - If required what is replaced?
 - If elective incentives for taking courses?
- New degree programs
 - Breadth vs. depth
 - Marketing of degree

Slide 4 Session

Materials Engineering Sustainability Courses

Objectives

- Enhance understanding / appreciation of sustainability issues (preparation)
- Illustrate importance of materials science and engineering (recruiting)
- Accessibility
 - Limited commitment
 - Courses do not count toward degree requirements
 - One credit hour (1 meeting per week)
 - Open to non-engineering majors

Slide 5 Session:

Materials Engineering Sustainability Courses

 MATL 2210: Materials for Sustainable Energy Production and Storage

MATL 2220: Materials and the Environment

 MATL 2230: Mineral Resources: Processing and Availability

Slide 6 Session #

Materials for Sustainable Energy Production and Storage

- Background
 - Energy use and production
 - Metrics for comparison of technologies
- Energy Conversion
 - Thermal
 - Combustion, Nuclear, Thermoelectric
 - Electrochemical
 - Solar
 - Heat, photovoltaic
 - Mechanical
- Energy Storage
 - Electrochemical, Mechanical, Chemical (Hydrogen)

Session Session

Mineral Resources: Processing and Availability

- Overview of materials science and engineering
- Where do the materials used to make products come from?
- How are they processed?
- Where are the resources located?
- Why are supplies of some materials limited?

Slide 9 Session #

Materials and the Environment

- Overview of materials science and engineering
- The materials life cycle
 - Primary production, manufacturing, use, disposal
- Constraints
 - Economics, availability, legislation
- Materials selection
 - Materials properties, environmental impacts, recycling

Slide 10 Session #3

Course Enrollment

Slide 11 Session #3

Course Enrollment

e 12 Session #3

Course Format

- One class per week
- Course requirements
 - Short (1-2 slide) presentations
 - One every 2-3 classes
 - Examples:
 - Source of particular element
 - Energy use of selected product
 - Example of potential energy harvesting opportunity
 - Environmental impact of materials used in selected product
 - Final presentation
 - Test

Slide 13 Session #

Diverse Student Background

- Differing technical backgrounds of students
 - Topics presented at basic level
- Students use examples / apply knowledge from major discipline
 - Electrical engineering for power conversion
 - Civil engineering on water treatment
- Examples from personal experience / interests
 - Musical instruments, sports, hunting

Slide 14 Session #

Minor in Sustainability Studies

- Required courses (6 credit hours)
 - Introduction to Sustainability (~90 students / semester)
 - Systems Thinking; Consumption & Waste
 - Senior Capstone in Sustainability
- Elective courses (9 credit hours)
 - Society and Markets, Environment, Social Justice
 - Popular electives
 - Global Consumer Culture
 - Ecotourism
 - Bioenergy and the Environment
 - Physical Geography

- Landscape and Culture
- Religion and the Environment
- Environmental History
- Environmental Ethics

Slide 15 Session #

Minor in Sustainability Studies

109 graduates since 2009

Slide 16 Session #3

Minor in Sustainability Studies – Engineering

- Engineering Electives
 - Biosystems Engineering
 - Natural Resource Conservation Engineering
 - Mechanical Engineering
 - Renewable Energy Resources and Applications
 - Materials Engineering
 - Materials for Sustainable Energy Production and Storage
 - Materials and the Environment
 - Mineral Resources: Processing and Availability

Fall 2016 Enrollment: 51 Total 37% STEM (17% of graduates)

Slide 17

Sustainable Biomaterials & Packaging Major

Focus on products and packaging from bio-mass sources

Technical issues

- Resources: Agriculture, forestry
- Products: Materials properties, design
- Non-Technical issues
 - Economics
 - Logistics
 - Marketing

Slide 18 Session #3

Sustainable Biomaterials & Packaging Major

Biomass & Logistics

- Planting (Seedling)
- Feedstock Quality
- Harvesting, Transportation
- Supply Chain Management
- Distribution & Logistics

Processes & Products

- Traditional Forest Products
- Forestry Materials Packaging
- CLT, Wood Composites
- BioBased Polymers for Packaging
- Bioenergy
- Pulp & Paper for Packaging
- QC Control & Testing

Sustainability & Business

- Marketing & Business
- Life Cycle Analysis
- Eco-Design
- Economics
- Product Development
- Recycling

Biopackaging & Materials
Other Disciplines

Slide 19 Session #3

Sustainable Biomaterials & Packaging Major

- Forestry & Wildlife
 Science
 - 14 new course(38 hours)
 - Forestry

- Architecture
 - Industrial / Environmental Design
- Agriculture
 - Crop, Soil & Environmental Science
- Business
 - Marketing, Supply Chain Management
- Engineering
 - Biosystems / Industrial / Materials
 Engineering

de 20 Session #

Conclusions

- Full integration of circular economy concepts ideal but challenging
- Individual courses
 - Use for graduation requirements
 - Appropriate breadth vs. depth
- Interdisciplinary minor
 - Coordination / focus of courses
 - Accessibility of multiple majors
- New curricula
 - Market to students and employers

Slide 21 Session #