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• “Closing the loop” requires us to think beyond just the efficiency and waste 
of primary resources

• The impacts of material production to environmental processes and society 
also need to be considered

• The over allocation and scarcity of water resources is a growing issue

• Addressing this in a circular economy requires methods to understand 
water resource impacts at all stages of a materials life

Circular Economy
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Mining operations have complex interactions with water resources

• Stable access of water is required for ore processing

• Large-scale land transformations, land clearing, the storage of mine wastes, 
dewatering of aquifers and the diversions of water around sites can all 
significantly impact regional hydrology.

• Significant water quality risks can also be associated with mining.

Due to these factors, water is often a trigger for social unrest and opposition to 
mining projects.

Water and the Mining Industry
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Mineral Projects Face a Range of Regional Contexts

Northey et al., 2017. Global Environmental Change, Under Review. 
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Mineral Resources are Located in Different Climates
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Copper Nickel

Mineral Resources are Located in Different Climates

Northey et al., 2017. Global Environmental Change, Under Review. 
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These Climates Influence Mine Site Water Balances
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These Climates Are Also Shifting Through Time

Northey et al., 2017. Global Environmental Change, Under Review. 
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Water Contexts Vary Substantially Between Regions

HIGHLOW NO DATA

Water Stress Index



HIGHLOW NO DATA

Sonderegger et al., 2015. Environmental Science and Technology, 49, 12315-12323.
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Water Contexts Vary Substantially Between Regions
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The exposure to water risks varies for different sectors of 
the mining industry

Northey et al., 2017. Global Environmental Change, Under Review. 
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The Copper Industry is Highly Exposed to Water Scarcity 
and Stress
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Northey et al., 2014. Minerals Engineering, 69: 65-80.
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Exposure Differs Throughout Mineral Supply Chains

Northey et al., 2014. Minerals Engineering, 69: 65-80.
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Approaches need to be able to account for differences in:
• Complex mine site water balances

• Highly variable water quality impacts

• Local hydrological contexts and risks

“Water Footprinting” methods provide a standardized approach to addressing 
these issues

Variability in mine water interactions and local contexts 
creates challenges when measuring mine-site water 
performance
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Water Footprint Network Standards
Water Footprint Network Standards (Hoekstra et al. 2009; 2011)
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ISO14046:2014
Environmental Management – Water Footprint

1. Goal and scope setting

2. Inventory Analysis
- Quantifying water flows, sources, sinks, quality, 

accumulation and diversions.

3.  Impact Assessment
- What are the consequences of this water use?
- Enables adjustments for factors such as the local 

water stress index (WSI).

4.  Interpretation
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• Facilitates strong stakeholder relations
– Provides complex data in a format that is easily accessible to a range of industry stakeholders
– Facilitates comparisons with relevant regional users (e.g. agriculture)

• Improves a companies internal understanding of water use and risks
– Developing a water footprint will quickly identify weaknesses in mine site water balance models
– Provides an understanding of the potential hot-spots for process improvements.
– Enables local water scarcity and quality to be accounted for when comparing multiple operations.
– Assessment of indirect water use can identify water related risks in a mine’s supply chain.

• Integrates easily with other assessment methods used in the circular economy
– e.g. carbon footprinting, life cycle assessment, material flow analysis

Benefits of Using Water Footprinting Methods
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