

Session 4: Water

Incorporating Sustainability Practices to Reduce Water in Upstream Oil and Gas Development

Joe Lima, Director of Environmental Sustainability, Schlumberger

Schlumberger

Schlumberger at a Glance

Source: Schlumberger

The Resource Triangle

Source: 2007 NPC Global Oil & Gas Study, Unconventional Gas Topic Paper #29

Evolution of the Reservoir Rock

Why is Hydraulic Fracturing Effective

200 Ft High x 6" Wellbore x (15) 200 Ft Fracs

The US (Lower 48) Unconventional Resources

Water Use in Context

Water Requirements by Energy Source

Energy Resource	Range of Gallons of Water Used per MMBTU of Energy Produced
Marcellus Gas Well	1.30
Coal with No Slurry Transport	2 to 8
Coal with Slurry Transport	13 to 32
Nuclear (Uranium Ready to Use in a Power Plant)	8 to 14
Conventional Oil	8 to 20
Syncfuel – Coal Gasification	11 to 26
Oil Shale	22 to 56
Tar Sands	27 to 68
Syncfuel – Fischer Tropsch Synthesis (from Coal)	41 to 60
Enhanced Oil Recovery	21 to 2,500
Biofuels (Irrigated Corn Ethanol, Irrigated Soy Biodiesel)	> 2,500

An Image Problem

Water Use for Onshore Fracturing

Direct Annual Use for Hydraulic Fracturing:

- Over 40 Billion Gallons in United States
- Average of 2.5 Million Gallons per Well
- Total Associated Costs over \$10.7B

Best Practices Include:

- Recycling of Flowback
- Alternate Sources of Water

Source: Bluefield Research

Reducing Hydraulic Fracturing Treatment Size

Current Run Rates:
Water Consumption Reduction of 25%
Proppant Consumption Reduction of 40%

Water Sourcing for Hydraulic Fracturing

Upstream Development Water Requirements

Water Sourcing for Hydraulic Fracturing

Cation	Sample 1
Sodium	80,423
Calcium	18,938
Potassium	6,800
Magnesium	889
Iron	82.29
Boron	364
рН	5.68
SG	1.187
TDS	275,000

Reducing the Carbon Footprint of Hydraulic Fracturing

Implementation of New Technologies

- 57% Reduction in Truck Traffic
- > 82% Reduction in Transportation Related CO₂ Emissions (19 Tons v 104 Tons)
- 28% Reduction in Treatment Related CO₂ Emissions (113 Tons v 156 Tons)
- Reduced Field Produced Water Disposal Volumes (1.5MM Gals per Well)