

INVESTIGATION OF CARBON-BASED REDUCTANT, LOW-TEMPERATURE PROCESS FOR CONVERSION OF HEMATITE IN RED-MUD TO MAGNETITE

Sumedh Gostu¹, Dr. Brajendra Mishra¹

¹Metal Processing Institute, Worcester Polytechnic Institute

STATUS OF RED-MUD

- Red-Mud is a residue generated from the Bayer's processing of bauxite.
- Primary Aluminum production: 50 mT, Bauxite mined: 200 mT (2013).
- > 109 Bayer processing plants around the world, 49 alone in China (700 % increase since 2001).
- Annual generation of red mud: 120 mT, 6 % growth rate estimated.
- Operating and closed sites: 3 billion tons of red mud accumulated.

Red-Mud 1.5 - 4 Tons

WHAT IS THE PROBLEM?

Bauxite composition.

of Red-Mud: Lack of Liberation.

Problems in Diposal and storage.

Variability of Red-Mud composition with variation in

Complex mineralogy associated with mineral phases

associated with Red-Mud: Basicity, Fine particle size:

EXPERIMENTAL

Jamaican Red Mud Composition

METALS & OXIDES

RECOVERY

Reduction

OBJECTIVE

- Petroleum coke
- Mixture of CO/CO₂

Low-Value High-Volume

Products

- Magnetic Separation
- Frantz Dry Magnetic Separator
- Davis Tube Wet Magnetic Separation

RED-MUD

> Investigate the conversion of hematite in

Red-Mud to Magnetite and its separation

employing a low temperature reduction.

INDUSTRIAL

AGGREGATES

Objective of work as proposed to CR3

High-Value Low-Volume

Products

- Scanning Electron Microscopy
- Transmission Electron Microscopy

Processing strategies developed for Red-Mud utilization are not economical.

Complex physical and chemical properties

Products generated from Red-Mud cannot compete with traditional products.

CONTACT

Sumedh Gostu
Worcester Polytechnic Institute,
Email: sgostu@wpi.edu
Phone: (540)-449-4920

REDUCTION: EXPERIMENTS & RESULTS

 $3Fe_2O_{3(s)} + CO_{(g)} = 2Fe_3O_{4(s)} + CO_{2(g)}$

ΔG° = -RTlnK

 $\Delta G = -RTIn[(a_{Fe3O4}^2 *PCO_2)/(a_{Fe2O3}^3 *PCO)]$

 $\Delta G = -RTIn(PCO_2/PCO)$ (The basis for construction of stability diagram)

The values of ΔG are obtained at various Temperatures are obtained through the HSC chemistry 5.1, reaction tool box.

Stability Diagram for Fe-C-O system at 1.0 atm

Tube furnace maximum temp= 1000 °C copper Coils with compressed air for cooling CO/CO₂ IR analyzer Gases Used CO, CO₂, N₂

Experimental setup for gaseous reduction experiments

CO/CO₂ = 1:1

 $CO/CO_2 = 1:1.5$

 $CO/CO_2 = 1.5:1$

MAGNETIC SEPARATION

80 % BO % BO % BO 0 20 40 60 80 100 RECOVERY % (MAGNETITE)

Frantz Dry Magnetic Separator

CECOVERY % (Magnetite)

Davis tube Magnetic Separator

MICROSCOPY

Agglomerations

SEM micrographs of red-mud -53μm +38μm

> Agglomeration of fine particles is seen in a larger particle mass.

TEM micrographs of red-mud head

- Agglomerates of Nano crystallites.
- > Particle size assigning to red mud is highly ambiguous !!!!

CONCLUSION

- ➤ A red-mud particle is composed of agglomerated entities of small Nano-particulates. The Nano-particulates are in the size range of 16-140 nm.
- ► Low temperature (475°C to 600°C) gas-phase reduction of hematite in redmud to magnetite is viable conversion-process that can be achieved with low partial-pressures of $CO_{(g)}$, and $CO_{2(g)}$. $N_{2(g)}$
- Solid-phase reduction-products obtained from the gas-phase reduction of red mud contained Fe_3O_4 (56.4 80.5 m%), Fe_2O_3 (0 –20 m%), Fe_3C (4.8 6.8 m %) and paramagnetic 2+ and 3+ phases (14 22 m%).
- > Dry and wet magnetic-separation performed on the reduced samples did not achieve a high grade of separated magnetite.
 - 1) The cation substitution of, primarily, Al³⁺ and Ti⁴⁺/Ti³⁺ cations in the hydrated-oxide nanoparticles being converted to magnetite <u>or</u>,
 - 2) Nano-size particles of aluminum and titanium "oxides" occluded within the predominantly "large-particles/clusters".

FUTURE RECOMMENDATION

- > Structural characterization of nanometer length scale constituents of red-
- ➤ Development of a strategy to segregate the Al^(III) and Ti^(III/IV) constituents so as to yield a low Al, Ti magnetic fraction and low Fe non magnetic fraction.

REFERENCES

- Bauxite Residue Management: Best Practice, World Aluminum, European aluminum association, April 2013.
 Power, G, Grafe, M, Klauber, C., "Bauxite residue issue: I. Current management, disposal and storage practices",
- Hydrometallurgy. 108 (2011), 33-45.
 Prasad, P, M., Singh, M., "Problems in the Disposal and Utilization of Red Muds", The Banaras Metallurgist. 14&15
- Burkin. A.R.,"Production of Aluminum and Alumina", 1987, Society of Chemical Industry, John Wiley and Sons.
- Bruckard, W.J "Smelting of bauxite residue to form a soluble sodium aluminum silicate phase to recover alumina and soda "Min. Proc. Ext. Met. Rev., 119 (1) (2010), 18-26.
- Li, X. et al., "Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering" T. Nonferr. Metal. Soc., 19 (5) (2009), 1342-1347.
 Zhong, L., Zhnag, Y., Zhang, Yi., "Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical."
- Zhong, L., Zhnag, Y., Zhang, Yi., "Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process" Journal of Hazardous Materials. 172 (2009), 1629-1634.