

Session #8: Environment / Waste

More Sustainable Concrete Using Waste Cement Industry CO₂

Sean Monkman, CarbonCure Technologies Mark MacDonald, CarbonCure Technologies

The importance of concrete

Slide 3 Session #8

Circular Character of CO₂ Utilization in Concrete

Beneficial CO₂ Utilization CO Water Ca²⁺ CO₃2-SiO₄⁴ Cement dissolution OH-CaCO₃ Carbonate reaction product CO₂ permanently fixed in the concrete

Three Methods of CO₂ Utilization in Concrete

Masonry Concrete

- 4 to 5 billion blocks produced annually in North America

Ready Mixed Concrete

- 70% of all cement, 60% of all concrete revenue
- 5,550 facilities in the US
- US production 336 million cubic yards in 2015

Concrete wash water

- Produced in washing of concrete trucks
- Creates water and sludge that requires disposal

1. Masonry implementation

- Inject carbon dioxide into concrete mixer
- Maximum dose within mixing cycle
- Adjust water for appearance
- No change to cycle time
- CO₂ stored in concrete blocks
- Simple retrofit, same machines and same materials

Masonry implementation

Strength benefit realized Carbonated batch

- Uptake was 1.40% by weight of cement
- Nominal mix water increase was 14%
- 7 day strength vs control: +6%
- 28 days: +8%
- 56 days: +20%

Slide 8 Session #8

Masonry Properties

Carbonated: 5.0% lower density, 11% lower absorption
Carbonated w/ water increase: 0.2% lower density, 18% lower absorption

Slide 9 Session #8

2. Ready mix implementation

- Inject carbon dioxide into concrete mixer
- Optimum dose during batching
- No change to cycle time
- CO₂ improves concrete properties
- Simple retrofit, same machines and same materials

Slide 10 Session #8

Ready mix implementation

Slide 11 Session #8

Compressive Strength Results

Slide 12 Session #8

Ready mix results – three way comparison

Cement Reduction Case Study

- Carbon footprint is reduced by 4.4%
- Cement reduction is responsible for 98.4% of the reduction
- CO₂ utilization served as a platform to make the reduction.
- Considering only the cement impact.

Slide 14 Session #8

3. Wash water implementation

- Estimated annual discharge of 300 million gallons
- High pH water that needs to be treated before release
- Suspended cementitious solids settle out, removed and landfilled
- Reuse of the water in concrete negatively impacts workability and setting time.
- Age of water changes properties.

Slide 15 Session #8

Wash water – CO₂ treatment

- Treat high solids wash water with CO₂
- CO₂ reacts with solids and is absorbed
- Reuse as concrete mix water
- Reduce solids disposal
- Reduce fresh water usage
- Recoup value of suspended solids

Slide 17 Session #8

Wash water – fresh property results

- Set time and workability are barriers to reuse of wash water
- Mortar samples prepared with potable water, wash water and CO₂ treated wash water
- CO₂ reverses the set time issue
- Wash water concrete is stickier

Slide 18 Session #8

Wash water – compressive strength results

- Use of wash water resulted in improved compressive strength
- CO₂ treatment increased strength over untreated case
- Potential to remove cement, which would solve workability issue

Slide 19 Session #8

Circular utilization of cement production waste

Slide 20 Session #

Looking Towards the Future

NRMCA 2011 SUSTAINABLE CONCRETE PLANT GUIDELINES

Performance Indicator	2020 Goal	2030 Goal
Embodied Energy	20% decrease	30% decrease
Carbon Footprint	20% decrease	30% decrease
Potable Water Use	10% decrease	20% decrease
Waste Created	30% decrease	50% decrease
Recycled Content	200% increase	400% increase

Relative to a baseline of 2007

CO₂ utilization can play a role in achieving improvements in carbon footprint, water usage, waste output and recycled content usage.

Slide 21 Session #

Thank You

Sean Monkman, PhD PEng
VP Technology Development

smonkman@carboncure.com
Twitter @carboncure

