

Session 8: Environmental/Waste

Value Creation Through Enabling Technologies to Up-Cycle Aluminum Scrap

Sean Kelly, and Prof. Diran Apelian

Center for Resource Recovery and Recycling,
Metal Processing Institute,
Worcester Polytechnic Institute,
Worcester, MA, 01609

Agenda

- Introduction the Center for Resource Recovery & Recycling
- Background Information: Secondary Al Production
- Enabling Technologies: Optoelectronic Automated Systems
 - XRT
 - XRF
 - LIBS
- Conclusions/Future work

Page 1 of 16 Session #8

Center for Resource Recovery and Recycling (CR3)

- Mission: to develop and maintain sustainable materials and recovery/recycling processes
- This university-industrial partnership consists of a consortium of 20 corporate partners and 4 universities around the world

Page 2 of 16 Session #

Academic Partners

Worcester Polytechnic Institute

Colorado School of Mines

KU Leuven

University of Tokyo

Page 3 of 16 Session #8

Background: Auto-Al Recovery Process

Separation systems:

- -Air separation
- -Eddy-current
- -Induction sorters
- -Density (media-based)
- -Optoelectronic (automated sorting systems – XRT, XRF, LIBS)

Zorba: ~65% Al alloys, Cu alloys, Mg, Zn, stainless steels, brass, organics, etc.

<u>Twitch</u>: light Zorba fraction, 90-98% Al alloys some Mg, Fe/steel (screws, bolts), organics

Zebra: heavy Zorba fractions, Cu, Zn, brass, SS

Session #8

Why Up-Cycle Twitch?

VS.

- -Above ground ore
- -Energy investment already made
- -Currently, very few Al alloy types produced from ore (380)

Innovation/process upgrading potential → **Sorting systems**

Bauxite

- -Significant energy required to extract aluminum
- -Significant waste
- -Pure, all Al alloy types produced from ore

Post-consumer AI waste

Page 5 of 16

Enabling Technologies: Optoelectronic Automated Systems

<u>Automated sorting process</u>: separation of mixed materials based on measured and detected differences in material property

- 1) Scrap feeding mechanism
- 2) Belt distribution
- 3) Sensing system to alert the computational system of the location of the incoming samples
- 4) Optoelectronic analysis
- 5-6)Shows the transfer of the electronic signal to the monitor display
- 7) Air ejection system
- 8) Ejected (of interest) fraction
- 9) Dropped fraction
- 10) Data collection

Enabling Technologies: Optoelectronic Automated Systems

X-ray Transmission (XRT)

STEINERT XSS T

 Dual-energy XRT capable of sorting metallic particulates based on <u>atomic density</u> <u>differences</u>

- Zorba→ Zebra (heavy Cu, Zn, brass) + Twitch (light – Al alloy, Mg)
- Twitch → Heavy + Light fraction

Camera image vs. XRT image [2]

Enabling Technologies: Optoelectronic Automated Systems X-ray Transmission (XRT)

Cone & Quartering Sampling Method

Melting → Casting OES Pucks

CAST	Ti	Cr	Mn	Fe	Ni	Cu	Zn	Zr	Cd	Sn	Pb	LE	Al	Si	Mg
EJECTION	0.07	0.08	0.23	0.80	0.12	3.32	1.82	0.02	0.001	0.03	0.06	93.45	84.44	8.80	0.21

WROUGHT	Ti	V	Cr	Mn	Fe	Ni	Cu	Zn	Sn	Pb	LE	Al	Si	Mg
DROP w/ Mg impurity	0.03	0.01	0.04	0.28	0.44	0.02	0.40	0.16	0.01	0.01	98.59	94.54	2.47	1.58

Page 8 of 16 Session #8

Enabling Technologies: Optoelectronic Automated Systems X-ray Transmission (XRT)

Cone & Quartering Sampling Method

Melting → Casting OES Pucks

CAST	Ti	Cr	Mn	Fe	Ni	Cu	Zn	Zr	Cd	Sn	Pb	LE	Al	Si	Mg
EJECTION	0.07	0.08	0.23	0.80	0.12	3.32	1.82	0.02	0.001	0.03	0.06	93.45	84.44	8.80	0.21

WROUGHT DROP	Ti	V	Cr	Mn	Fe	Ni	Cu	Zn	Sn	Pb	LE	Al	Si	Mg
w/o Mg Impurity	0.03	0.01	0.04	0.27	0.46	0.02	0.45	0.18	0.01	0.01	98.50	94.76	2.65	1.10

Page 9 of 16 Session #

Enabling Technologies: Optoelectronic Automated Systems X-ray Fluorescence (XRF)

XRF Technology:

- X-ray radiation ejects electron from inner shell of metallic element
- High-energy electron fills lower energy vacancy
- Elemental characteristic fluorescence is released due to this jump and is detected
- Compositional-based automated sorting system
- Pre-set sorting criteria based on heavy alloying elements (Cu/Zn/Fe)

Page 10 of 16 Session

Enabling Technologies: Optoelectronic Automated Systems

X-ray Fluorescence (XRF)

Twitch
50lbs. cast – 50lbs. wrought

Al + High Cu/Zn/Fe
48.7%

Al + Low Cu/Zn/Fe
51.3%

- If alloying concentration met the lowest possible threshold for any of the target elements that particulate was ejected
- Sampled each fraction, melted and casted OES pucks
- Clear distinction between sorting criteria elements (Zn/Cu/Fe)

Sorting Criteria	Wt. %	Wt. %	OES Zn	OES Cu	OES Fe
Corting Oritoria	Cast	Wrought	composition	composition	composition
AI + Cu/Zn/Fe	72%	28%	0.88%	1.7%	0.55%
AI + No Cu/Zn/Fe	26%	74%	0.027%	0.051%	0.30%

Page 11 of 16 Session

Enabling Technologies: Optoelectronic Automated Systems

X-ray Fluorescence (XRF)

Twitch
50lbs. cast – 50lbs. wrought

Al + High Cu/Zn/Fe
48.7%

Al + Low Cu/Zn/Fe
51.3%

- If alloying concentration met the lowest possible threshold for any of the target elements that particulate was ejected
- Sampled each fraction, melted and casted OES pucks
- Clear distinction between sorting criteria elements (Zn/Cu/Fe)

Light elements?

Sample	Zn	Cu	Fe	Si	Mn	Mg	Cr	Ni	Ti	Pb	Sn	Other	Al
AI + High Cu/Zn/Fe	0.88	1.69	0.55	7.2	0.14	0.29	0.040	0.040	0.070	0.020	0.010	0.050	89
AI + Low Cu/Zn/Fe	0.030	0.050	0.30	2.9	0.19	0.55	0.030	0.040	0.060			0.030	96

Page 12 of 16 Session #

Enabling Technologies: Optoelectronic Automated SystemsLaser-induced Breakdown Spectroscopy (LIBS)

- Capable of analyzing complete aluminum alloy compositions in real-time (advantage over XRF)
- Throughput? lower than XRF

Single lines of scrap pieces

Single line? Multiple lines?
→ Effect on throughput

From Shaymus Hudson

Page 13 of 16 Session #8

Enabling Technologies: Optoelectronic Automated Systems Laser-induced Breakdown Spectroscopy (LIBS)

- ~30lbs of Twitch compositionally analyzed with XRF gun
- Si, Mg, Cu, Zn, Fe and Al content recorded
- 2D scatter plots constructed Why?
 - To look for clusters and opportunity for <u>up-cycling</u>

Example:

Page 14 of 16 Session #8

Enabling Technologies: Optoelectronic Automated SystemsLaser-induced Breakdown Spectroscopy (LIBS)

Sort number	Target composition	Wt. % in Twitch used to attain target comp.	Si	Cu	Fe	Zn	Mg	Al
1	Mg: 0.8 – 1.2 Si: 0.4 – 0.8	5%	0.62	0.06	0.31	0.016	0.96	98

- 1) *Secondary 6061*
- 2) Secondary 319
- 3) *Secondary 6000 series*
- 4) *Secondary 5000 series*

Page 15 of 16 Session #8

Conclusions/Future Work

- XRT can upcycle fractions of Twitch based on density differences but further sorting or processing is required
- XRF can upcycle Twitch based on heavy alloying content but further dilution or alloying addition will be required
- Early 2D scatter plots show promise for LIBS system
 - Expansion to 5-6 preset elemental criteria
 - Efficiency testing

Page 16 of 16 Session #