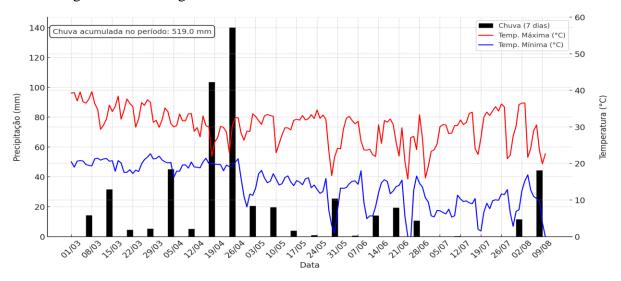


www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

FONTES DE NITROGÊNIO EM COBERTURA DO MILHO SAFRINHA EM MARACAJU

Setor de Fertilidade do solo: Eng. Agr. Dr. Douglas de Castilho Gitti, Eng. Agr. Marcos Antonio S. Spak, Tec. Agr. Reinaldo P. do Nascimento


OBJETIVO

Avaliar a influência de diferentes fontes de nitrogênio em cobertura (V3) no teor foliar de nutrientes, componentes de produção e produtividade de grãos do milho safrinha em Maracaju, MS.

MATERIAL E MÉTODOS

O experimento foi conduzido no ano agrícola 2025, no município de Maracaju, MS, Brasil, em área experimental da Fundação MS localizada na Fazenda Alegria, Talhão Arroz. O clima da região, segundo classificação de Köppen, é do tipo Aw, com precipitação pluvial média anual de 1.500 a 1.750 mm, temperatura média anual de 27 °C.

Gráfico 1. Precipitação pluviométrica no acumulado semanal no período de condução do experimento da segunda safra. Fundação MS, Maracaju, MS, 2025. Fonte: Estação meteorológica Farmers Edge.

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

O solo da área experimental é classificado como Latossolo Vermelho distroférrico de textura argilosa. A caracterização química e de textura do solo da área experimental foi realizada com a coleta da análise de solo na profundidade de 0-20 e 20-40 cm, sendo os resultados apresentados na Tabela 1.

Tabela 1. Caracterização química e de textura do solo da área experimental nas profundidades de 0-20 e 20-40 cm. Fundação MS, Maracaju, MS, 2025.

Prof	pI	I	MO	P	P	K	Ca	Mg	Al	H+Al	SB	T	V
(cm)	CaCl ₂	H ₂ O	g dm ⁻³	Mehlich	Resina	1		mm	olc dn	1 ⁻³			(%)
0-20	6,00	6,60	35,00	6,60	23	4,40	84,45	26,11	0,00	23,50	114,94	138,44	83,00
20-40	5,80	6,40	18,00	5,00	9	1,50	42,57	11,34	0,00	34,70	55,44	90,14	61,50
Prof	S	Zn	В	Cu	Mn	Fe	Relaç	ção l	K (Ca M	g H	M	Argila
(cm)	mg dm ⁻³					Ca/N	ſg	%	6 da CT	C	(%)	(%)	
0-20	7,00	5,30	0,69	6,08	144,50	49,00	3,20	3,2	20 61,	,00 18,90	16,90	0,0	50,0
20-40	35,00	2,70	0,68	6,80	47,1	67,10	3,80	1,7	0 47,	,20 12,60	38,50	0,0	50,0

Análise realizada em 29/11/2024 - Maracaju, Talhão Arroz. Código FMS 26526 0-20 cm e 20-40 cm 26527.

Foi utilizado o delineamento experimental em blocos casualizados com quatro repetições e 10 tratamentos (Tabela 2). Os estádios de desenvolvimento do milho foram definidos segundo a escala fenológica proposta por Ritchie (1989).

Tabela 2. Descrição dos tratamentos na cultura do milho safrinha. Fundação MS, Maracaju, MS, 2025.

N°	Fertilizantes	Dose do Fertilizante (kg/ha) - V3 (kg/ha)
1	Controle	0
2	Ureia (46%)	152
3	Sulfato de amônio (21-00-00)	334
4	Meta 29 (29-00-00)	241
5	MaxxCote Nitro (44-00-00)	159
6	Super N PRO (45-00-00)	152
7	Ureia NBPT HINOVE (46-00-00)	152
8	Ureia NBPT Br Fértil (46-00-00)	152
9	Ureia NitroSmart NBPT Yara (46-00-00)	152
10	Haya Niotrogen Kimberlit (44-00-00)	159

 $www.fundacaoms.org.br \bullet fundacaoms@fundacaoms.org.br$

As parcelas foram constituídas por 5 linhas de com 10 m de comprimento, considerando-se como área útil as 2 linhas centrais com 5 m de comprimento.

As sementes de milho foram tratadas com Fortenza[®] TSI (2 mL kg⁻¹ de sementes), Cruiser[®] TSI (3 mL kg⁻¹ de sementes) e Poncho[®] TSI (4 mL kg⁻¹ de sementes). A inoculação foi realizada via sulco de semeadura utilizando o inoculante Auras (200 mL ha⁻¹).

A semeadura do milho foi realizada no dia 01 de março de 2025 utilizando o Híbrido FS700 PWU na densidade de semeadura de 3,5 sementes por metro com 0,5 m entre linhas, ocorrendo à emergência das plântulas seis dias após a semeadura.

A necessidade de nitrogênio inicial da cultura foi atendida através de adubação na semeadura, onde foi realizada a aplicação de 110 kg ha⁻¹ de Ureia (46-00-00) no sulco de semeadura em todos os tratamentos. Já a adubação em cobertura constitui-se dos tratamentos onde foram aplicados 70 kg ha⁻¹ de nitrogênio, com diferentes fontes divididos entre os tratamentos. O tratamento 1 não recebeu adubação nitrogenada em cobertura, sendo definido como o tratamento controle.

As necessidades de fosforo e potássio da cultura foram atendidas na cultura da soja, com aplicação em pré semeadura de 150 kg ha⁻¹ de KCl (00-00-60) em todos os tratamentos e 200 kg ha⁻¹ de MAP (11-52-00) no sulco de semeadura em todos os tratamentos, afim de balancear os teores de fosforo e potássio para o sistema soja-milho.

A colheita foi realizada no dia 09 de agosto de 2025 aos 155 dias após a emergência das plântulas (DAE).

Foram realizadas as seguintes avaliações:

Número de fileira por espiga e número de grãos por fileira: foi determinado o número de fileiras e grãos em 5 plantas por parcela no momento da colheita.

População final de plantas: foi determinado a quantidade de plantas em 20 metros lineares antes da colheita, logo após convertido em plantas por hectare.

Produtividade: foi realizada a colheita mecanizada das 2 linhas centrais das parcelas aos 155 DAE. As amostras foram pesadas e os dados transformados em kg ha⁻¹, corrigindo-se a produtividade para 13% de umidade (b.u.).

Massa de 100 grãos: foi retirada uma amostra de 100 grãos de cada parcela para a análise da massa dos grãos, corrigindo-se para 13% de umidade (b.u.).

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

Os resultados foram submetidos ao teste F da análise de variância, as médias foram analisadas pelo teste de Scott-Knott a 5% de probabilidade (p<0,05). Foi utilizado o programa estatístico Sisvar para análise dos resultados.

RESULTADOS

Tabela 3. Número de grãos por fileira, número de fileiras por espiga e número de grãos por espiga obtidos em função de diferentes fontes de nitrogênio aplicados em cobertura no estádio V3 da cultura do milho safrinha. Fundação MS, Maracaju, MS, 2025.

N°	TRATAMENTOS	Número de grãos por fileira	Número de fileiras por espiga	Número de grãos por espiga
1	Controle	33,40	18,20	609,00 b
2	Ureia	33,40	18,00	602,00 b
3	Sulfato de amônio	34,20	18,80	635,20 a
4	Meta 29	34,00	18,00	613,40 b
5	MaxxCote Nitro	34,40	17,80	616,40 b
6	Super N PRO	34,60	18,40	640,40 a
7	Ureia NBPT HINOVE	33,60	18,60	622,20 b
8	Ureia NBPT Br Fértil	34,80	18,20	638,40 a
9	Ureia NitroSmart NBPT Yara	34,00	18,40	619,80 b
10	Haya Niotrogen Kimberlit	35,20	18,60	642,20 a
	Teste de F	2,18*	1,40 ^{ns}	1,87 ^{ns}
	CV (%)	2,67	3,26	3,74
	Média	34,16	18,30	623,90

^{**, *} e ns – significativo a 1 e 5% de probabilidade, e não significativo pelo teste de F, respectivamente. Médias seguidas por letras distintas, minúsculas nas colunas diferem entre si pelo teste de Scott-Knott a 5% de probabilidade. CV – Coeficiente de variação. DMS – diferença mínima significativa.

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

Tabela 4. População final de plantas, massa de 100 grãos e produtividade do milho safrinha em função de diferentes fontes de nitrogênio aplicados em cobertura no estádio V3 da cultura do milho safrinha. Fundação MS, Maracaju, MS, 2025.

Nº	TRATAMENTOS	Pop. Final (plantas ha ⁻¹)	Massa de 100 grãos (g)	Produtividade (sc ha ⁻¹)
1	Controle	60.333	26,32	129,50
2	Ureia	59.333	26,38	131,25
3	Sulfato de amônio	56.000	26,59	129,00
4	Meta 29	55.333	26,46	131,00
5	MaxxCote Nitro	58.333	26,20	123,75
6	Super N PRO	54.000	26,82	129,00
7	Ureia NBPT HINOVE	58.000	25,93	129,50
8	Ureia NBPT Br Fértil	59.000	25,98	129,50
9	Ureia NitroSmart NBPT Yara	59.000	26,68	132,25
10	Haya Niotrogen Kimberlit	54.333	26,31	129,00
	Teste de F	1,17 ^{ns}	0,38 ^{ns}	0,17 ^{ns}
	CV (%)	6,30	3,92	8,53
	Média	57.366	26,37	129,37

^{**, *}e ns – significativo a 1 e 5% de probabilidade, e não significativo pelo teste de F, respectivamente. Médias seguidas por letras distintas, minúsculas nas colunas diferem entre si pelo teste de Scott-Knott a 5% de probabilidade. CV – Coeficiente de variação. DMS – diferença mínima significativa.

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

Tabela 5. Produtividade de grãos do milho safrinha em função de diferentes fontes de nitrogênio aplicados em cobertura no estádio V3 da cultura do milho safrinha em 2023 e 2025. Fundação MS, Maracaju, MS, 2025.

Nº	TRATAMENTOS	Produtividade (sc ha ⁻¹)				
	TRATAMENTOS	2023	2025			
1	Controle	146,52 b	129,50			
2	Ureia	173,00 a	131,25			
3	Sulfato de amônio	175,05 a	129,00			
4	Meta 29	-	131,00			
5	MaxxCote Nitro	183,20 a	123,75			
6	Super N PRO	182,30 a	129,00			
7	Ureia NBPT HINOVE	-	129,50			
8	Ureia NBPT Br Fértil	-	129,50			
9	Ureia NitroSmart NBPT Yara	-	132,25			
10	Haya Niotrogen Kimberlit	145,82 b	129,00			
	Teste de F	2,09*	0,17 ^{ns}			
	CV (%)	11,53	8,53			
	Média	163,79	129,37			

^{**, *} e ns – significativo a 1 e 5% de probabilidade, e não significativo pelo teste de F, respectivamente. Médias seguidas por letras distintas, minúsculas nas colunas diferem entre si pelo teste de Scott-Knott a 5% de probabilidade. CV – Coeficiente de variação. DMS – diferença mínima significativa.

CONCLUSÃO

Considerando as condições edafoclimáticas e para o período de condução do presente experimento, pode-se concluir que:

No ano de 2023, os tratamentos com fontes de nitrogênio apresentaram incrementos significativos na produtividade do milho em relação à testemunha, com destaque para MaxxCote Nitro (183,20 sc ha⁻¹) e Super N PRO (182,30 sc ha⁻¹), que obtiveram as maiores médias. A ureia convencional (173,00 sc ha⁻¹) e o sulfato de amônio (175,05 sc ha⁻¹) também superaram o controle (146,52 sc ha⁻¹), evidenciando o efeito positivo da adubação nitrogenada.

Já em 2025, não foram verificadas diferenças significativas entre os tratamentos, mantendo-se produtividades médias próximas de 129 sc ha⁻¹. Isso indica que, nesse ano agrícola, fatores ambientais possivelmente limitaram a resposta da cultura ao manejo de nitrogênio, reduzindo a eficiência relativa das diferentes fontes avaliadas.

REFERÊNCIAS

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

RITCHIE, S.; HANWAY, J. J. How a corn plant develops. Ames: Iowa State University of Science and Technology/ Cooperative Extension Service, 1989.

BÜLL, L.T. Nutrição mineral do milho. In: BÜLL, L.T. & CANTARELLA, H. (ed.) Cultura do milho; fatores que afetam a produtividade. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, 1993. p.63-145.