

ASSOCIAÇÃO E SUBSTITUIÇÃO DE FUNGICIDAS QUÍMICOS POR BIOLÓGICOS NO MANEJO DE DOENÇAS FOLIARES

Protocolo: FMS/FP 4413/24

Responsável Técnico: Eng. Agr. Dra. Ana Claudia Ruschel Mochko (CREA 65838/MS). Pesquisadora da FUNDAÇÃO MS.

Maracaju, MS 23 de abril de 2025

LAUDO TÉCNICO DE EXPERIMENTAÇÃO AGRÍCOLA

ASSOCIAÇÃO E SUBSTITUIÇÃO DE FUNGICIDAS QUÍMICOS POR BIOLÓGICOS NO MANEJO DE **DOENÇAS FOLIARES**

PROTOCOLO: FMS/FP 4413/24

INSTITUIÇÃO EXECUTORA: Fundação MS para Pesquisa e Difusão de Tecnologias Agropecuárias, inscrita no CNPJ/MF sob o nº. 37.213.139/0001-23, com sede na Cidade de Maracaju, Estado de Mato Grosso do Sul, na Estrada da Usina Velha, km 2, Caixa Postal 137, CEP 79.150-000.

EMPRESA REQUERENTE: Fundação MS

CULTURA: Soja 2024/2025

AUTORES: Engª. Agrª. Dra. Ana Claudia Ruschel Mochko e Engª. Agrª Natália Patrícia Ungri

CONDUÇÃO DO ENSAIO: Téc. Agrí. Elder de Oliveira dos Santos e Aux. Cleyton Augusto

AVALIAÇÃO DOS ENSAIOS: Engª. Agrª. Dra. Ana Claudia Ruschel Mochko e Engª. Agrª Natália

Patrícia Ungri, Deisy Neves e Isabela Severo

OBJETIVOS: O objetivo do presente trabalho foi avaliar a eficácia e a praticabilidade agronômica da associação de produtos biológicos aos fungicidas, no controle da mancha-alvo (Corynespora cassiicola) na cultura de soja (Glycine max), em condições de campo, além de registrar possíveis efeitos de fitotoxicidade à referida cultura e o rendimento de grãos.

Fundação MS para Pesquisa e Difusão | Estrada da Usina Velha, Km02, Zona Rural de Tecnologias Agropecuárias | CEP 79.150-000, Maracaju - MS. Caixa Postal - 137

SUMÁRIO

MATERIAL E MÉTODOS	4
Local e data	4
Dados climáticos	5
Método de avaliação	5
Tratamentos	6
RESULTADOS	8
Conclusões	12
ANEXO	
Escalas diagramáticas	14
Fórmulas da AACPD, eficácia de controle e produtividade	16
Referências hiblingráficas	18

MATERIAL E MÉTODOS

Local e data

O experimento foi conduzido na safra 2024/2025 na área experimental da Fundação MS, em Maracaju-MS, tendo como coordenadas 21°38'48.05"S e 55°05'53.52"O, e altitude de 384 metros. Utilizou-se a cultivar AS 3707, implantada em sistema de semeadura direta sobre aveia, com semeadura em 15/11/2024 e colheita em 15/03/2025. O plantio contou com a aplicação de 140 kg ha⁻¹ de fosfato monoamônio (MAP) no sulco.

O experimento foi conduzido em delineamento em blocos casualizados, com 9 tratamentos e quatro repetições. As parcelas tinham 3 m de largura por 6 m de comprimento (18 m²), com espaçamento de 50 cm entre linhas e densidade de 13 plantas/m.

As aplicações fitossanitárias para manutenção da cultura foram realizadas com um drone DJI T20-P (Figura 4, em anexo), equipado com dois atomizadores rotativos, utilizando uma taxa de vazão de 10 L ha⁻¹ (tabela 2, em anexo).

A aplicação dos tratamentos foi realizada com pulverizador costal de pressão constante (CO₂), equipado com barra de 3,0 m e seis pontas TXA 80015, espaçadas a 50 cm. O volume de calda foi de 120 L ha⁻¹, com pressão de 43,5 psi. As aplicações ocorreram sob condições climáticas adequadas, com dados detalhados de umidade, temperatura, nebulosidade e velocidade do vento apresentadas a seguir:

Tabela 1. Data de aplicação, estádio de desenvolvimento da cultura da soja, bem como as condições climáticas no momento das pulverizações. Maracaju, MS, 2025.

Data	Estádio	Horário (início)	Horário (final)	Temp. (°C)	URA (%) ¹
10/12/2024	Vegetativo	16:50 h	17:13 h	29,3	74
20/12/2024	Vegetativo	17:50 h	18:07 h	28,8	78
07/01/2025	Reprodutivo	08:30 h	08:47 h	26,3	79
22/01/2025	Reprodutivo	18:10 h	18:21 h	25,4	90

¹Umidade Relativa do Ar

Dados climáticos

Os dados climáticos, incluindo índices pluviométricos e temperaturas máximas e mínimas, registrados durante a condução do ensaio estão disponíveis no anexo, figura 10.

Figura 1. Precipitação total mensal registradas durante a condução do experimento. Maracaju, MS, 2025. Fonte: Estação meteorológica Farmers Edge.

Método de avaliação

A severidade da doença foi avaliada dez vezes ao longo do ciclo da cultura, iniciando na prévia da aplicação e seguindo aos 7 e 14 dias após cada aplicação, além de 7, 14, 21 e 28 dias após a última. A severidade da mancha-alvo e das doenças de final de ciclo foram estimadas por escalas diagramáticas (Soares, 2009; Martins et al., 2004) (Figuras 2 e 3 do anexo), e os dados foram usados para calcular a Área Abaixo da Curva de Progresso da Doença (AACPD) pelo modelo de Campbell e Madden (1990). A eficácia de controle foi determinada pelo método de Abbott (1925).

A fitotoxicidade foi avaliada visualmente conforme a escala de Campo e Silva (2012) (Tabela 2 e Figura 4 do anexo), considerando clorose e necrose. A desfolha foi analisada quando a testemunha atingiu cerca de 80%, seguindo a escala de Hirano et al. (2010) (Figura 5 do anexo).

A produtividade foi obtida pela colheita da área útil de 12 m² por parcela, convertida para kg.ha⁻¹ a 13% de umidade. A massa de mil grãos foi determinada por contagem automática e pesagem em balança de precisão, ajustando-se a umidade para 13%.

Os dados foram analisados no software SASM-Agri v.8.2 (Canteri et al., 2001), com comparação de médias pelo teste de Duncan a 5% de probabilidade.

Tratamentos

Tabela 2. Produto comercial (p.c.), ingrediente ativo (i.a.), dose dos fungicidas e timming de aplicação nos tratamentos para controle da mancha-alvo da soja, safra 2023/2025.

T.	PRODUTOS	I.A.	DOSE	COD.
1	Testemunha			
2	Score Flexi	Difenoconazol + Propiconazol	150 mL.ha	Α
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Manfil 800 WP	Mancozebe	1.500 g.ha	ВС
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	В
	Belyan	Mefentrifluconazole + Piraclostrobina + Fluxapiroxade	600 mL.ha	С
	Mess	Éster Metílico De Óleo De Soja	0,5 %	С
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	D
3	Bombardeio	Bacillus subtilis + B. Velezensis + B. pumilus	300 mL.ha	Α
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Manfil 800 WP	Mancozebe	1.500 g.ha	ВС
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	В
	Belyan	Mefentrifluconazole + Piraclostrobina + Fluxapiroxade	600 mL.ha	С
	Mess	Éster Metílico De Óleo De Soja	0,5 %	С
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	D
4	Bombardeio	Bacillus subtilis + B. Velezensis + B. pumilus	300 mL.ha	Α
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Manfil 800 WP	Mancozebe	1.500 g.ha	ВС
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	В
	Belyan	Mefentrifluconazole + Piraclostrobina + Fluxapiroxade	600 mL.ha	С
	Mess	Éster Metílico De Óleo De Soja	0,5 %	С
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	D
	Score Flexi	Difenoconazol + Propiconazol	150 mL.ha	Α
5	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Manfil 800 WP	Mancozebe	1.500 g.ha	ВС
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	В
	Belyan	Mefentrifluconazole + Piraclostrobina + Fluxapiroxade	600 mL.ha	С
	Mess	Éster Metílico De Óleo De Soja	0,5 %	С
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	D
6	Bombardeio	Bacillus subtilis + B. Velezensis + B. pumilus	300 mL.ha	В
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Manfil 800 WP	Mancozebe	1.500 g.ha	С
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	В
	Belyan	Mefentrifluconazole + Piraclostrobina + Fluxapiroxade	600 mL.ha	С
	Mess	Éster Metílico De Óleo De Soja	0,5 %	С
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	D

Fundação MS para Pesquisa e Difusão

7	Bombardeio	Bacillus subtilis + B. Velezensis + B. pumilus	300 mL.ha	В
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Manfil 800 WP	Mancozebe	1.500 g.ha	ВС
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	В
	Belyan	Mefentrifluconazole + Piraclostrobina + Fluxapiroxade	600 mL.ha	С
	Mess	Éster Metílico De Óleo De Soja	0,5 %	С
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	D
8	Bombardeio	Bacillus subtilis + B. Velezensis + B. pumilus	300 mL.ha	AB
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Manfil 800 WP	Mancozebe	1.500 g.ha	С
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	В
	Belyan	Mefentrifluconazole + Piraclostrobina + Fluxapiroxade	600 mL.ha	С
	Mess	Éster Metílico De Óleo De Soja	0,5 %	С
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	D
9	Bombardeio	Bacillus subtilis + B. Velezensis + B. pumilus	300 mL.ha	AB
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Manfil 800 WP	Mancozebe	1.500 g.ha	ВС
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	В
	Belyan	Mefentrifluconazole + Piraclostrobina + Fluxapiroxade	600 mL.ha	С
	Mess	Éster Metílico De Óleo De Soja	0,5 %	С
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	D
	Score Flexi	Difenoconazol + Propiconazol	150 mL.ha	Α

¹Aplicação A: 20 DAE (dias após emergência), B: 30 DAE, C: 45 DAE e D: 60 DAE.

RESULTADOS

Tabela 3. Fitotoxidade em plantas de soja submetida ao tratamento com diferentes fungicidas em oito avaliações realizadas aos sete e quatorze dias após cada aplicação. Maracaju, MS, 2025.

N.	7 DAA1¹	14 DAA1	7 DAA2	14 DAA2	7 DAA3	14 DAA3	7 DAA4	14 DAA4
Testemunha	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Score Flexi > F.Xpro + MCZ	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Bio > F. Xpro + MCZ	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S. Flexi + Bio > F.Xpro + MCZ	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
F. Xpro + MCZ	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
F. Xpro + Bio	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
F. Xpro + MCZ + Bio	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Bio > F. Xpro + Bio	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Sc. Flexi + Bio > F.Xpro + MCZ + Bio	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Teste F								
CV (%)								

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. nsnão-significativo. CV: coeficiente de variação. DAA: Dias após a aplicação.

Tabela 4. Severidade (%) de mancha-alvo em plantas de soja submetida a diferentes programas de fungicidas e área abaixo da curva de progresso da doença (AACPD). Maracaju, MS, 2025.

N.	7DAA1	14DAA1	7DAA2	14DAA2	7DAA3	14DAA3	7DAA4	14DAA4	21DAA4	28DAA4	AACPD
Testemunha	0,0	0,0	0,0	0,0	0,0	0,0	21,0 a	21,7 a	20,7 a	23,7 a	575,2 a
Score Flexi > F.Xpro + MCZ	0,0	0,0	0,0	0,0	0,0	0,0	2,3 c	5,8 b	10,8 b	15,3 b	186,0 b
Bio > F. Xpro + MCZ	0,0	0,0	0,0	0,0	0,0	0,0	3,3 bc	5,7 b	8,7 bc	14,2 b	173,7 bc
S. Flexi + Bio > F.Xpro + MCZ	0,0	0,0	0,0	0,0	0,0	0,0	4,0 b	4,4 c	7,7 cd	11,5 c	152,9 cd
F. Xpro + MCZ	0,0	0,0	0,0	0,0	0,0	0,0	3,4 bc	6,1 b	10,5 bc	14,4 b	190,3 b
F. Xpro + Bio	0,0	0,0	0,0	0,0	0,0	0,0	3,8 b	6,4 b	11,2 b	15,3 b	202,9 b
F. Xpro + MCZ + Bio	0,0	0,0	0,0	0,0	0,0	0,0	3,8 b	6,3 b	9,5 bc	15,9 b	192,8 b
Bio > F. Xpro + Bio	0,0	0,0	0,0	0,0	0,0	0,0	3,9 b	6,5 b	8,9 bc	14,5 b	185,6 b
Sc. Flexi + Bio > F.Xpro + MCZ + Bio	0,0	0,0	0,0	0,0	0,0	0,0	2,4 c	5,8 b	5,7 d	11,3 c	136,5 d
Teste F							248,9**	175,7**	20,2**	29,7**	181,7**
CV (%)							14,0	10,5	18,0	8,7	9,0

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. *significativo cV: coeficiente de variação.

Figura 2. Área Abaixo da Curva de Progresso da Doença (AACPD) e eficácia de controle (%) da mancha-alvo em plantas de soja submetidas a diferentes programas de fungicidas. Maracaju, MS, 2025.

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05).

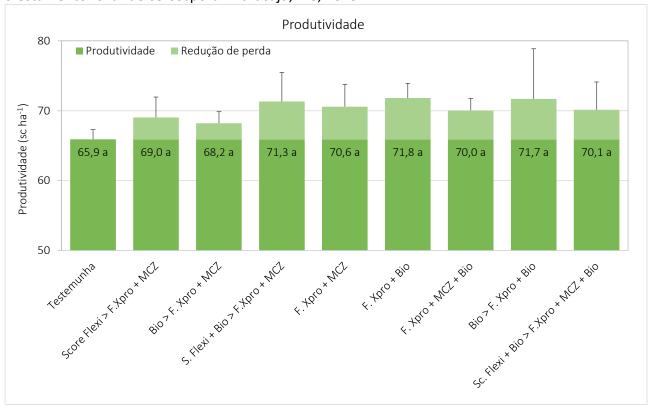


Tabela 6. Desfolha (%), produtividade (sc ha⁻¹ e kg ha⁻¹), redução de perdas de produtividade (%) (RP), massa de mil grãos (MMG) (g) e redução de perdas da massa de mil grãos de plantas de soja plantas de soja submetidas a diferentes programas de fungicidas para o controle da mancha-alvo. Maracaju, MS, 2025.

N.	Desfolha (%)	Produtivi. (kg ha ⁻¹)	Produtivi. (sc ha ⁻¹)	RP (%)	MMG (g)	RP da MMG (%)
Testemunha	95,3 a	3954,3 a	65,9 a	0,0	124,7 b	0,0
Score Flexi > F.Xpro + MCZ	68,5 b	4142,1 a	69,0 a	-4,7	131,4 ab	-5,4
Bio > F. Xpro + MCZ	71,1 b	4092,2 a	68,2 a	-3,5	127,1 ab	-1,9
S. Flexi + Bio > F.Xpro + MCZ	70,9 b	4279,0 a	71,3 a	-8,2	134,4 a	-7,8
F. Xpro + MCZ	70,5 b	4234,2 a	70,6 a	-7,1	131,9 ab	-5,8
F. Xpro + Bio	66,0 b	4308,8 a	71,8 a	-9,0	132,4 ab	-6,2
F. Xpro + MCZ + Bio	71,0 b	4202,0 a	70,0 a	-6,2	131,9 ab	-5,7
Bio > F. Xpro + Bio	74,4 b	4301,0 a	71,7 a	-8,8	128,3 ab	-2,9
Sc. Flexi + Bio > F.Xpro + MCZ + Bio	71,4 b	4208,5 a	70,2 a	-6,4	131,2 ab	-5,2
Teste F	8,8	0,6 ^{ns}	0,6 ^{ns}		1,4	
CV (%)	7,9	7,0	7,0		4,0	

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. nsnão-significativo. CV: coeficiente de variação.

Figura 4. Produtividade (sc ha⁻¹) e incremento relativo de produtividade (sc ha⁻¹) de plantas de soja plantas de soja submetidas a diferentes programas de fungicidas para o controle de mancha-alvo e crestamento foliar de cercospora. Maracaju, MS, 2025.

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05).

CONCLUSÕES

Nas condições edafoclimáticas em que o ensaio foi realizado, não foram observados sintomas de fitotoxicidade em nenhum dos tratamentos avaliados.

A associação de produtos biológicos no estádio vegetativo (V4) e no pré-fechamento de linhas agregou significativamente no controle da mancha-alvo.

Todos os tratamentos reduziram significativamente a desfolha prematura das plantas.

Não houve diferenças significativas no parâmetro produtividade.

O tratamento com a utilização do biológico (Bombardeiro) no vegetativo apresentou maior massa de mil grãos 134,4 g.

ANEXO

Figura 1. Imagens de satélite obtidas pelo Google Earth no dia 12 de janeiro de 2025. Maracaju, MS, 2025.

Tabela 1. Produtos fitossanitários utilizados, alvo biológico, dose empregada e estádio fenológico da cultura no momento da aplicação. Maracaju, MS, 2025.

Classe	Princípio Ativo	Marca comercial	Dose	Momento
Herbicida	2,4-D	2,4-D Nortox	1 L/ha	35 DANP
Adjuvante	Óleo mineral	Assist	0,5L/ha	35 DANP
Herbicida	Glufosinato	Glufosinato Nortox	2,5L/ha	Após o plantio
Herbicida	Haloxifop	Haloxifop CCAB 124,7 Ec	0,5 L/ha	Após o plantio
Herbicida	Glifosato	Glifosato 720 WG Nortox	1,5 Kg/ha	20 DAE
Herbicida	Haloxifop	Haloxifop CCAB 124,7 Ec	0,5 L/ha	20 DAE
Inseticida	Abamectina	Vertimec 84 SC	60 ml/ha	20 DAE
Adjuvante	Óleo mineral	Assit	0,5 L/ha	20 DAE
Inseticida	Etiprole	Curbix 200 SC	1 L/ha	30 DAE
Inseticida	Piriproxifem	Epingle 100	0,25 L/ha	30 DAE
Inseticida	Clorantraniliprole	Premio	0,12 L/ha	30 DAE
Inseticida	Acefato	Acefato Nortox	0,5 Kg/ha	40 DAE
Inseticida	Imidacloprid	Imidacloprid nortox	0,25 L/ha	40 DAE
Inseticida	Clorantraniliprole	Premio	0,12 L/ha	40 DAE
Inseticida	Acetamiprido + Piriproxifem	Trivor	0,3 L/ha	40 DAE
Inseticida	Metomil	Lannate	1,0 L/ha	65 DAE
Inseticida	Dinotefuram + Lambda-cialotrina	Zeus	0,5 L/ha	65 DAE
Inseticida	Clorfenapir	Pirate	1,0 L/ha	65 DAE
Inseticida	Acetamiprido	Trivor	0,3 L/ha	65 DAE
Inseticida	Acefato	Magnum	1,5 kg/ha	65 DAE

^{*}Utilização de adjuvantes conforme recomendação do fabricante.*Foram realizadas aplicações sequenciais para o controle de mosca-branca (Bemisia tabaci), com intervalo de 5 dias e rotacionando os princípios ativos a partir dos 65 DAE.

Escalas diagramáticas

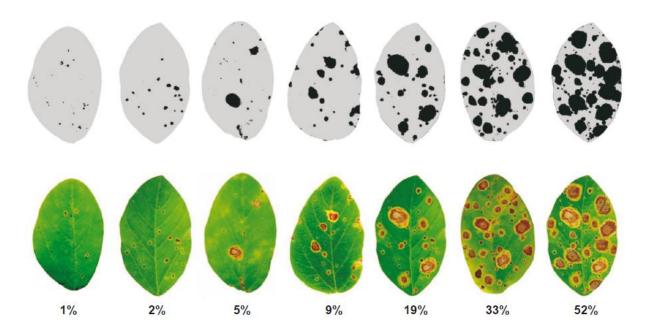


Figura 2. Escala diagramática para a avaliação de severidade de mancha-alvo em soja (SOARES et al., 2009).

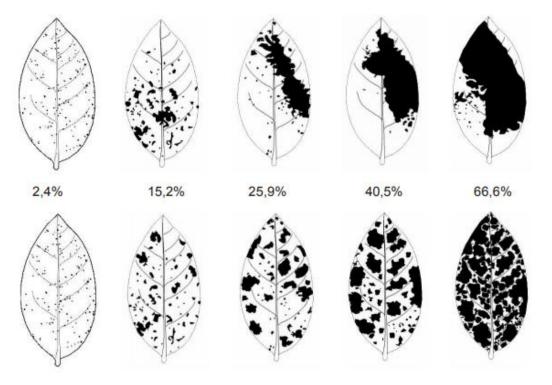


Figura 3. Escala diagramática das doenças de final de ciclo da soja causadas por *Septoria glycines* e *Cercospora kikuchii*. Painel superior: Sintomas agregados. Painel inferior: sintomas aleatoriamente distribuídos (MARTINS et al., 2004).

Figura 4. Escalas descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de bronzeamentos, cloroses e necroses foliares causadas por fungicidas em soja (Campos e Silva 2012).

Tabela 2. Escala descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de bronzeamentos, cloroses e necroses foliares causadas por fungicidas em soja. (Campos et al., 2012).

Nota	Descrição
0	Ausência de fitotoxidez;
1	Muito leve: até 10% da área foliar com presença de cloroses ou bronzeamento;
2	Medianamente leve: entre 11 a 25% da área foliar com presença de cloroses ou bronzeamento;
3	Leve: entre 11 e 25% da área foliar com presença de cloroses ou bronzeamento e com necroses;
4	Medianamente forte: entre 25% e 50% de área foliar afetada e com presença de necroses;
5	Forte: entre 50% e 75% da área foliar afetada e com presença de necroses pronunciadas;
6	Muito forte: mais de 75% de área foliar afetada e com presença de necroses pronunciadas;
7	Extremamente forte: seca total do folíolo afetado;

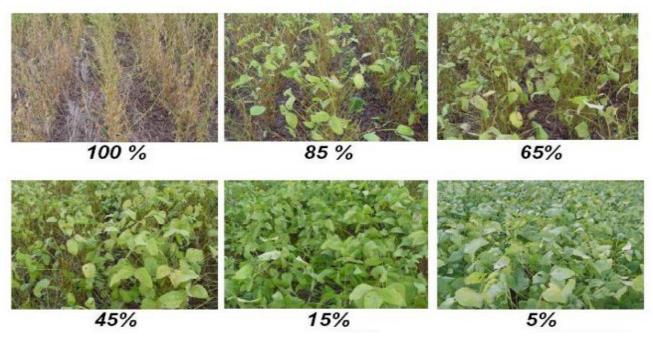


Figura 5. Escala diagramática para estimativa de desfolha provocada por doenças em soja.

Fórmulas da AACPD, eficácia de controle e produtividade

Área Abaixo da Curva de Progresso da Doença (AACPD) baseado no modelo proposto por Campbell e Madden (1990), em que:

$$AACPD = \sum_{1}^{n-1} \frac{(Yi + Yi + 1)}{2} (ti + 1 - ti)$$

Onde n é o número de avaliações, y a severidade da doença e t é o tempo em dias de cada avaliação.

Eficácia de controle segundo método proposto por Abbott (1925), em que:

$$E(\%) = \frac{(T-t)100}{T}$$

Onde E (%) é a eficácia de controle do tratamento expressa em porcentagem, T é o valor da AACPD na testemunha, e t é o valor da AACPD no tratamento avaliado.

Para a correção da umidade dos grãos utilizou-se a fórmula abaixo:

$$Produtividade = \frac{10 \times (100 - US) \times PP}{(100 - 13) \times AC}$$

Onde produtividade é expresso em toneladas por hectare, US é a umidade da semente em %, PP é o peso colhido na parcela em kg, e AC é a área colhida da parcela em m²

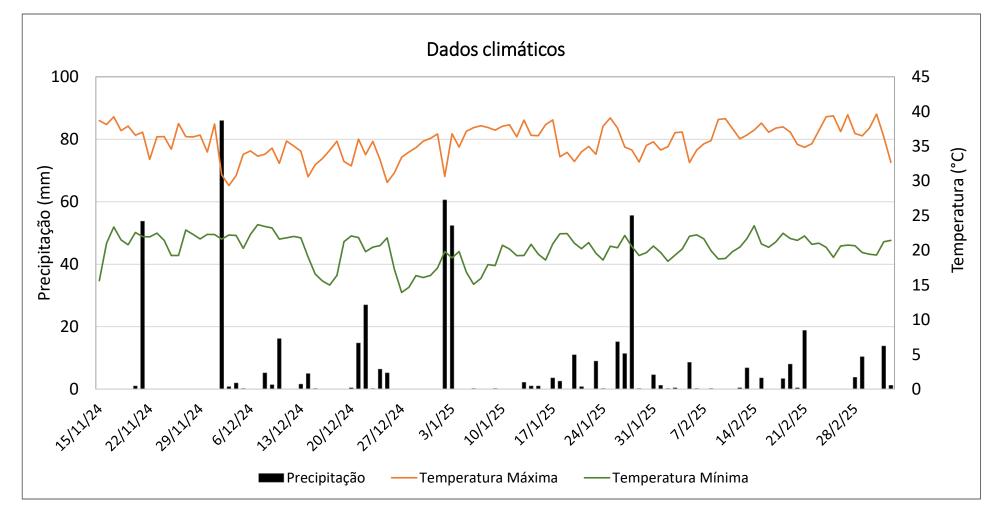


Figura 10. Precipitação e temperatura máxima e mínima registradas durante o desenvolvimento do experimento. Maracaju, MS, 2025. Fonte: Estação meteorológica Farmers Edge.

REFERÊNCIAS BIBLIOGRÁFICAS

ABBOTT, W.S. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, v.18, p.265-267, 1925.

AMORIM, Lilian et al. Manual de fitopatologia. 2016.

BOFF, P.; ZAMBOLIM, L.; VALE, F.X.R. Escalas para avaliação de severidade de mancha-de-estenfílio (*Stemphylium solani*) e da pinta preta (*Alternaria solani*) em tomateiro. Fitopatologia Brasileira, v.16, n.1, p.280-283, 1991.

CAMPBELL, C.L.; MADDEN, L.V. Introduction to plant disease epidemiology. New York: John Wiley & Sons, 1990. 532p.

CAMPOS, H. D; SILVA, L. H. C. P. Escalas descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de cloroses e/ou bronzeamentos e necroses foliares causadas por fungicidas. Rio Verde/GO: UniRV, 2012.

CANTERI, Marcelo G. et al. SASM-Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Duncan, Tukey e Duncan. **Revista Brasileira de agrocomputação**, v. 1, n. 2, p. 18-24, 2001.

CONAB. Companhia Nacional de Abastecimento. Acompanhamento da Safra brasileira de grãos. V. 11 – safra 2023/24, nº 4, quarto levantamento, 2025.

FRAC - FUNGICIDE RESISTANCE ACTION COMMITTEE. Frac code list. Disponível em: https://www.frac.info. Acesso em: 31 de Janeiro 2024.

HENNING, A. A. et al. Manual de identificação de doenças de soja. 5.ed. Londrina: Embrapa Soja, 2014. 76 p. (Documentos / Embrapa Soja, ISSN 1516-781X; n. 256).

HIRANO, Mario et al. Validação de escala diagramática para estimativa de desfolha provocada pela ferrugem asiática em soja. Summa phytopathologica, v. 36, p. 248-250, 2010.

KAJIHARA, L. H. et al. Ação in vitro e in vivo de fungicida sistêmico e multissítio sobre *Phakopsora pachyrhizi*. Summa Phytopathologica, v. 47, p. 216-221, 2022.

KRANZ, J. Measuring plant disease. In KRANZ, J.; ROTEM, J. (Eds.) Experimental techniques in plant disease epidemiology, p.35-50. Heldelberg: Springer-Verlag, 1988. 299p.

LEMES, E. M. et al. Doenças da soja: melhoramento genético e técnicas de manejo. 1. Ed. Campinas: Millennium Editora, 2015. 363 p.

MARTINS, Mônica C. et al. Escala diagramática para a quantificação do complexo de doenças foliares de final de ciclo em soja. Fitopatologia Brasileira, v. 29, p. 179-184, 2004.

MOLINA, J. P. E.; PAUL, P. A.; AMORIM, L.; SILVA, L. H. C. P. da; SIQUERI, F. V.; BORGES, E. P.; CAMPOS, H. D.; VENANCIO, W. S.; MEYER, M. C.; MARTINS, M. C.; BALARDIN, R. S.; CARLIN, V. J.; GRIGOLLI, J. F. J.; BELUFI, L. M. de R.; NUNES JUNIOR, J.; GODOY, C. V. Effect of target spot on soybean yield and factors affecting this relationship. Plant Pathology, v. 68, p. 107-115, 2019.

PAULA, R.S.; OLIVEIRA, W.R. Resistência de tomateiro (Lycopersicon esculentum) ao patógeno Alternaria solani. Pesquisa Agropecuária Tropical, v.33, n.2, p.89-95, 2003.

SOARES, R.M.; GODOY, C.V.; OLIVEIRA, M.C.N. Escala diagramática para avaliação da severidade da mancha alvo da soja. Tropical Plant Pathology, v.34, n.5, p.333-338, 2009.

SOARES, Ana Paula Gomes et al. More Cercospora species infect soybeans across the Americas than meets the eye. **PLoS One**, v. 10, n. 8, p. e0133495, 2015.

SOSA-GÓMEZ, D. R.; CORRÊA-FERREIRA, B. S.; HOFFMANN-CAMPO, C. B.; CORSO, I. C.; OLIVEIRA, L. J.; MOSCARDI, F.; PANIZZI, A. R.; BUENO, A. F.; HIROSE, E.; ROGGIA, S. Manual de identificação de insetos e outros invertebrados da cultura da soja. 3. ed. Londrina: Embrapa Soja, 2014.

Maracaju, MS, 23 de abril de 2025

ana Claudia Ruschel mochko

Dra. Ana Claudia Ruschel Mochko CREA 65838/MS Pesquisadora – Fundação MS

