

AVALIAÇÃO DA EFICÁCIA E PRATICABILIDADE AGRONÔMICA DA APLICAÇÃO DE FUNGICIDAS NA **SEGUNDA APLICAÇÃO (ESTÁDIO R3)** NO CONTROLE DE Corynespora cassiicola E Cercospora spp. NA CULTURA DA SOJA (Glycine max) NA SAFRA 2023/24 NAS CONDIÇÕES DE MATO GROSSO DO SUL (NAVIRAÍ)

Protocolo: FMS/FP 4231/23

Responsável Técnico: Eng. Agr. Dra. Ana Claudia Ruschel Mochko (CREA 65838/MS). Pesquisadora da FUNDAÇÃO MS.

Maracaju, MS 22 de abril de 2024

LAUDO TÉCNICO DE EXPERIMENTAÇÃO AGRÍCOLA

AVALIAÇÃO DA EFICÁCIA E PRATICABILIDADE AGRONÔMICA DA APLICAÇÃO DE FUNGICIDAS NA **SEGUNDA APLICAÇÃO (ESTÁDIO R3)** NO CONTROLE DE *Corynespora cassiicola E Cercospora* spp. NA CULTURA DA SOJA (*Glycine max*) NA SAFRA 2023/24 NAS CONDIÇÕES DE MATO GROSSO DO SUL (**NAVIRAÍ**)

PROTOCOLO: FMS/FP 4231/23

INSTITUIÇÃO EXECUTORA: Fundação MS para Pesquisa e Difusão de Tecnologias Agropecuárias, inscrita no CNPJ/MF sob o nº. 37.213.139/0001-23, com sede na Cidade de Maracaju, Estado de Mato Grosso do Sul, na Estrada da Usina Velha, km 2, Caixa Postal 137, CEP 79.150-000.

EMPRESA REQUERENTE: Fundação MS

CULTURA: Soja 2023/2024

AUTORES: Eng^a. Agr^a. Dra. Ana Claudia Ruschel Mochko e Eng^a. Agr^a Natália Patrícia Ungri

OBJETIVOS: O objetivo do presente trabalho foi avaliar a eficácia e a praticabilidade agronômica da aplicação de fungicidas na segunda aplicação (estádio R3), no controle da mancha-alvo (*Corynespora cassiicola*) e das doenças de final de ciclo (*Cercospora* spp.) na cultura de soja (*Glycine max*), em condições de campo, além de registrar possíveis efeitos de fitotoxicidade à referida cultura e o rendimento de grãos, nas condições ambientais de Naviraí, Mato grosso do Sul.

SUMÁRIO

INTRODUÇÃO	4
MATERIAL E MÉTODOS	6
Local e data	6
Variedade, semeadura, sistema de cultivo	6
Tecnologia de aplicação (barra, espaçamento entre bicos, volume de calda e pressão)	6
Dados climáticos	6
Condições climáticas, data e momento das aplicações	7
Dimensão das parcelas, espaçamento e densidade	7
Aplicações de produtos fitossanitários para manutenção da cultura da soja	7
Croqui do experimento	9
Tratamentos	10
Método de avaliação	12
RESULTADOS	15
Conclusões	19
Referências hibliográficas	20

INTRODUÇÃO

A soja (*Glycine max* (L.) Merril) é uma leguminosa pertencente à família Fabaceae, e desempenha um papel de destaque tanto na agricultura quanto na economia global. Originária do leste asiático, essa cultura tornou-se amplamente cultivada em várias regiões do mundo devido à sua versatilidade e valor nutricional. Sua importância abrange a produção de alimentos, rações para animais, óleos vegetais e diversas aplicações industriais, como na fabricação de cosméticos, tintas, adesivos, fibras e plásticos (SOSA-GÓMEZ et al., 2014).

As condições climáticas e do solo encontradas no Brasil fizeram com que o país se tornasse líder na produção mundial de grãos, com uma estimativa de produção de 155,3 milhões de toneladas na safra 2023/2024. No entanto, durante essa safra, devido as condições climáticas adversas em diversas regiões do país, a perspectiva de colheita resultou em uma diminuição de 3%, equivalente a 4,9 milhões de toneladas em comparação com a safra anterior (2022/2023), conforme relatório da CONAB (2024).

Apesar dos impressionantes números de produção, o cultivo de soja no Brasil depara-se com desafios que limitam sua produtividade. Um dos principais obstáculos reside nas doenças causadas por fungos, bactérias, vírus e nematoides, que podem afetar a cultura ao longo de todo o ciclo (AMORIM, et al., 2016). Na região centro-oeste, destaca-se a mancha-alvo e as doenças de final de ciclo (DFC's), como o crestamento foliar de cercospora, gerando preocupações entre os produtores devido ao aumento significativo da incidência dessas doenças na região (LEMES, et al., 2015).

A mancha-alvo, causada pelo fungo *Corynespora cassiic*ola (Berk. & Curt.) Wei, afeta a cultura ao longo de seu desenvolvimento, com maior incidência a partir do estádio fenológico R1, no início do florescimento. Os sintomas incluem lesões circulares com halos cloróticos, evoluindo para coloração castanho-avermelhada, e podem se manifestar em folhas, pecíolos, hastes e vagens (HENNING, et al., 2014) (Figura 1: D e E). Chuvas bem distribuídas favorecem a ocorrência da doença, resultando em desfolha em cultivares suscetíveis, com perdas de produtividade de até 40% (MOLINA et al., 2019). O aumento da semeadura de cultivares suscetíveis, sucessão com culturas hospedeiras do fungo e menor sensibilidade/resistência do fungo a fungicidas contribuem para o aumento da incidência dessa doença (FRAC, 2024).

O crestamento foliar de cercospora, o qual tem como agente causal várias espécies do gênero *Cercospora*, como as espécies *Cercospora kikuchii* (Matsu & Tomoyasu), *C. cf. flagellaris*, *C. sojina* e *C. alchemillicola* podem afetar todas as partes da planta, inclusive os grãos, causando a mancha-púrpura (SOARES, et al., 2015). Os sintomas incluem pontuações castanho-avermelhadas nas folhas e hastes, levando ao crestamento e desfolha precoce (Figura 1: A e B). Nas sementes, são

observadas manchas de coloração púrpura que são facilmente identificadas (Figura 1: C). Essas doenças resultam em perdas quantitativas e qualitativas nos grãos, exigindo a adoção de medidas preventivas de controle.

Dentre as medidas de controle recomendadas, destacam-se a rotação de culturas, controle genético com prioridade para cultivares resistentes, controle biológico e o uso de fungicidas específicos e de amplo espectro em diferentes estágios de desenvolvimento da cultura (KAJIHARA, et al., 2022).

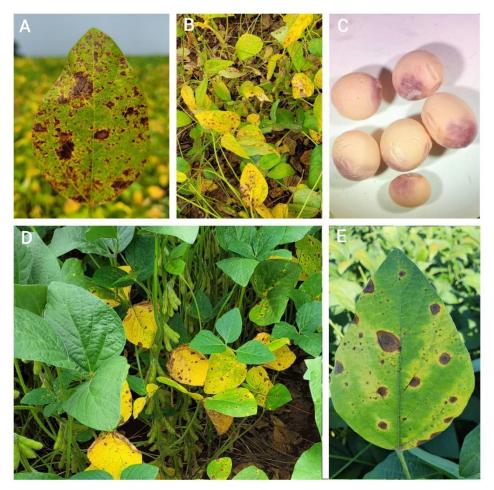


Figura 1. A: Sintomas de crestamento foliar de cercospora; B: Desfolha precoce e sintomas de crestamento no terço médio e superior de plantas de soja; C: Sintomas de mancha-púrpura em grãos de soja; D: Sintomas de mancha-alvo em folhas do terço inferior de plantas de soja; E: Sintomas de mancha-alvo.

MATERIAL E MÉTODOS

Local e data

O experimento foi conduzido em condições de campo, durante a safra 2023/2024, na área experimental da Fundação MS, localizada no município de Itaquiraí-MS.

Variedade, semeadura, sistema de cultivo

Utilizou-se a cultivar Brasmax Fibra, recomendada para o cultivo na região. A cultura foi implantada utilizando o sistema de semeadura direta, sucedendo a anterior plantação de Brachiaria sp. A semeadura foi realizada no dia 29 de outubro de 2023, a germinação ocorreu em 04 de novembro de 2023 e a colheita no dia 01 de março de 2023. No sulco de plantio, utilizou-se 150 kg ha⁻¹ de fosfato monoamônio (MAP) 3 150 kg ha⁻¹ de KCl.

Tecnologia de aplicação (barra, espaçamento entre bicos, volume de calda e pressão)

Para aplicação dos tratamentos, utilizou-se pulverizador costal de pressão constante (CO₂) equipado com uma barra de 3,0 m e com 6 pontas de jato duplo leque, modelo TJ 110.02, espaçadas de 50 cm. O volume de calda de 120 L.ha⁻¹ foi mantido à pressão constante de 50 psi.

Dados climáticos

Os dados climáticos, incluindo índices pluviométricos e temperaturas máximas e mínimas, registrados na área experimental durante a condução do ensaio, estão apresentados no gráfico abaixo:

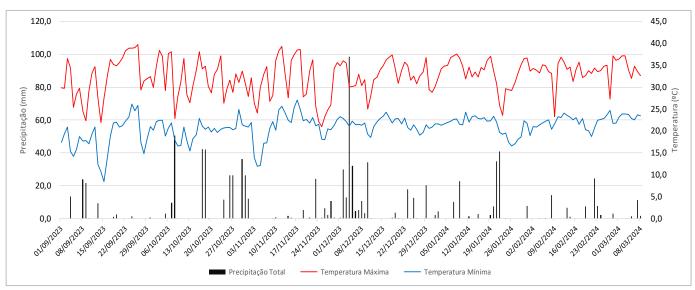


Figura 3. Variáveis climáticas como precipitação, temperatura máxima e mínima, bem como a temperatura registradas durante o desenvolvimento do experimento. Maracaju, MS, 2024. Fonte: Estação meteorológica Farmers Edge.

Condições climáticas, data e momento das aplicações

Durante as aplicações, as condições climáticas se apresentavam normais, com boa umidade no solo. A umidade relativa do ar, a temperatura, os horários, a nebulosidade e a velocidade de vento no momento das aplicações estão apresentadas a seguir:

Tabela 1. Data de aplicação, estádio de desenvolvimento da cultura da soja, bem como as condições climáticas no momento das pulverizações. Maracaju, MS, 2024.

Data	Estádio	Horário (início)	Temp. (°C)	URA (%)1	Vento (km/h)
10/12/23	Vegetativo	05:20	25,3	86	4,3
22/12/23	Reprodutivo	06:00	27	82	4
05/01/24	Reprodutivo	17:50	31	66	4

¹Umidade Relativa do Ar

Dimensão das parcelas, espaçamento e densidade

O experimento foi conduzido com delineamento em blocos casualizados, com doze tratamentos e quatro repetições. As parcelas experimentais foram constituídas de 2,5 metros de largura por 6 metros de comprimento, totalizando 15 m². A semeadura foi realizada com espaçamento de 50 cm entre linhas e densidade de 14 plantas/metro linear.

Aplicações de produtos fitossanitários para manutenção da cultura da soja

Na descrição abaixo, é possível verificar os produtos fitossanitários utilizados no decorrer do ciclo da cultura da soja, a fim de garantir a sanidade da lavoura bem como a manutenção de seu potencial produtivo (Tabela 2).

Tabela 2. Produtos fitossanitários utilizados, alvo biológico, dose empregada e estádio fenológico da cultura no momento da aplicação. Maracaju, MS, 2024.

Classe	Princípio Ativo	Marca comercial	Dose	Momento
Herbicida	2,4-D	2,4-D Nortox	1 L/ha	35 DANP
Adjuvante	Óleo mineral	Assist	0,5L/ha	35 DANP
Herbicida	Glufosinato	Glufosinato Nortox	2,5L/ha	Após o plantio
Herbicida	Haloxifop	Haloxifop CCAB 124,7 Ec	0,5 L/ha	Após o plantio
Herbicida	Glifosato	Glifosato 720 WG Nortox	1,5 Kg/ha	20 DAE
Herbicida	Haloxifop	Haloxifop CCAB 124,7 Ec	0,5 L/ha	20 DAE
Inseticida	Abamectina	Vertimec 84 SC	60 ml/ha	20 DAE
Adjuvante	Óleo mineral	Assit	0,5 L/ha	20 DAE

Fundação MS para Pesquisa e Difusão | Estrada da Usina Velha, Km02, Zona Rural de Tecnologias Agropecuárias | CEP 79.150-000, Maracaju - MS. Caixa Postal - 137

Inseticida	Etiprole	Curbix 200 SC	1 L/ha	30 DAE
Inseticida	Piriproxifem	Epingle 100	0,25 L/ha	30 DAE
Inseticida	Clorantraniliprole	Premio	0,12 L/ha	30 DAE
Inseticida	Acefato	Acefato Nortox	0,5 Kg/ha	40 DAE
Inseticida	Imidacloprid	Imidacloprid nortox	0,25 L/ha	40 DAE
Inseticida	Clorantraniliprole	Premio	0,12 L/ha	40 DAE
Inseticida	Acetamiprido + Piriproxifem	Trivor	0,3 L/ha	40 DAE
Inseticida	Metomil	Lannate	1,0 L/ha	65 DAE
Inseticida	Dinotefuram + Lambda-cialotrina	Zeus	0,5 L/ha	65 DAE
Inseticida	Clorfenapir	Pirate	1,0 L/ha	65 DAE
Inseticida	Acetamiprido	Trivor	0,3 L/ha	65 DAE
Inseticida	Acefato	Magnum	1,5 kg/ha	65 DAE

^{*}Utilização de adjuvantes conforme recomendação do fabricante.

Croqui do experimento

\leftarrow								\uparrow					_
13	12	X	10	9	8	7	6	5	4	3	2	1	Bloco D
3	7	13	9	2	12	10	1	X	5	8	6	4	Bloco C
							R	ua					
X	6	4	1	12	2	5	10	8	7	13	3	9	Bloco B
1	2	3	4	5	6	7	8	9	10	X	12	13	Bloco A

Área da parcela: $3 \text{ m x } 6 \text{ m} = 18 \text{ m}^2$

Tratamentos

Tabela 3. Produto comercial (p.c.), ingrediente ativo (i.a.), dose dos fungicidas e timming de aplicação nos tratamentos para controle da mancha-alvo da soja, safra 2023/2024.

T.	PRODUTOS	I.A.	DOSE	COD. DA APLICAÇÃO
1	Testemunha			
2	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	AB
	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	В
	Mess	Éster Metílico De Óleo De Soja	0,25 %	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	С
3	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	AB
	Unizeb Gold	Mancozebe	1.500 g.ha	AB
	Fox Supra	Impirfluxam + Protioconazol	350 mL.ha	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	C
4	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	AB
	Excalia Max	Impirfluxam + Tebuconazol	500 mL.ha	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	C
	Agris	Óleo Mineral	500 mL.ha	В
5	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	AB
	Alade	Benzovindiflupyr + Ciproconazol + Difenoconazol	500 mL.ha	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	С
6	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
U	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	AB
	Vessarya	Benzovindiflupyr + Picoxistrobina	600 mL.ha	B
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	C
7	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
,	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	A
	Evolution	Protioconazol + Azoxiatrobina + Mancozebe	2.000 g.ha	B
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	C
	Strides	2 az simisti z simi i expressioni	0,25 %	В
8	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
J	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	A

Fundação MS para Pesquisa e Difusão

	Fusão EC	Metominostrobin + Tebuconazol	580 g.ha	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	С
	Iharol gold		0,25 %	В
9	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	AB
	Belyan	Mefentrifluconazole + Piraclostrobina +	600 mL.ha	В
		Fluxapiroxade		
	Mess	Éster Metílico De Óleo De Soja	0,25 %	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	C
10	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	AB
	Viovan	Picoxistrobina + Protioconazol	600 mL.ha	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	C
11	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	A
	Unizeb Gold	Mancozebe	1.500 g.ha	AB
	Miravis Pro	Protioconazol + Pidiflumetofem	750 mL.ha	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	С
13	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	A
	Aureo	Éster Metílico De Óleo De Soja	0,25 %	AB
	Unizeb Gold	Mancozebe	1.500 g.ha	A
	Pontual	Ciproconazol + Azoxistrobina + Clorotalonil	1.500 mL.ha	В
	Aproach Power	Picoxistrobina + Ciproconazol	600 mL.ha	С

¹Aplicação A: 35 DAE (dias após emergência), B: 50 DAE, C: 65 DAE

Método de avaliação

Durante a condução do experimento realizou-se dez avaliações de severidade da doença, em estádios distintos de desenvolvimento da cultura. A primeira avaliação foi realizada na prévia da aplicação, e posteriormente, aos 7 e 14 dias após cada aplicação, e aos 7, 14, 21 e 28 dias após a última aplicação. A avaliação da severidade da mancha-alvo (porcentagem de área foliar com sintomas) das parcelas foi estimada com auxílio de escala diagramática descrita por Martins et al. (2004), para a avaliação das doenças de final de ciclo (Figura 5).

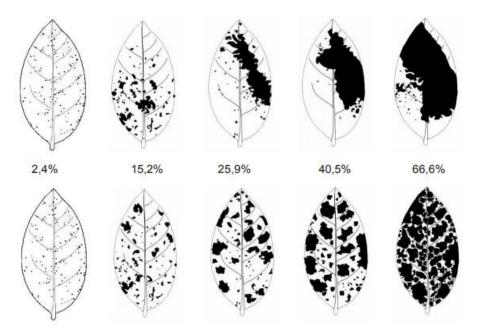


Figura 5. Escala diagramática das doenças de final de ciclo da soja causadas por *Septoria glycines* e *Cercospora kikuchii*. Painel superior: Sintomas agregados. Painel inferior: sintomas aleatoriamente distribuídos (MARTINS et al., 2004).

A severidade da doença resulta do tamanho e número de lesões, sendo que estes dois componentes podem atuar de formas independentes durante o progresso da doença (KRANZ 1988; BOFF et al. 1991). Além disso, a melhor representação de uma epidemia é a curva de progresso da doença, geralmente expressa plotando-se a proporção de doença em função do tempo (PAULA e OLIVEIRA 2003). Desta forma, os dados de severidade foram utilizados para o cálculo da área abaixo da curva de progresso da doença (AACPD) baseado no modelo proposto por Campbell e Madden (1990), em que:

$$AACPD = \sum_{1}^{n-1} \frac{(Yi + Yi + 1)}{2} (ti + 1 - ti)$$

Onde n é o número de avaliações, y a severidade da doença e t é o tempo em dias de cada avaliação.

Com base nos dados obtidos da severidade de doença na área experimental, foi calculada a eficiência de controle de cada tratamento segundo método proposto por Abbott (1925), em que:

$$E(\%) = \frac{(T-t)100}{T}$$

Onde E (%) é a eficiência de controle do tratamento expressa em porcentagem, T é o valor da AACPD na testemunha, e t é o valor da AACPD no tratamento avaliado.

A fitotoxicidade dos produtos aplicados sobre a cultura foi avaliada visualmente no mesmo momento das avaliações de severidade da doença, sendo realizadas observações nas folhas das plantas, com a finalidade de registrar possíveis ocorrências de sintomas de injúrias. Foram atribuídas notas de acordo com a escala descritiva e diagramática proposta por Campo e Silva (2012) em função da clorose observada nos diferentes tratamentos (Tabela 4 e Figura 6).

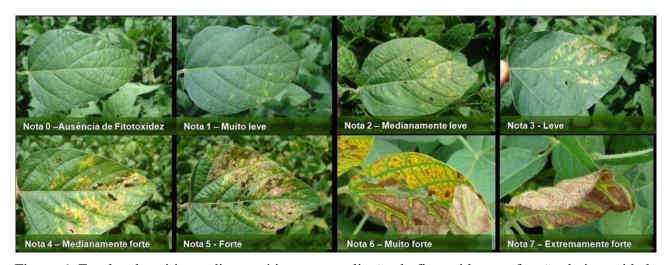


Figura 6. Escalas descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de bronzeamentos, cloroses e necroses foliares causadas por fungicidas em soja (Campos e Silva 2012).

Tabela 4. Escala descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de bronzeamentos, cloroses e necroses foliares causadas por fungicidas em soja. (Campos et al., 2012).

Nota	Descrição
0	Ausência de fitotoxidez;
1	Muito leve: até 10% da área foliar com presença de cloroses ou bronzeamento;
2	Medianamente leve: entre 11 a 25% da área foliar com presença de cloroses ou bronzeamento;
3	Leve: entre 11 e 25% da área foliar com presença de cloroses ou bronzeamento e com necroses;
4	Medianamente forte: entre 25% e 50% de área foliar afetada e com presença de necroses;
5	Forte: entre 50% e 75% da área foliar afetada e com presença de necroses pronunciadas;
6	Muito forte: mais de 75% de área foliar afetada e com presença de necroses pronunciadas;
7	Extremamente forte: seca total do folíolo afetado;

A avaliação da desfolha nos tratamentos foi realizada visualmente a partir do momento em que a testemunha apresentava desfolha próxima a 80%, com auxílio da escala diagramática descrita por Hirano et al. (2010) (Figura 7).

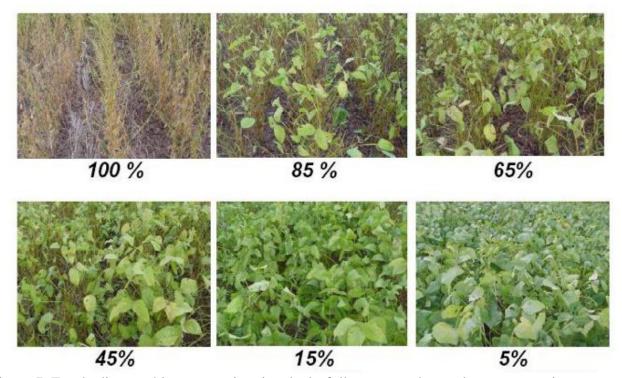


Figura 7. Escala diagramática para estimativa de desfolha provocada por doenças em soja.

O rendimento de grãos foi obtido pela colheita da área útil de cada parcela, que correspondeu a 5,4 m² (3 linhas x 4 metros), convertendo-se para kg.ha¹¹ a 13% de umidade. As parcelas foram colhidas mecanicamente com colhedora de parcelas automotriz. A massa de mil grãos foi avaliada realizando-se a contagem dos grãos em contador automático e pesagem em balança de precisão, ajustando-se a umidade para 13%, umidade esta que foi mensurada através de determinador portátil. Para a correção da umidade dos grãos utilizou-se a fórmula abaixo:

$$Rendimento = \frac{10 \times (100 - US) \times PP}{(100 - 13) \times AC}$$

Onde rendimento é expresso em toneladas por hectare, US é a umidade da semente em %, PP é o peso colhido na parcela em kg, e AC é a área colhida da parcela em m².

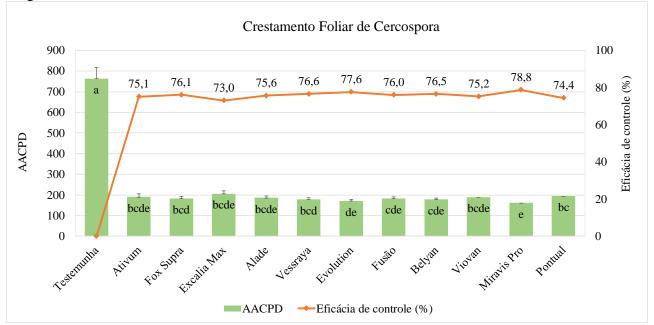
Os dados foram analisados utilizando-se o software estatístico SASM — Agri versão 8.2, Sistema para Análise e Separação de Médias em Experimentos Agrícolas (CANTERI, et al. 2001), sem transformação e as médias comparadas através do teste de Duncan a 5% de probabilidade.

RESULTADOS

Tabela 5. Fitotoxidade em plantas de soja submetida ao tratamento com diferentes fungicidas em seis avaliações realizadas aos sete e quatorze dias após cada aplicação. Maracaju, MS, 2024.

N.	7 DAA11	14 DAA1	7 DAA2	14 DAA2	7 DAA3	14 DAA3
Testemunha	0,0	0,0	0,0	0,0 b	0,0	0,0
Ativum	0,0	0,0	0,0	0,3 a	0,0	0,0
Fox Supra	0,0	0,0	0,0	0,3 a	0,0	0,0
Excalia Max	0,0	0,0	0,0	1,0 a	0,0	0,0
Alade	0,0	0,0	0,0	0,7 a	0,0	0,0
Vessraya	0,0	0,0	0,0	0,7 a	0,0	0,0
Evolution	0,0	0,0	0,0	1,0 a	0,0	0,0
Fusão	0,0	0,0	0,0	0,7 a	0,0	0,0
Belyan	0,0	0,0	0,0	0,3 a	0,0	0,0
Viovan	0,0	0,0	0,0	0,3 a	0,0	0,0
Miravis Pro	0,0	0,0	0,0	0,7 a	0,0	0,0
Pontual	0,0	0,0	0,0	0,7 a	0,0	0,0
Teste F		<u></u>		0,5*		<u></u>
CV (%)				132,8		

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. *nsnão-significativo. CV: coeficiente de variação. ¹DAA: Dias após a aplicação.


Tabela 6. Severidade (%) crestamento foliar de cercospora em plantas de soja submetida a diferentes programas de fungicidas, área abaixo da curva de progresso da doença (AACPD) e eficácia de controle (C%). Naviraí, MS, 2023.

N.	7DAA1	14DAA1	7DAA2	14DAA2	7DAA3	14DAA3	21DAA3	35DAA3	42DAA3	AACPD	C (%)
Testemunha	0,0	0,0	0,0	0,0	9,7 a	15,0 a	18,3 a	24,7 a	29,3 a	763,6 a	0,0
Ativum	0,0	0,0	0,0	0,0	0,0 b	3,0 bc	6,3 bc	6,7 b	7,0 b	190,0 bc	75,1
Fox Supra	0,0	0,0	0,0	0,0	0,0 b	4,0 bc	5,0 bcd	5,3 cd	6,0 b	182,6 bc	76,1
Excalia Max	0,0	0,0	0,0	0,0	0,0 b	4,3 b	6,3 bc	6,3 bc	7,3 b	206,0 b	73,0
Alade	0,0	0,0	0,0	0,0	0,0 b	3,0 bc	4,3 d	6,5 bc	7,7 b	186,1 bc	75,6
Vessraya	0,0	0,0	0,0	0,0	0,0 b	2,7 c	4,0 d	5,9 bc	8,3 b	179,0 bc	76,6
Evolution	0,0	0,0	0,0	0,0	0,0 b	2,7 c	5,0 bcd	5,7 bc	6,7 b	171,2 bc	77,6
Fusão	0,0	0,0	0,0	0,0	0,0 b	3,0 bc	4,3 d	6,1 bc	8,0 b	183,3 bc	76,0
Belyan	0,0	0,0	0,0	0,0	0,0 b	3,5 bc	4,3 d	6,2 bc	7,3 b	179,1 bc	76,5
Viovan	0,0	0,0	0,0	0,0	0,0 b	4,0 bc	4,7 cd	6,6 bc	7,3 b	189,5 bc	75,2
Miravis Pro	0,0	0,0	0,0	0,0	0,0 b	3,0 bc	4,0 d	4,3 d	7,0 b	162,2 c	78,8
Pontual	0,0	0,0	0,0	0,0	0,0 b	4,0 bc	6,7 b	5,4 bcd	8,3 b	195,5 bc	74,4
Teste F					129,6**	61,5**	47,9**	173,1**	66,8**	159,3**	
CV (%)					63,3	19,2	18,3	10,8	16,6	11,1	

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de

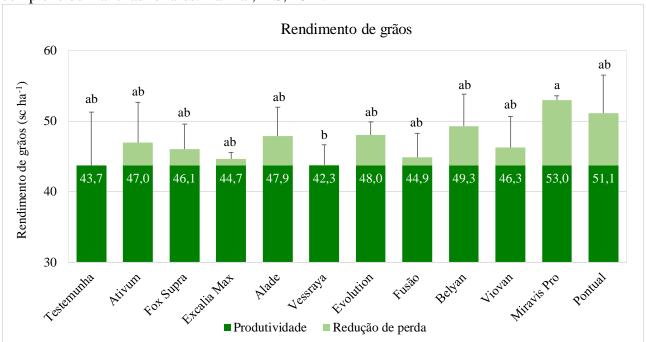


Figura 8. Área Abaixo da Curva de Progresso da Doença (AACPD) do complexo d emanchas foliares e eficácia de controle (%) em plantas de soja submetidas a diferentes programas de fungicidas. Naviraí, MS, 2024.

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05).

Figura 11. Rendimento de grãos (sc ha⁻¹) e incremento relativo de produtividade (sc ha⁻¹) de plantas de soja plantas de soja submetidas a diferentes programas de fungicidas para o controle do complexo de manchas foliares. Naviraí, MS, 2024.

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05).

Fundação MS para Pesquisa e Difusão de Tecnologias Agropecuárias

Tabela 8. Desfolha (%), rendimento de grãos (sc ha⁻¹), redução de perdas de produtividade (%) (RP), massa de mil grãos (MMG) (g) e redução de perdas da massa de mil grãos de plantas de soja plantas de soja submetidas a diferentes programas de fungicidas para o controle de mancha-alvo e crestamento foliar de cercospora. Naviraí, MS, 2024.

N.	Desfolha (%)	Rendimento de grãos (sc ha ⁻¹)	RP (%)	MMG (g)	RP da MMG (%)
Testemunha	77,3 a	43,7 ab	0,0	105,4 ab	0,0
Ativum	54,3 bc	47,0 ab	-7,5	103,6 b	1,7
Fox Supra	54,7 bc	46,1 ab	-5,4	107,7 ab	-2,3
Excalia Max	54,3 bc	44,7 ab	-2,2	110,8 ab	-5,2
Alade	54,7 bc	47,9 ab	-9,5	108,8 ab	-3,3
Vessarya	55,0 bc	42,3 b	3,2	105,6 ab	-0,2
Evolution	57,0 b	48,0 ab	-9,8	108,7 ab	-3,2
Fusão	49,7 d	44,9 ab	-2,7	109,9 ab	-4,3
Belyan	52,3 cd	49,3 ab	-12,7	108,0 ab	-2,5
Viovan	56,3 b	46,3 ab	-5,9	107,7 ab	-2,3
Miravis Pro	55,0 bc	53,0 a	-21,2	107,8 ab	-2,3
Pontual	55,3 bc	51,1 ab	-16,9	112,1 a	-6,4
Teste F	38,2**	1,1**		1,1*	
CV (%)	3,8	11,9		4,2	<u></u>

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. ns não-significativo. CV: coeficiente de variação.

CONCLUSÕES

Nas condições edafoclimáticas em que o ensaio foi realizado, constatou-se que todos os tratamentos, exceto o tratamento controle, apresentaram sintomas muito leves de fitotoxidez aos 14 dias após a aplicação no estádio R3.

Devido à baixa incidência de doenças, as avaliações do crestamento foliar de cercospora iniciaram 7 dias após a terceira aplicação. Com base nos resultados obtidos, o tratamento com Miravis Pro + Unizeb Gold (78,8%) demostrou maior eficácia de controle para o crestamento foliar de cercospora, quando utilizado na segunda aplicação (estádio R3), seguindo do tratamento com Evolution (77,6%).

Todos os tratamentos reduziram significativamente a desfolha das plantas de soja, com destaque ao fungicida Fusão (49,7%)

No parâmetro rendimento de grãos, o tratamento com Miravis Pro + Unizeb Gold proporcionou maior produtividade (53 sacos ha⁻¹).

O tratamento com Pontual proporcionou maior massa de mil grãos (121,1 g).

Considerações finais: Os fungicidas não foram associados a nenhum tipo de produto além do adjuvante recomendado pelo fabricante; dessa forma, a associação com herbicidas, adjuvantes, fertilizantes, entre outros que podem alterar o pH da calda, pode resultar em uma modificação na eficácia do controle dos produtos.

REFERÊNCIAS BIBLIOGRÁFICAS

ABBOTT, W.S. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, v.18, p.265-267, 1925.

AMORIM, Lilian et al. Manual de fitopatologia. 2016.

BOFF, P.; ZAMBOLIM, L.; VALE, F.X.R. Escalas para avaliação de severidade de mancha-deestenfílio (*Stemphylium solani*) e da pinta preta (*Alternaria solani*) em tomateiro. Fitopatologia Brasileira, v.16, n.1, p.280-283, 1991.

CAMPBELL, C.L.; MADDEN, L.V. Introduction to plant disease epidemiology. New York: John Wiley & Sons, 1990. 532p.

CAMPOS, H. D; SILVA, L. H. C. P. Escalas descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de cloroses e/ou bronzeamentos e necroses foliares causadas por fungicidas. Rio Verde/GO: UniRV, 2012.

CANTERI, Marcelo G. et al. SASM-Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Duncan , Tukey e Duncan. **Revista Brasileira de agrocomputação**, v. 1, n. 2, p. 18-24, 2001.

CONAB. Companhia Nacional de Abastecimento. Acompanhamento da Safra brasileira de grãos. V. 11 – safra 2023/24, nº 4, quarto levantamento, 2024.

FRAC - FUNGICIDE RESISTANCE ACTION COMMITTEE. Frac code list. Disponível em: https://www.frac.info. Acesso em: 31 de Janeiro 2024.

HENNING, A. A. et al. Manual de identificação de doenças de soja. 5.ed. Londrina: Embrapa Soja, 2014. 76 p. (Documentos / Embrapa Soja, ISSN 1516-781X; n. 256).

HIRANO, Mario et al. Validação de escala diagramática para estimativa de desfolha provocada pela ferrugem asiática em soja. Summa phytopathologica, v. 36, p. 248-250, 2010.

KAJIHARA, L. H. et al. Ação in vitro e in vivo de fungicida sistêmico e multissítio sobre *Phakopsora pachyrhizi*. Summa Phytopathologica, v. 47, p. 216-221, 2022.

Fundação MS para Pesquisa e Difusão

KRANZ, J. Measuring plant disease. In KRANZ, J.; ROTEM, J. (Eds.) Experimental techniques in plant disease epidemiology, p.35-50. Heldelberg: Springer-Verlag, 1988. 299p.

LEMES, E. M. et al. Doenças da soja: melhoramento genético e técnicas de manejo. 1. Ed. Campinas: Millennium Editora, 2015. 363 p.

MARTINS, Mônica C. et al. Escala diagramática para a quantificação do complexo de doenças foliares de final de ciclo em soja. Fitopatologia Brasileira, v. 29, p. 179-184, 2004.

MOLINA, J. P. E.; PAUL, P. A.; AMORIM, L.; SILVA, L. H. C. P. da; SIQUERI, F. V.; BORGES, E. P.; CAMPOS, H. D.; VENANCIO, W. S.; MEYER, M. C.; MARTINS, M. C.; BALARDIN, R. S.; CARLIN, V. J.; GRIGOLLI, J. F. J.; BELUFI, L. M. de R.; NUNES JUNIOR, J.; GODOY, C. V. Effect of target spot on soybean yield and factors affecting this relationship. Plant Pathology, v. 68, p. 107-115, 2019.

PAULA, R.S.; OLIVEIRA, W.R. Resistência de tomateiro (Lycopersicon esculentum) ao patógeno Alternaria solani. Pesquisa Agropecuária Tropical, v.33, n.2, p.89-95, 2003.

SOARES, R.M.; GODOY, C.V.; OLIVEIRA, M.C.N. Escala diagramática para avaliação da severidade da mancha alvo da soja. Tropical Plant Pathology, v.34, n.5, p.333-338, 2009.

SOARES, Ana Paula Gomes et al. More Cercospora species infect soybeans across the Americas than meets the eye. **PLoS One**, v. 10, n. 8, p. e0133495, 2015.

SOSA-GÓMEZ, D. R.; CORRÊA-FERREIRA, B. S.; HOFFMANN-CAMPO, C. B.; CORSO, I. C.; OLIVEIRA, L. J.; MOSCARDI, F.; PANIZZI, A. R.; BUENO, A. F.; HIROSE, E.; ROGGIA, S. Manual de identificação de insetos e outros invertebrados da cultura da soja. 3. ed. Londrina: Embrapa Soja, 2014.

Naviraí, MS, 22 de abril de 2024

ana Claudia Ruschel machko

Dra. Ana Claudia Ruschel Mochko CREA 65838/MS Pesquisadora – Fundação MS