

 $www.fundacaoms.org.br \bullet fundacaoms@fundacaoms.org.br$

RESULTADOS DA REDE DE VALIDAÇÃO DE HÍBRIDOS DE MILHO SAFRINHA 2025 EM RIO BRILHANTE - MS

Responsável Técnico: Eng.Agr.

Dr. André Luis F. Lourenção

(Pesquisador da Fundação MS).

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

LAUDO DE EXPERIMENTAÇÃO AGRÍCOLA

1 - AUTORES

Eng. Agr. Dr. André Luis F. Lourenção – Pesquisador da Fundação MS.

Eng. Agr. Luma Fernanda Ferreira – Assistente de Pesquisa da Fundação MS.

2 - OBJETIVO

Avaliar o desenvolvimento produtivo de híbridos de milho em Mato Grosso do Sul.

3 – MATERIAIS E MÉTODOS

Unidade Experimental: Fundação Oacir Vidal

Latitude (S): -21.848654

Longitude (W): -54.538815

Data de plantio: 22/02/2025

Data de Colheita: 24/07/2025

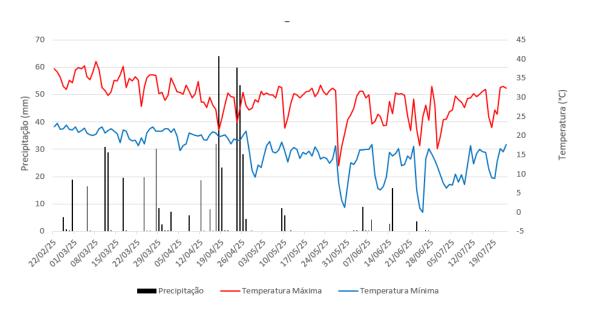
Sistema de colheita: Mecanizada.

Tamanho das parcelas: 5 linhas x 10 m x 0,5 de espaçamento.

Tamanho das parcelas colhidas: 3 linhas x 10 m x 0,5 de espaçamento.

Número de repetição: 4

Adubação: 400 kg ha⁻¹ (15-15-15) > 150 kg ha⁻¹ de ureia, em cobertura.


Controle de Percevejos: Galil 400 ml ha⁻¹ > Engeo Pleno 250 ml ha⁻¹ > Engeo Pleno 250 ml ha⁻¹ > Zeus 0,6 ml por ha⁻¹ > Magnum 1,2 kg ha⁻¹ > Egeo 1,5 kg ha⁻¹

Controle de *Spodoptera frugiperda*: Proclaim 250 ml ha⁻¹ + Joint Oil 300 ml ha⁻¹ > Premio 150 ml ha⁻¹ > Premio 150 ml ha⁻¹ + Exalt 150 ml ha⁻¹ > Lannate 1,5 L ha⁻¹

Controle de doenças: Abacus 300 ml ha⁻¹ + Mess 0,5% v/v > Belyan 600 ml ha⁻¹ + Orkestra 350 ml ha⁻¹ > Belyan 600 ml ha⁻¹ + Orkestra 350 ml ha⁻¹

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

3.1 - DADOS CLIMÁTICOS

Fonte: Farm Command, 2025

Figura 1. Dados climáticos: Precipitação total, temperatura máxima e mínima, durante a condução experimental. Rio Brilhante, MS, 2025.

3.2 ESCALA DE NOTAS UTILIZADAS PARA A AVALIAÇÃO DE ENFEZAMENTO

Escala de Notas	Descrição
0	Plantas assintomáticas
1	Sintomas em uma folha da planta
2	Sintomas em até 25 % das folhas
3	Sintomas em 25 - 50 % das folhas
4	Sintomas em 50 - 75 % das folhas
5	Sintomas em mais de 75 % das folhas
6	> 75 % e multiespigamento, perfilhamento, redução de porte ou tombamento

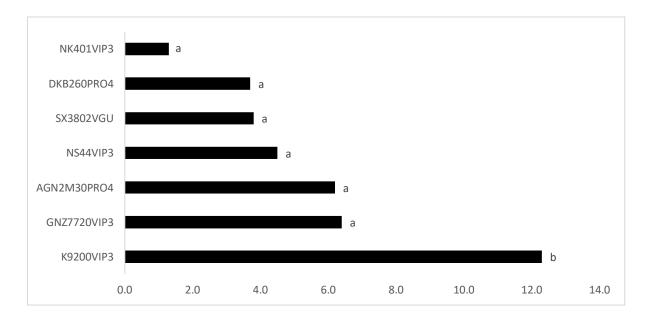
Baseada em Silva et al. (2003), Alcántara-Mendoza (2010), Sabato & Teixeira (2015).

 $www.fundacaoms.org.br \bullet fundacaoms@fundacaoms.org.br$

3.3 ANÁLISE QUÍMICA E FÍSICA DE SOLO

		Profundio	Profundidade (cm)		
Parâmetros	Unidade	0-20	20-40		
	Anális	e Física			
Silte	%	15,8	16,8		
Areia total	%	19,1	18,2		
Areia grossa	ossa % -		-		
Areia fina	%	-	-		
Argila	%	65,0	65,00		
Clas. Textura		Muito Argiloso	Muito argiloso		
	Análise	Química			
		0-20	20-40		
pH CaCl₂	-	5,1	5,3		
pH H₂O	-	5,8	6,0		
pH KCI	-	-	-		
M.O.	g dm ⁻³	24,0	19,0		
P (Mehlich)	mg dm ⁻³	16,8	4,7		
P (Res)	mg dm ⁻³	42,0	13,0		
K	mmolc dm ⁻³	3,1	1,9		
Ca	Ca mmolc dm ⁻³		38,8		
Mg	mmolc dm ⁻³	23,4	16,5		
Al	mmolc dm ⁻³	0,0	0,0		
H+Al	mmolc dm ⁻³	63,7	49,9		
SB	mmolc dm ⁻³	77,5	57,2		
CTC_total	mmolc dm ⁻³	131,8	107,1		
Sat.Bases	%	58,8	53,4		
S	mg dm ⁻³	20,0	73,0		
В	mg dm ⁻³	0,5	0,4		
Cu	mg dm ⁻³	7,4	7,4		
Fe	mg dm ⁻³	18,1	22,4		
Mn	mg dm ⁻³	63,5	40,3		
Zn	mg dm ⁻³	6,6	5,6		

Metodologia: MO-(Walkley-Black); P, K, Fe, Mn, Zn e Cu (Mehlich 1); Ca, Mg e Al (KCl); H+Al (SMP); B (Água quente); S-SO4 (Fosfato de Cálcio).


www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

4 - Resultados

Tabela 1. Densidade de semeadura, estande final, umidade de grãos, produtividade, massa de mil grãos e notas de enfezamento de híbridos simples de milho **super-precoce**, em Rio Brilhante/MS. FUNDAÇÃO MS, safrinha 2025.

Híbrido	² Tipo	³ Sem ha ⁻¹	⁴Pla ha ⁻¹ Final	% _ Umidade	¹ Produtividade		
					¹sc ha ⁻¹	⁵ M1000G	⁶ NE
AGN2M30PRO4	HS	66.0	53.3	17,0 b	161,7 a	321,0 a	2,0 b
DKB260PRO4	HS	70.0	60.3	16,3 a	156,1 a	338,3 a	1,0 a
K9200VIP3	HS	64.0	53.8	16,7 b	151,7 a	304,3 a	0,7 a
SX3802VGU	HS	70.0	57.6	19,1 b	148,1 a	302,5 a	1,0 a
NS44VIP3	HS	60.0	58.2	19,2 b	144,4 a	333,3 a	0,0 a
NK401VIP3	HS	60.0	49.3	19,0 b	139,9 a	321,8 a	0,7 a
GNZ7720VIP3	HS	62.0	51.2	18,2 b	134,3 a	354,8 a	0,0 a
Média	•		_	18,3	146,2	321,8	0,8
CV%				6,6**	5,3 ^{ns}	7,1 ^{ns}	6,4 ***

Médias seguidas da mesma letra na coluna não diferem entre si pelo teste de Scott Knott ao nível de 5% de probabilidade. CV: Coeficiente de variação. *** $p \le 0.001$; ** $p \le 0.01$; * $p \le 0.05$; p > 0.05 ns = não significativo. ¹sc ha⁻¹ (sacas por hectare) corrigida para 14%. ²HS – Híbrido Simples. ³Sem ha⁻¹ (x1000 sementes). ⁴Plan ha⁻¹ (x1000 plantas). ⁵Massa de 1000 grãos. ⁶NE: Nota de enfezamento (transformada via log(x + c) para normalização dos resíduos e ajuste do CV).

Figura 2. Porcentagem de plantas quebradas + acamadas de híbridos simples de milho **super-precoce**, em Rio Brilhante/MS. FUNDAÇÃO MS, safrinha 2025. ¹Médias seguidas da mesma letra não diferem entre si pelo teste de Scott Knott ao nível de 5% de probabilidade. Coeficiente de variação (CV): 55,8.

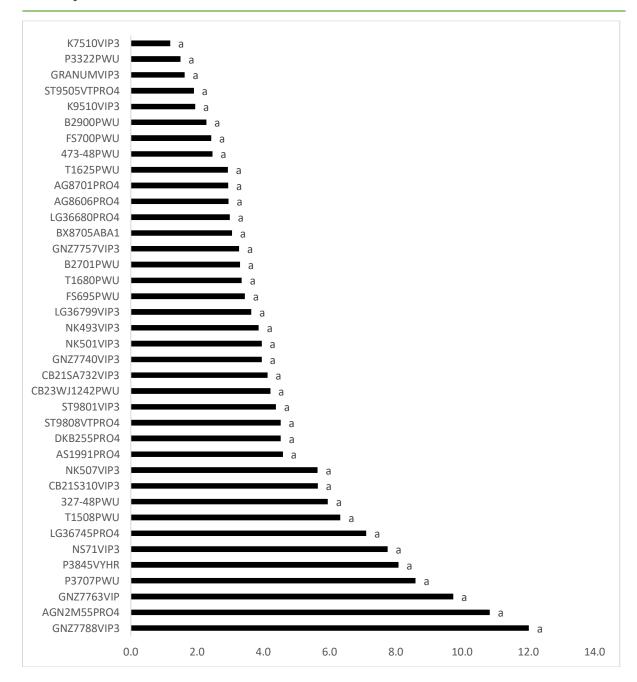

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

Tabela 2. Densidade de semeadura, estande final, umidade de grãos, produtividade, massa de mil grãos e notas de enfezamento de híbridos simples de milho **Precoce**, em Rio Brilhante/MS. FUNDAÇÃO MS, safrinha 2025.

11/1 11	²Tipo	³ Sem ha ⁻¹	⁴ Pla ha ⁻¹	%	¹ Produtividade		
Híbrido			Final	Umidade	¹sc ha ⁻¹	⁵ M1000G	⁶ NE
DKB255PRO4	HS	74.0	63.8	16,6 a	170,5 a	315,1 b	2,0 c
ST9505VTPRO4	HS	66.0	46.7	16,6 a	167,1 a	368,5 a	1,5 c
AG8701PRO4	HS	72.0	62.8	17,9 b	163,8 a	351,2 a	0,7 a
B2900PWU	HS	62.0	58.4	22,1 e	162,6 a	349,3 a	1,0 b
473-48PWU	HS	62.0	60.0	19,9 с	161,1 a	303,5 b	0,3 a
AS1991PRO4	HS	72.0	53.5	16,8 a	160,8 a	330,2 a	0,3 a
CB21S310VIP3	HS	60.0	55.1	19,6 c	159,2 a	333,1 a	0,3 a
CB23WJ1242PWU	HS	58.0	58.0	20,3 c	157,3 a	304,4 b	0,7 a
NS71VIP3	HS	60.0	54.4	21,7 e	157,0 a	309,6 b	0,3 a
T1508PWU	HS	58.0	52.7	18,6 c	156,8 a	320,0 a	0,0 a
NK507VIP3	HS	60.0	59.1	19,4 c	155,4 a	349,0 a	0,3 a
327-48PWU	HS	64.0	56.0	20,0 c	154,9 a	301,9 b	0,3 a
FS700PWU	HS	66.0	54.9	21,1 d	151,3 a	277,1 b	0,3 a
NK493VIP3	HS	60.0	51.8	19,5 c	151,0 a	340,7 a	0,0 a
LG36745PRO4	HS	66.0	46.9	16,1 a	151,0 a	329,1 a	0,7 a
K7510VIP3	HS	56.0	56.0	18,0 b	150,2 a	324,9 a	2,0 c
LG36799VIP3	HS	62.0	61.1	21,9 e	148,8 b	321,2 a	0,3 a
T1680PWU	HS	58.0	46.4	19,4 c	148,3 b	324,1 a	0,7 a
P3845VYHR	HS	62.0	56.0	18,4 b	147,8 b	377,9 a	0,7 a
LG36680PRO4	HS	66.0	52.0	21,0 d	147,5 b	322,1 a	0,0 a
GRANUMVIP3	HS	66.0	54.7	20,8 c	147,2 b	279,6 b	0,0 a
GNZ7757VIP3	HS	66.0	47.6	19,1 c	145,8 b	312,6 b	1,0 b
AGN2M55PRO4	HS	66.0	49.7	20,1 c	145,7 b	320,8 a	0,7 a
GNZ7763VIP	HS	66.0	50.2	20,0 c	144,5 b	337,2 a	0,3 a
P3322PWU	HS	66.0	59.3	19,1 c	143,1 b	315,0 b	1,5 c
AG8606PRO4	HS	72.0	62.6	18,5 b	143,0 b	330,3 a	0,3 a
NK501VIP3	HS	60.0	56.2	20,5 d	143,0 b	345,1 a	0,3 a
ST9801VIP3	HS	66.0	50.7	19,8 c	141,6 b	310,7 b	0,3 a
ST9808VTPRO4	HS	66.0	49.1	20,0 c	140,7 b	333,1 a	0,0 a
FS695PWU	HS	58.0	58.0	22,0 e	140,5 b	257,5 b	1,0 a
B2701PWU	HS	66.0	60.4	19,2 c	139,3 b	338,2 a	0,3 a
BX8705ABA1	HS	72.0	58.2	19,3 c	138,9 b	349,2 a	0,0 a
GNZ7740VIP3	HS	62.0	61.8	21,1 d	136,2 c	296,7 b	1,0 a
CB21SA732VIP3	HS	58.0	48.4	19,8 c	134,5 c	352,8 a	0,0 a
T1625PWU	HS	58.0	57.6	18,9 c	132,2 c	319,6 a	1,2 b
GNZ7788VIP3	HS	64.0	51.2	19,3 c	131,9 c	290,3 b	0,3 a
K9510VIP3	HS	62.0	57.1	16,7 a	131,7 c	327,5 a	0,0 a
P3707PWU	HS	62.0	56.3	19,2 c	122,7 c	315,1 b	0,8 a
Média				19,3	148,0	323,8	0,5
CV%				3,8 ***	5,9 ***	8,3 ***	10,2 ***

Médias seguidas da mesma letra na coluna não diferem entre si pelo teste de Scott Knott ao nível de 5% de probabilidade. CV: Coeficiente de variação. ***p \leq 0,001; **p \leq 0,01; *p \leq 0,05; p > 0,05 ns = não significativo. ¹sc ha⁻¹ (sacas por hectare) corrigida para 14%. ²HS – Híbrido Simples. ³Sem ha⁻¹ (x1000 sementes). ⁴Plan ha⁻¹ (x1000 plantas). ⁵Massa de 1000 grãos. ⁶NE: Nota de enfezamento (transformada via log(x + c) para normalização dos resíduos e ajuste do CV).

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

Figura 3. Porcentagem de plantas quebradas + acamadas de híbridos simples de milho **precoce**, em Rio Brilhante/MS. FUNDAÇÃO MS, safrinha 2025. ¹Médias seguidas da mesma letra não diferem entre si pelo teste de Scott Knott ao nível de 5% de probabilidade. Coeficiente de variação (CV): 16,27 (transformada via log(x + c) para normalização dos resíduos e ajuste do CV).

 $www.fundacaoms.org.br \bullet fundacaoms@fundacaoms.org.br$

Figura 2. Rede de Validação de Híbridos de Milho. Foto tirada no dia 11 de abril, em Rio Brilhante/MS. FUNDAÇÃO MS, safrinha 2025.

Eng.Agr. Dr. André Luis F. Lourenção Pesquisador da Fundação MS