

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

RESULTADOS DA REDE DE VALIDAÇÃO DE HÍBRIDOS DE SORGO GRANÍFERO SAFRINHA 2025 EM PONTA PORÃ - MS

Responsável Técnico: Eng.Agr.

Dr. André Luis F. Lourenção

(Pesquisador da Fundação MS).

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

LAUDO DE EXPERIMENTAÇÃO AGRÍCOLA

1 - AUTORES

Eng. Agr. Dr. André Luis F. Lourenção – Pesquisador da Fundação MS.

Eng. Agr. Luma Fernanda Ferreira – Assistente de Pesquisa da Fundação MS.

2 - OBJETIVO

Avaliar o desenvolvimento produtivo de híbridos de sorgo granífero em Mato Grosso do Sul.

3 - MATERIAIS E MÉTODOS

Unidade Experimental: Área experimental Ciatec

Data de plantio: 07/03/2025

Data de Colheita: 14/08/2025

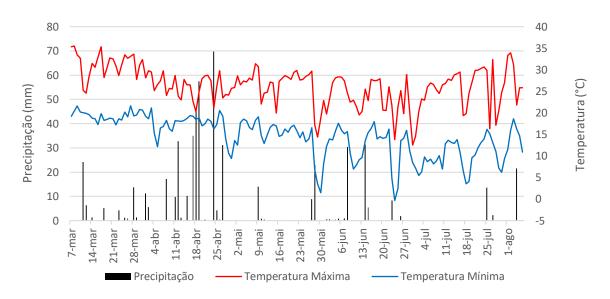
Sistema de colheita: Mecanizada.

Tamanho das parcelas: 5 linhas x 10 m x 0,5 de espaçamento.

Tamanho das parcelas colhidas: 3 linhas x 10 m x 0,5 de espaçamento.

Número de repetição: 4

Adubação: 400 kg ha⁻¹ (15-15-15) > 150 kg ha⁻¹ de ureia em cobertura.

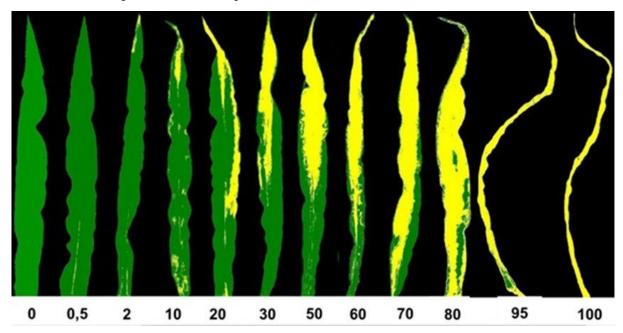

Controle de Percevejos: Galil 400 ml ha⁻¹ > Engeo Pleno 250 ml ha⁻¹ > Engeo Pleno 250 ml ha⁻¹ > Zeus 0,6 ml por ha⁻¹ > Magnum 1,2 kg ha⁻¹ > Egeo 1,5 kg ha⁻¹

Controle de *Spodoptera frugiperda*: Proclaim 250 ml ha⁻¹ + Joint Oil 300 ml ha⁻¹ > Premio 150 ml ha⁻¹ > Premio 150 ml ha⁻¹ + Exalt 150 ml ha⁻¹ > Lannate 1,5 L ha⁻¹

Controle de doenças: Azimut 500ml há⁻¹ + óleo mineral 0,5% v/v > Belyan 600 ml há⁻¹ + assist 0,5% v/v > Belyan 600 ml há⁻¹ + assist 0,5% v/v.

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

3.1 - DADOS CLIMÁTICOS


OBS: Nos dias 30 de maio e 24 de junho foram registradas ocorrências de geada na Unidade de Pesquisa.

Fonte: Farm Command, 2025

Figura 1. Dados climáticos: Precipitação total, temperatura máxima e mínima, durante a condução experimental. Ponta Porã, 2025.

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

3.2 – AVALIAÇÃO DE DOENÇAS

Figura 2. Escala utilizada para a avaliação de Antracnose durante a condução experimental. Maracaju/MS. Fundação MS, safrinha 2025. Fonte: Trojan, Daiane & Dalla Pria, Maristella. (2018). Validação de escala diagramática para quantificação da severidade da antracnose da folha do milho. Summa Phytopathologica. 44. 56-64. 10.1590/0100-5405/172675.

 $www.fundacaoms.org.br \bullet fundacaoms@fundacaoms.org.br$

3.3 ANÁLISE QUÍMICA E FÍSICA DE SOLO

		Profundidade (cm)					
Parâmetros	Unidade	0-20	20-40				
Análise Física							
Silte	%	4,0	4,5				
Areia total	%	77,3	75,5				
Areia grossa	%	-	-				
Areia fina	%	- 10 E	-				
Argila Clas. Textura	%	18,5 Médio	20,0 Médio				
	Análise Q	uímica					
		0-20	20-40				
pH CaCl ₂	-	5,1	4,9				
pH H₂O	-	5,8	5,7				
pH KCI	-	-	-				
M.O.	g dm ⁻³	20,0	12,0				
P (Mehlich)	mg dm ⁻³	23,6	9,6				
P (Res)	mg dm ⁻³	34,0	15,0				
K	mmolc dm ⁻³	2,2	1,5				
Ca	mmolc dm ⁻³	49,0	17,8				
Mg	mmolc dm ⁻³	18,4	6,7				
Al	mmolc dm ⁻³	0,0	0,0				
H+AI	mmolc dm ⁻³	34,4	42,5				
SB	mmolc dm ⁻³	69,6	26,0				
CTC_total	mmolc dm ⁻³	104,0	68,5				
Sat.Bases	%	66,9	38,0				
S	mg dm ⁻³	8,0	13,0				
В	mg dm ⁻³	0,6	0,6				
Cu	mg dm ⁻³	1,8	1,8				
Fe	mg dm ⁻³	34,8	90,1				
Mn	mg dm ⁻³	22,0	8,3				
Zn	mg dm ⁻³	9,1	5,4				

Metodologia: MO-(Walkley-Black); P, K, Fe, Mn, Zn e Cu (Mehlich 1); Ca, Mg e Al (KCl); H+Al (SMP); B (Água quente); S-SO4 (Fosfato de Cálcio).

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

4 - RESULTADOS

Tabela 1. Densidade de semeadura, estande final e altura de planta de híbridos de sorgo, em Ponta Porã/MS. FUNDAÇÃO MS, safrinha 2025.

Ciclo	Híbrido	¹Sem ha⁻¹	² Plan ha ⁻¹	3Altura
Р	BS005	220.0	177.0	1,0 a
Р	MG2220	200.0	156.8	1,0 a
Р	FS66SG	200.0	167.3	1,0 a
SP	ADV1106	200.0	180.0	0,9 a
Р	BS007	220.0	172.1	1,0 a
Р	AGN70G15	200.0	169.3	0,8 b
SP	1G211	220.0	189.0	1,0 a
Ρ	AGN90G45	200.0	149.5	0,8 b
SP	ADV1151IG	220.0	159.2	1,0 a
Ρ	BRS3002	180.0	141.7	0,9 a
Р	1G255	220.0	186.2	1,0 a
SP	50A60	220.0	191.7	0,9 a
Р	Nugrain290	220.0	184.7	1,0 a
Р	1G233	220.0	163.6	0,9 a
Ρ	Nugrain400	220.0	160.0	1,0 a
Р	BS326	220.0	158.4	1,1 a
Ρ	S116	200.0	162.2	0,8 b
Ρ	83G01	220.0	158.0	1,0 a
Р	K200	200.0	168.2	0,9 a
Ρ	NTXS300	220.0	173.5	1,2 a
Р	S215	200.0	142.4	0,9 a
Р	NTXS500at	220.0	151.2	0,7 b
Ρ	BRS373	180.0	139.4	0,8 b
Ρ	50A40	220.0	159.3	1,1 a
Р	JB1324	200.0	159.1	1,0 a
Р	NTXS100	220.0	174.3	1,0 a
Р	BS222	220.0	167.5	1,1 a
SP	Nugrain9001MI	200.0	154.3	0,8 b
Р	NTXS202	220.0	150.1	1,0 a
Т	Nugrain430	200.0	161.7	0,8 b
	Média CV%			0,9 11,8***

Médias seguidas da mesma letra na coluna não diferem entre si pelo teste de Scott Knott ao nível de 5% de probabilidade. CV: Coeficiente de variação. *** $p \le 0,001$; ** $p \le 0,005$; p > 0,05 ns = não significativo. ²HS – Híbrido Simples. ¹Sem ha⁻¹ (x1000 sementes). ²Plan ha⁻¹ (x1000 plantas). ³Altura (Altura de planta do solo até a base da panícula).

www.fundacaoms.org.br • fundacaoms@fundacaoms.org.br

Tabela 2. Severidade de doenças, umidade de grãos, produtividade e massa de mil grãos de híbridos de Sorgo, em Ponta Porã/MS. FUNDAÇÃO MS, safrinha 2025.

		¹Antracnose⁻¹	Produtividade		
Ciclo	Hibrido		% ³Umidade	⁴Sc ha⁻¹	⁵M1000G
Р	BS005	0,5 a	13,9 a	93,4 a	21,8 a
Р	MG2220	1,0 a	13,9 a	86,8 a	22,4 a
Р	FS66SG	2,3 a	14,9 a	85,6 a	22,0 a
SP	ADV1106	0,9 a	14,7 a	82,6 a	19,9 b
Р	BS007	1,0 a	14,2 a	82,1 a	22,7 a
Р	AGN70G15	1,8 a	14,1 a	82,1 a	21,8 a
SP	1G211	2,1 a	15,2 a	79,7 b	20,1 b
Р	AGN90G45	1,0 a	14,6 a	79,5 b	20,4 b
SP	ADV1151IG	2,0 a	14,0 a	79,2 b	19,3 b
Р	BRS3002	4,9 b	13,5 a	75,7 b	20,2 b
Р	1G255	0,8 a	16,8 b	75,0 b	19,6 b
SP	50A60	6,8 a	15,3 a	74,5 b	17,2 b
Р	Nugrain290	0,7 a	14,2 a	73,8 b	19,8 b
Р	1G233	1,3 a	14,5 a	73,6 b	19,0 b
Р	Nugrain400	2,5 a	18,3 b	70,5 b	21,3 a
Р	BS326	0,5 a	13,9 a	68,4 c	18,0 b
Р	BS116	0,3 a	15,3 a	68,2 c	17,6 b
Р	83G01	0,8 a	15,4 a	68,0 c	19,8 b
Р	K200	0,9 a	17,6 b	67,2 c	18,9 b
Р	NTXS300	0,8 a	15,8 a	63,1 c	17,9 b
Р	BS215	0,1 a	16,0 b	62,4 c	18,6 b
Р	NTXS500at	1,0 a	15,1 a	61,8 c	18,2 b
Р	BRS373	6,6 b	15,4 a	59,4 c	19,3 b
Р	50A40	0,6 a	16,2 b	59,3 c	19,1 b
Р	JB1324	0,6 a	16,3 b	59,1 c	19,3 b
Р	NTXS100	0,6 a	16,8 b	56,0 d	18,5 b
Р	BS222	0,3 a	15,9 b	54,6 d	20,1 b
SP	Nugrain9001MI	4,3 b	14,1 a	54,3 d	21,7 a
Р	NTXS202	0.3 a	14.8 a	50.1 d	17.4 b
Т	Nugrain430	0.5 a	16.4 b	43.0 e	18.6 b
	Média CV%	1,5 26,1***	15,2 7,9***	69,3 9,7***	19,5 7,4***

Médias seguidas da mesma letra na coluna não diferem entre si pelo teste de Scott Knott ao nível de 5% de probabilidade. CV: Coeficiente de variância. *** $p \le 0,001$; * $p \le 0,005$; p > 0,005 ns = não significativo. . ¹Antraquinose (dados normalizados utilizando a fórmula y1=log(x1+c). ²Pulgão (nível de infestação avaliados pelas injurias) ³Sc ha⁻¹. ³Umidade do grão no momento da colheita (%). ⁴Sc ha (produtividade em sacas por hectare). ⁵ M1000 (Massa de mil grãos em gramas corrigida para 14%). Não foi encontrado sintomas significativos de Ergot e fumagina.

Eng.Agr. Dr. André Luis F. Lourenção

Pesquisador da Fundação MS