

Avaliação da eficácia e praticabilidade agronômica de diferentes fungicidas sítio-específico no controle de manchas foliares na cultura do milho na segunda safra 2023 nas condições de Mato Grosso do Sul

Protocolo: FMS/FP 4174/22

Responsável Técnico: Eng. Agr. Dra. Ana Claudia Ruschel Mochko (CREA 65838/MS). Pesquisadora da FUNDAÇÃO MS.

Maracaju, MS Setembro de 2023

LAUDO TÉCNICO DE EXPERIMENTAÇÃO AGRÍCOLA

Avaliação da eficácia e praticabilidade agronômica de diferentes fungicidas sítio-específico no controle de manchas foliares na cultura do milho na segunda safra 2023 nas condições de Mato Grosso do Sul

PROTOCOLO: FMS/FP 4174/22

INSTITUIÇÃO EXECUTORA: Fundação MS para Pesquisa e Difusão de Tecnologias Agropecuárias, inscrita no CNPJ/MF sob o nº. 37.213.139/0001-23, com sede na Cidade de Maracaju, Estado de Mato Grosso do Sul, na Estrada da Usina Velha, km 2, Caixa Postal 137, CEP 79.150-000.

EMPRESA REQUERENTE: Fundação MS

AUTORES: Eng^a. Agr^a. Dra. Ana Claudia Ruschel Mochko e Eng^a. Agr^a Natália Patrícia Ungri

CONDUÇÃO DO ENSAIO: Téc. Agrí. Elder de Oliveira e Aux. Laiza Rezende

OBJETIVOS: O objetivo do presente trabalho foi avaliar a eficácia e a praticabilidade agronômica da aplicação sequencial do mesmo fungicida sítio-específico, no controle da mancha-branca e mancha de bipolares na cultura do milho, em condições de campo, além de registrar possíveis efeitos de fitotoxicidade à referida cultura e o rendimento de grãos.

MATERIAL E MÉTODOS

Local e data

O experimento foi conduzido em condições de campo, na área experimental da Fundação MS, localizada na Rodovia BR 267, s/n, Faz. Alegria (Talhão Rebaixadora), Zona Rural, 79150-000 no município de Maracaju-MS, tendo como coordenadas 21°38'48.05"S e 55°05'53.52"O, e altitude de 384 metros.

Variedade, semeadura, sistema de cultivo e dados climáticos

Utilizou-se a cultivar Fórmula Viptera, sendo que este material é recomendado para cultivo na região. A cultura foi estabelecida em sistema de semeadura de plantio direto. A semeadura foi realizada no dia 27 de fevereiro, a germinação ocorreu em 05 de março de 2023 e a colheita no dia 20 de agosto de 2023.

Os dados climáticos, como índices pluviométricos, temperaturas (máxima e mínima) e umidade relativa do ar registrados na área experimental, durante a condução do ensaio, podem ser visualizados no gráfico abaixo:

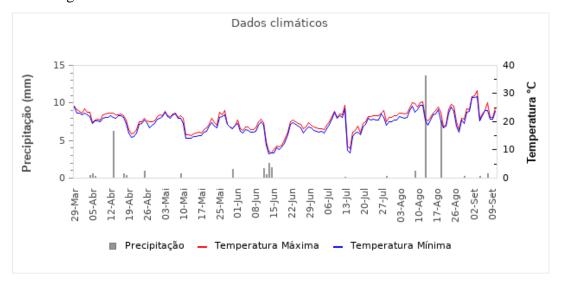


Figura 2. Variáveis climáticas como precipitação, temperatura máxima e mínima, bem como a temperatura registradas durante o desenvolvimento do experimento. Maracaju, MS, 2023. Fonte: Estação meteorológica Farmers Edge.

Tecnologia de aplicação (barra, espaçamento entre bicos, volume de calda e pressão)

Para aplicação dos tratamentos, utilizou-se pulverizador costal de pressão constante (CO₂) equipado com uma barra de 3,0 m e com 6 pontas de jato duplo leque, modelo TJ 110.02, espaçadas de 50 cm. O volume de calda de 120 L.ha⁻¹ foi mantido à pressão constante de 50 psi.

Condições climáticas, data e momento das aplicações

Durante as aplicações, as condições climáticas se apresentavam normais, com boa umidade no solo. A umidade relativa do ar, a temperatura, os horários, a nebulosidade e a velocidade de vento no momento das aplicações estão apresentadas a seguir:

Tabela 2. Data de aplicação, estádio de desenvolvimento da cultura do milho, bem como as condições climáticas no momento das pulverizações. Maracaju, MS, 2023.

Data	Estádio	Horário (início)	Horário (final)	Temp. (°C)	URA (%)1
12/04/2023	V8	09:00 h	09:16 h	29,8	88
03/05/2023	Pré-Pendoamento (PP)	10:22 h	10:26 h	27,4	77
18/05/2023	15 dias após PP	09:20 h	09:27 h	21,5	70

¹Umidade Relativa do Ar

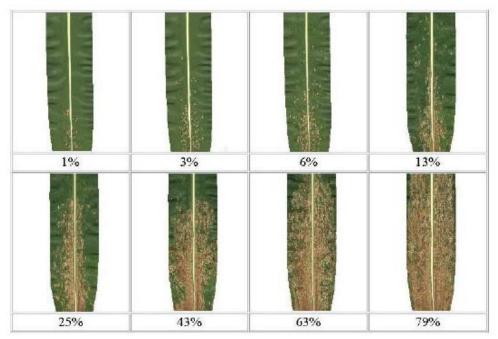
Dimensão das parcelas, espaçamento e densidade

O experimento foi conduzido com delineamento em blocos casualizados, com quinze tratamentos e quatro repetições. As parcelas experimentais foram constituídas de 2,5 metros de largura por 8 metros de comprimento, totalizando 20 m². A semeadura foi realizada com espaçamento de 50 cm entre linhas e densidade de 3 plantas/metro linear.

Tratamentos

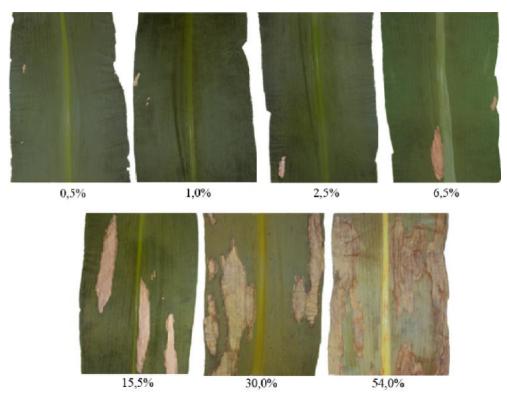
Tabela 1. Descrição dos tratamentos.

T.	PRODUTOS	I.A.	DOSE (ml ou g ha ⁻¹)	COD. DA APL.
1	Testemunha			
2	Abacus HC	Piraclostrobina + Epoxiconazol	300	ABC
	Assist	Oleo Mineral	0,5% v/v	ABC
3	Nativo	Tebuconazol + Trifloxistrobina	600	ABC
	Aureo	Ester Metílico De Óleo De Soja	0,5% v/v	ABC
4	Blavity	Protioconazol + Fluxapiroxade	300	ABC
	Mess	Ester Metílico De Óleo De Soja	0,5% v/v	ABC


5	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500	ABC
	Aureo	Ester Metílico De Óleo De Soja	0,5% v/v	ABC
6	Priori Top	Azoxistrobina + Difenoconazol	300	ABC
	Ochima	Adjuvante, Espalhante Adesivo	0,5% v/v	ABC
7	Azimut	Azoxistrobina + Tebuconazol	500	ABC
	Rumba	Ester Metílico De Óleo De Soja	0,5% v/v	ABC
8	Viovan	Picoxistrobina + Protioconazol	600	ABC
9	Aproach Power	Picoxistrobina + Ciproconazol	600	ABC
10	Sphere Max	Ciproconazol + Trifloxistrobina	300	ABC
	Aureo	Ester Metílico De Óleo De Soja	0,5% v/v	ABC
11	Tridium	Azoxistrobina + Mancozebe + Tebuconazol	2000	ABC
	Strides		0,5% v/v	ABC
12	Fusão EC	Metominostrobin + Tebuconazol	750	ABC
	Iharol gold		0,5% v/v	ABC
13	Alade	Benzovindiflupyr + Ciproconazol + Difenoconazol	500	ABC
14	Belyan Mefentrifluconazole + Fluxapiroxade + Piraclostrobina		600	ABC
	Mess	Ester Metílico De Óleo De Soja	0,5% v/v	ABC
15	Orkestra SC	Fluxapiroxade + Piraclostrobina	300	ABC
13				

¹Aplicação A: estádio V8, B: estádio VT, C: 15 dias após o pré-pendoamento

Método de avaliação



Foram realizadas oito avaliações de severidade da mancha-branca, helmintosporiose e cercosporiose aos 7 e 14 dias após cada aplicação, e aos 7, 14 e 21 dias após a última aplicação. Em cada avaliação de severidade, foram avaliadas duas folhas de cada planta em 10 plantas por parcela. As folhas avaliadas foram aquelas imediatamente acima e imediatamente abaixo da espiga. Na ocasião de avaliação em que não havia espiga, foi avaliada a segunda folha com a lígula aparente contando do ápice da planta para o solo. A média de cada parcela foi baseada na média de todas as folhas avaliadas na parcela em cada avaliação. Para tanto, utilizou-se a escala diagramática proposta por Sachs et al. (2011) para mancha-branca (Figura 2), Lazaroto et al. (2012) para helmintosporiose (Figura 3) e Rocha, Duarte et al. (em processo de publicação) para cercosporiose.

Figura 2. Escala diagramática proposta por Sachs et al. (2011) para avaliação de severidade de mancha-branca.

Figura 3. Escala diagramática proposta por Lazaroto et al. (2012) para avaliação de severidade de helmintosporiose na cultura do milho.

A severidade da doença resulta do tamanho e número de lesões, sendo que estes dois componentes podem atuar de formas independentes durante o progresso da doença (Kranz 1988; Boff et al. 1991). Além disso, a melhor representação de uma epidemia é a curva de progresso da doença, geralmente expressa plotando-se a proporção de doença em função do tempo (Paula e Oliveira 2003). Desta forma, os dados de severidade foram utilizados para o cálculo da área abaixo da curva de progresso da doença (AACPD) baseado no modelo proposto por Campbell e Madden (1990), em que:

$$AACPD = \sum_{1}^{n-1} \frac{(Yi + Yi + 1)}{2} (ti + 1 - ti)$$

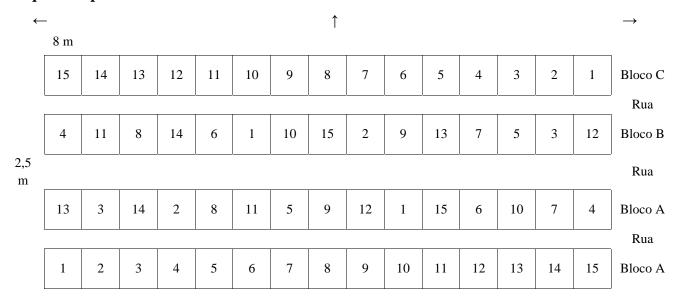
Onde n é o número de avaliações, y a severidade da doença e t é o tempo em dias de cada avaliação.

Com base nos dados obtidos da severidade de doença na área experimental, foi calculada a eficiência de controle de cada tratamento segundo método proposto por Abbott (1925), em que:

$$E(\%) = \frac{(T-t)100}{T}$$

Onde E (%) é a eficiência de controle do tratamento expressa em porcentagem, T é o valor da AACPD na testemunha, e t é o valor da AACPD no tratamento avaliado.

A fitotoxicidade dos produtos aplicados sobre a cultura foi avaliada visualmente no mesmo momento das avaliações de severidade da doença, sendo realizadas observações nas folhas das plantas, com a finalidade de registrar possíveis ocorrências de sintomas de injúrias. Foram atribuídas notas de acordo com a percentagem de área com clorose observada nos diferentes tratamentos.


O rendimento de grãos foi obtido pela colheita da área útil de cada parcela, que correspondeu a 5,4 m² (3 linhas x 4 metros), convertendo-se para kg.ha¹¹ a 13% de umidade. As parcelas foram colhidas mecanicamente com colhedora de parcelas automotriz. A massa de mil grãos foi avaliada realizando-se a contagem dos grãos em contador automático e pesagem em balança de precisão, ajustando-se a umidade para 13%, umidade esta que foi mensurada através de determinador portátil. Para a correção da umidade dos grãos utilizou-se a fórmula abaixo:

$$Rendimento = \frac{10 \times (100 - US) \times PP}{(100 - 13) \times AC}$$

Onde rendimento é expresso em toneladas por hectare, US é a umidade da semente em %, PP é o peso colhido na parcela em kg, e AC é a área colhida da parcela em m².

Os dados foram analisados utilizando-se o software estatístico SASM — Agri versão 8.2, Sistema para Análise e Separação de Médias em Experimentos Agrícolas (CANTERI, et al. 2001), sem transformação e as médias comparadas através do teste de Scott-Knott a 5% de probabilidade.

Croqui do experimento

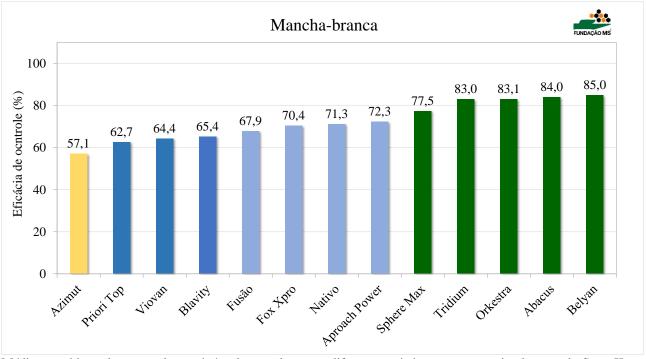

Resultados

Tabela 4. Severidade (%) da Mancha-Branca em plantas de milho tratadas com diferentes fungicidas e área abaixo da curva de progresso da doença (AACPD). Maracaju, MS, 2023.

N.	Av.1	Av.2	Av.3	Av.4	Av.5	Av.6	Av.7	Av.8	AACPD
Controle	0,0	0,0	0,0	6,0 a	13,3 a	29,3 a	38,3 a	45,0 a	1.056,0 a
Abacus	0,0	0,0	0,0	0,0 b	0,0 d	2,8 e	5,0 e	13,3 d	169,3 f
Nativo	0,0	0,0	0,0	0,0 b	1,6 d	5,7 d	12,3 c	18,3 c	303,5 e
Blavity	0,0	0,0	0,0	0,0 b	2,2 d	9,2 c	16,7 b	17,7 d	365,9 d
Fox Xpro	0,0	0,0	0,0	0,0 b	1,4 d	9,0 c	8,3 d	20,3 c	312,3 e
Priori Top	0,0	0,0	0,0	0,0 b	3,2 c	8,7 c	15,3 b	22,0 c	393,6 d
Azimut	0,0	0,0	0,0	0,0 b	4,3 c	9,3 c	17,3 b	25,7 c	453,3 c
Viovan	0,0	0,0	0,0	0,0 b	4,0 c	7,3 c	15,0 b	20,7 c	376,0 d
Aproach Power	0,0	0,0	0,0	0,0 b	1,7 d	5,8 d	8,0 d	21,0 c	292,0 e
Sphere Max	0,0	0,0	0,0	0,0 b	1,2 d	5,9 d	6,7 d	16,0 d	237,9 f
Tridium	0,0	0,0	0,0	0,0 b	0,6 d	3,5 e	5,3 e	13,0 d	179,7 f
Fusão	0,0	0,0	0,0	0,0 b	2,2 d	8,2 c	11,7 c	20,3 c	339,2 e
Belyan	0,0	0,0	0,0	0,0 b	0,1 d	4,0 e	2,8 e	15,3 d	167,1 f
Orkestra	0,0	0,0	0,0	0,0 b	0,2 d	4,8 d	4,0 e	13,3 d	178,7 f
Teste F				213,1**	31,0**	80,0**	94,3**	19,7**	99,1**
CV (%)				49,6	44,3	17,0	16,3	17,8	12,9

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Scott-Knott (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. ns não-significativo. CV: coeficiente de variação.

Figura 4. Eficácia de controle (%) da Mancha-Branca em plantas de milho submetidas a diferentes programas de fungicidas.

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Scott-Knott (p<0,05).

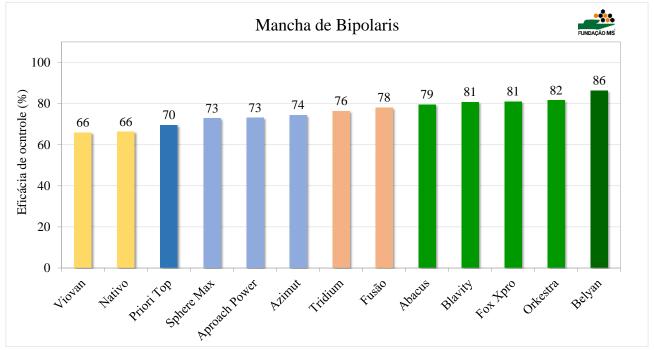


Tabela 5. Severidade (%) da Mancha de Bipolaris em plantas de milho tratadas com diferentes fungicidas e área abaixo da curva de progresso da doença (AACPD). Maracaju, MS, 2023.

N.	Av.1	Av.2	Av.3	Av.4	Av.5	Av.6	Av.7	Av.8	AACPD
Controle	0,0	0,0	9,0 a	10,8 a	19,3 a	21,8 a	23,8 a	39,8 a	994,0 a
Abacus	0,0	0,0	0,9 d	2,7 c	3,0 d	3,6 c	4,3 d	11,1 d	204,6 f
Nativo	0,0	0,0	1,8 b	4,4 b	6,4 b	6,2 b	6,8 b	16,4 b	335,5 b
Blavity	0,0	0,0	0,8 d	1,8 c	1,9 e	3,1 c	4,1 d	12,4 d	191,9 f
Fox Xpro	0,0	0,0	0,7 d	2,0 c	2,2 e	3,3 c	5,0 c	10,5 d	190,0 f
Priori Top	0,0	0,0	2,1 b	3,6 b	5,5 b	6,0 b	7,4 b	13,2 c	302,7 c
Azimut	0,0	0,0	2,2 b	3,9 b	3,2 d	3,7 c	5,1 c	13,7 c	254,4 d
Viovan	0,0	0,0	2,1 b	4,0 b	6,3 b	7,0 b	7,8 b	15,3 b	339,4 b
Aproach Power	0,0	0,0	1,6 c	3,2 b	3,6 d	3,8 c	5,3 c	16,0 b	267,9 d
Sphere Max	0,0	0,0	1,6 c	3,3 b	4,5 c	5,0 b	5,3 c	14,1 c	270,4 d
Tridium	0,0	0,0	1,4 c	2,4 c	4,6 c	4,0 c	5,6 c	11,3 d	234,7 e
Fusão	0,0	0,0	1,5 c	2,1 c	2,7 d	3,1 c	4,2 d	13,7 c	217,8 e
Belyan	0,0	0,0	0,2 d	1,5 c	1,3 e	1,8 c	2,6 d	9,9 d	136,5 g
Orkestra	0,0	0,0	1,1 d	2,2 c	2,3 e	2,8 c	3,7 d	10,7 d	183,1 f
Teste F			87,6**	39,8**	143,6**	101,5**	87,7**	125,9**	278, 4**
CV (%)			23,1	20,8	15,4	17,9	16,3	8,6	12,9

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Scott-Knott (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. *nsnão-significativo. CV: coeficiente de variação.

Figura 5. Eficácia de controle (%) da Mancha de Bipolaris em plantas de milho submetidas a diferentes programas de fungicidas.

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Scott-Knott (p<0,05).

Tabela 6. Fitotoxidade em plantas de milho tratadas com diferentes fungicidas em três avaliações

realizadas sete dias após cada aplicação. Maracaju, MS, 2023.

N.	7 DAA1¹	14 DAA1	7 DAA2	14 DAA2	7 DAA3	14 DAA3
Controle	0,0	0,0	0,0	0,0	0,0	0,0
Abacus	0,0	0,0	0,0	0,0	0,0	0,0
Nativo	0,0	0,0	0,0	0,0	0,0	0,0
Blavity	0,0	0,0	0,0	0,0	0,0	0,0
Fox Xpro	0,0	0,0	0,0	0,0	0,0	0,0
Priori Top	0,0	0,0	0,0	0,0	0,0	0,0
Azimut	0,0	0,0	0,0	0,0	0,0	0,0
Viovan	0,0	0,0	0,0	0,0	0,0	0,0
Aproach Power	0,0	0,0	0,0	0,0	0,0	0,0
Sphere Max	0,0	0,0	0,0	0,0	0,0	0,0
Tridium	0,0	0,0	0,0	0,0	0,0	0,0
Fusão	0,0	0,0	0,0	0,0	0,0	0,0
Belyan	0,0	0,0	0,0	0,0	0,0	0,0
Orkestra	0,0	0,0	0,0	0,0	0,0	0,0
Teste F						
CV (%)						

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Scott-Knott (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. *significativo. CV: coeficiente de variação. ¹DAA: Dias após a aplicação.

Tabela 7. Rendimento de grãos (sc ha⁻¹), redução de perdas (RP), massa de mil grãos (MMG) (g) e redução de perdas da massa de mil grãos (RP MMG) de plantas de milho tratadas com diferentes fungicidas para o controle de manchas foliares. Maracaju, MS, 2023.

0		· · · · · · · · · · · · · · · · · · ·	- ,	
N.	Rendimento de grãos (sc ha ⁻¹)	RP (%)	MMG (g)	RP MMG (%)
Controle	127,2 b	0,0	301,3 a	0,0
Abacus	157,2 a	-23,6	306,5 a	-1,7
Nativo	152,4 ab	-19,8	298,2 a	1,1
Blavity	138,6 ab	-9,0	319,6 a	-6,1
Fox Xpro	145,0 ab	-14,1	299,0 a	0,8
Priori Top	163,1 a	-28,3	312,4 a	-3,7
Azimut	137,5 ab	-8,1	317,8 a	-5,5
Viovan	152,3 ab	-19,8	308,4 a	-2,3
Aproach Power	147,6 ab	-16,1	303,4 a	-0,7
Sphere Max	159,5 a	-25,5	318,8 a	-5,8
Tridium	157,2 a	-23,6	311,0 a	-3,2
Fusão	158,9 a	-25,0	309,2 a	-2,6
Belyan	156,7 a	-23,3	319,7 a	-6,1
Orkestra	151,4 ab	-19,1	304,8 a	-1,2
Teste F	1,6**		0,6 ^{ns}	
CV (%)	10,6		6,3	

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Scott-Knott (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. *nsnão-significativo. CV: coeficiente de variação.

Conclusões

Nas condições edafoclimáticas em que o ensaio foi conduzido, não foram observados sintomas de fitotoxicidade em nenhum dos tratamentos.

Os fungicidas Belyan, Abacus, Orkestra, Tridium e Sphere Max apresentaram maior eficácia de controle da mancha-branca, variando de 77,5 a 85%.

Os fungicidas Belyan, Orkestra, Fox Xpro, Blavity e Abacus apresentaram maior eficácia de controle da mancha de bipolares, variando de 79 a 86%.

Os tratamentos submetidos aos fungicidas Abacus, Priori Top, Sphere Max, Tridium, Fusão e Belyan, apresentaram maior rendimento de grãos, diferindo significativamente do controle.

15 – Referências

ABBOTT, W.S. A method of computing the effectiveness of an insecticide. Journal of Economic **Entomology**, v.18, p.265-267, 1925.

CAMPBELL, C.L.; MADDEN, L.V. Introduction to plant disease epidemiology. New York: John Wiley Sons, 1990. 532p.

FRANS, R.; TALBERT, R.; MARX, D.; CROWLEY, H. Experimental design and techniques for measuring and analysing plant responses to weed control practices: In: CAMPER, N. D. (Ed.). Research methods in weed science, Third ed. USA SOUTHERN WEED SCIENCE SOCIETY, 1986 p. 29 - 46.

KRANZ, J. Measuring plant disease. In KRANZ, J.; ROTEM, J. (Eds.) Experimental techniques in plant disease epidemiology, p.35-50. Heldelberg: Springer-Verlag, 1988. 299p.

PAULA, R.S.; OLIVEIRA, W.R. Resistência de tomateiro (Lycopersicon esculentum) ao patógeno Alternaria solani. Pesquisa Agropecuária Tropical, v.33, n.2, p.89-95, 2003.

Maracaju, MS, 11 de setembro de 2023.

ana Claudia Ruschel machko

Ana Claudia Ruschel Mochko CREA 65838/MS Pesquisadora da Fundação MS