

AVALIAÇÃO DA EFICÁCIA E PRATICABILIDADE AGRONÔMICA DA APLICAÇÃO DE FUNGICIDAS NO ESTÁDIO **VEGETATIVO** NO CONTROLE DE Corynespora cassiicola E Cercospora spp. NA CULTURA DA SOJA (Glycine max) NA SAFRA 2023/24 NAS CONDIÇÕES DE PONTA PORÃ /MATO GROSSO DO SUL

Protocolo: FMS/FP 4250/23

Responsável Técnico: Eng. Agr. Dra. Ana Claudia Ruschel Mochko (CREA 65838/MS). Pesquisadora da FUNDAÇÃO MS.

Ponta Porã, MS 3 de abril de 2024

LAUDO TÉCNICO DE EXPERIMENTAÇÃO AGRÍCOLA

AVALIAÇÃO DA EFICÁCIA E PRATICABILIDADE AGRONÔMICA DA APLICAÇÃO DE FUNGICIDAS NO ESTÁDIO **VEGETATIVO** NO CONTROLE DE *Corynespora cassiicola E Cercospora* spp. NA CULTURA DA SOJA (*Glycine max*) NA SAFRA 2023/24 NAS CONDIÇÕES DE PONTA PORÃ /MATO GROSSO DO SUL

PROTOCOLO: FMS/FP 4250/23

INSTITUIÇÃO EXECUTORA: Fundação MS para Pesquisa e Difusão de Tecnologias Agropecuárias, inscrita no CNPJ/MF sob o nº. 37.213.139/0001-23, com sede na Cidade de Ponta Porã, Estado de Mato Grosso do Sul, na Estrada da Usina Velha, km 2, Caixa Postal 137, CEP 79.150-000.

EMPRESA REQUERENTE: Fundação MS

CULTURA: Soja 2023/2024

AUTORES: Enga. Agra. Dra. Ana Claudia Ruschel Mochko e Enga. Agra Natália Patrícia Ungri

CONDUÇÃO DO ENSAIO: Téc. Agrí. Elder de Oliveira dos Santos, Aux. Kevin da Silva Medina e Aux. Willy Gustavo F. Colman.

AVALIAÇÃO DOS ENSAIOS: Eng^a. Agr^a. Dra. Ana Claudia Ruschel Mochko, Eng^a. Agr^a Natália Patrícia Ungri, Maria Vitória N. da F. Valerio e Louize Nathália Zavia

OBJETIVOS: O objetivo do presente trabalho foi avaliar a eficácia e a praticabilidade agronômica de fungicidas no estádio vegetativo no controle da mancha-alvo (*Corynespora cassiicola*) e das doenças de final de ciclo (*Cercospora* spp.) na cultura de soja (*Glycine max*), em condições de campo, além de registrar possíveis efeitos de fitotoxicidade à referida cultura e o rendimento de grãos.

SUMÁRIO

INTRODUÇÃO	4
MATERIAL E MÉTODOS	6
Local e data	6
Variedade, semeadura, sistema de cultivo	6
Tecnologia de aplicação (barra, espaçamento entre bicos, volume de calda e pressão)	6
Dados climáticos	7
Condições climáticas, data e momento das aplicações	7
Dimensão das parcelas, espaçamento e densidade	7
Aplicações de produtos fitossanitários para manutenção da cultura da soja	8
Croqui do experimento	9
Tratamentos	10
Método de avaliação	12
RESULTADOS	16
CONCLUSÕES	20
IMAGENS	21
DEEEDÊNCIAS RIRI IOCDÁEICAS	22

INTRODUCÃO

A soja (*Glycine max* (L.) Merril) é uma leguminosa pertencente à família Fabaceae, e desempenha um papel de destaque tanto na agricultura quanto na economia global. Originária do leste asiático, essa cultura tornou-se amplamente cultivada em várias regiões do mundo devido à sua versatilidade e valor nutricional. Sua importância abrange a produção de alimentos, rações para animais, óleos vegetais e diversas aplicações industriais, como na fabricação de cosméticos, tintas, adesivos, fibras e plásticos (SOSA-GÓMEZ et al., 2014).

As condições climáticas e do solo encontradas no Brasil fizeram com que o país se tornasse líder na produção mundial de grãos, com uma estimativa de produção de 155,3 milhões de toneladas na safra 2023/2024. No entanto, durante essa safra, devido as condições climáticas adversas em diversas regiões do país, a perspectiva de colheita resultou em uma diminuição de 3%, equivalente a 4,9 milhões de toneladas em comparação com a safra anterior (2022/2023), conforme relatório da CONAB (2024).

Apesar dos impressionantes números de produção, o cultivo de soja no Brasil depara-se com desafios que limitam sua produtividade. Um dos principais obstáculos reside nas doenças causadas por fungos, bactérias, vírus e nematoides, que podem afetar a cultura ao longo de todo o ciclo (AMORIM, et al., 2016). Na região centro-oeste, destaca-se a mancha-alvo e as doenças de final de ciclo (DFC's), como o crestamento foliar de cercospora, gerando preocupações entre os produtores devido ao aumento significativo da incidência dessas doenças na região (LEMES, et al., 2015).

A mancha-alvo, causada pelo fungo *Corynespora cassiic*ola (Berk. & Curt.) Wei, afeta a cultura ao longo de seu desenvolvimento, com maior incidência a partir do estádio fenológico R1, no início do florescimento. Os sintomas incluem lesões circulares com halos cloróticos, evoluindo para coloração castanho-avermelhada, e podem se manifestar em folhas, pecíolos, hastes e vagens (HENNING, et al., 2014) (Figura 1: D e E). Chuvas bem distribuídas favorecem a ocorrência da doença, resultando em desfolha em cultivares suscetíveis, com perdas de produtividade de até 40% (MOLINA et al., 2019). O aumento da semeadura de cultivares suscetíveis, sucessão com culturas hospedeiras do fungo e menor sensibilidade/resistência do fungo a fungicidas contribuem para o aumento da incidência dessa doença (FRAC, 2024).

O crestamento foliar de cercospora, o qual tem como agente causal várias espécies do gênero *Cercospora*, como as espécies *Cercospora kikuchii* (Matsu & Tomoyasu), *C. cf. flagellaris*, *C. sojina* e *C. alchemillicola* podem afetar todas as partes da planta, inclusive os grãos, causando a mancha-púrpura (SOARES, et al., 2015). Os sintomas incluem pontuações castanho-avermelhadas nas folhas e hastes, levando ao crestamento e desfolha precoce (Figura 1: A e B). Nas sementes, são

observadas manchas de coloração púrpura que são facilmente identificadas (Figura 1: C). Essas doenças resultam em perdas quantitativas e qualitativas nos grãos, exigindo a adoção de medidas preventivas de controle.

Dentre as medidas de controle recomendadas, destacam-se a rotação de culturas, controle genético com prioridade para cultivares resistentes, controle biológico e o uso de fungicidas específicos e de amplo espectro em diferentes estágios de desenvolvimento da cultura (KAJIHARA, et al., 2022).

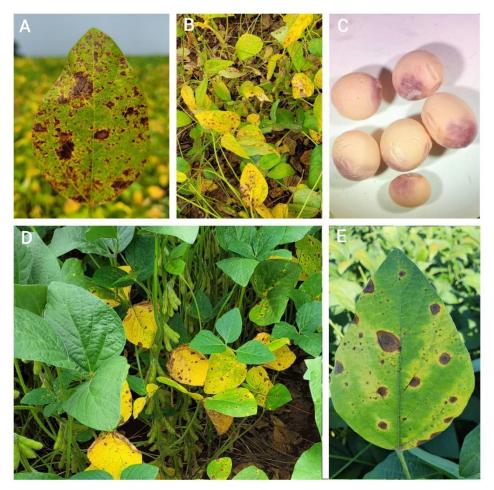


Figura 1. A: Sintomas de crestamento foliar de cercospora; B: Desfolha precoce e sintomas de crestamento no terço médio e superior de plantas de soja; C: Sintomas de mancha-púrpura em grãos de soja; D: Sintomas de mancha-alvo em folhas do terço inferior de plantas de soja; E: Sintomas de mancha-alvo.

MATERIAL E MÉTODOS

Local e data

O experimento foi conduzido em condições de campo, durante a safra 2023/2024, na área experimental da Fundação MS, localizada na Rodovia BR 463, s/n, CIATEC - CIARAMA, Zona Rural, 79900-000 no município de Ponta Porã-MS, tendo como coordenadas 22°37'09.71"S e 55°36'15.11"O, e altitude de 634 metros.

Figura 2. Imagens de satélite obtidas pelo Google Earth no dia 12 de janeiro de 2024. Ponta Porã, MS, 2024.

Variedade, semeadura, sistema de cultivo

Utilizou-se a cultivar AS 3707, recomendada para o cultivo na região. A cultura foi implantada utilizando o sistema de semeadura direta. A semeadura foi realizada no dia 13 de outubro de 2023, a germinação ocorreu em 18 de outubro de 2023 e a colheita no dia 15 de fevereiro de 2023. No sulco de plantio, utilizou-se 250 kg ha⁻¹ de 06-30-10.

Tecnologia de aplicação (barra, espaçamento entre bicos, volume de calda e pressão)

Para aplicação dos tratamentos, utilizou-se pulverizador costal de pressão constante (CO₂) equipado com uma barra de 3,0 m e com 6 pontas de jato duplo leque, modelo TJ 110.02, espaçadas de 50 cm. O volume de calda de 120 L.ha⁻¹ foi mantido à pressão constante de 50 psi.

Dados climáticos

Os dados climáticos, incluindo índices pluviométricos e temperaturas máximas e mínimas, registrados na área experimental durante a condução do ensaio, estão apresentados no gráfico abaixo:

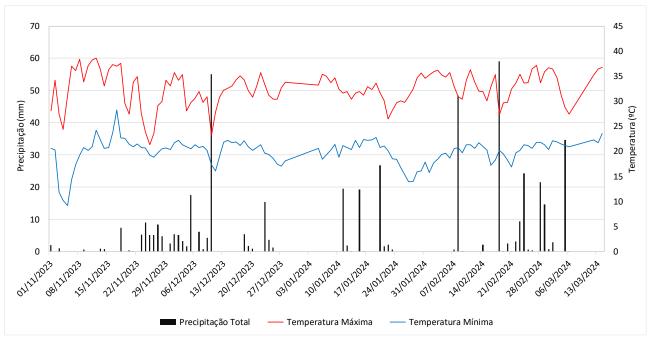


Figura 3. Variáveis climáticas como precipitação, temperatura máxima e mínima, bem como a temperatura registradas durante o desenvolvimento do experimento. Ponta Porã, MS, 2024. Fonte: Estação meteorológica Farmers Edge.

Condições climáticas, data e momento das aplicações

Durante as aplicações, as condições climáticas se apresentavam normais, com boa umidade no solo. A umidade relativa do ar, a temperatura, os horários, a nebulosidade e a velocidade de vento no momento das aplicações estão apresentadas a seguir:

Tabela 1. Data de aplicação, estádio de desenvolvimento da cultura da soja, bem como as condições climáticas no momento das pulverizações. Ponta Porã, MS, 2024.

Data	Estádio	Horário (início)	Horário (final)	Temp. (°C)	URA (%)1
18/10/2023	Reprodutivo	16:31 h	16:51 h	30,1	76
22/12/2023	Reprodutivo	16:45 h	17:00 h	26,5	88
06/12/2023	Reprodutivo	17:20 h	17:20 h	28,9	82
21/12/2023	Reprodutivo	17:46 h	17:46 h	28,8	73

¹Umidade Relativa do Ar

Dimensão das parcelas, espaçamento e densidade

O experimento foi conduzido com delineamento em blocos casualizados, com nove tratamentos e quatro repetições. As parcelas experimentais foram constituídas de 2,5 metros de

largura por 6 metros de comprimento, totalizando 15 m². A semeadura foi realizada com espaçamento de 50 cm entre linhas e densidade de 14 plantas/metro linear.

Aplicações de produtos fitossanitários para manutenção da cultura da soja

Na descrição abaixo, é possível verificar os produtos fitossanitários utilizados no decorrer do ciclo da cultura da soja, a fim de garantir a sanidade da lavoura bem como a manutenção de seu potencial produtivo (Tabela 2).

As manutenções foram realizadas utilizando-se um drone da marca DJI, modelo T20-P, equipado com dois atomizadores rotativos, e aplicação com taxa de vazão de 10 L ha⁻¹ (Figura 4).

Tabela 2. Produtos fitossanitários utilizados, alvo biológico, dose empregada e estádio fenológico

da cultura no momento da aplicação. Ponta Porã. MS. 2024.

Classe	Princípio Ativo	Marca comercial	Dose	Momento
Herbicida	2,4-D	2,4-D Nortox	1 L/ha	35 DANP
Adjuvante	Óleo mineral	Assist	0,5L/ha	35 DANP
Herbicida	Glufosinato	Glufosinato Nortox	2,5L/ha	Após o plantio
Herbicida	Haloxifop	Haloxifop CCAB 124,7 Ec	0,5 L/ha	Após o plantio
Herbicida	Glifosato	Glifosato 720 WG Nortox	1,5 Kg/ha	20 DAE
Herbicida	Haloxifop	Haloxifop CCAB 124,7 Ec	0,5 L/ha	20 DAE
Inseticida	Abamectina	Vertimec 84 SC	60 ml/ha	20 DAE
Adjuvante	Óleo mineral	Assit	0,5 L/ha	20 DAE
Inseticida	Etiprole	Curbix 200 SC	1 L/ha	30 DAE
Inseticida	Piriproxifem	Epingle 100	0,25 L/ha	30 DAE
Inseticida	Clorantraniliprole	Premio	0,12 L/ha	30 DAE
Inseticida	Acefato	Acefato Nortox	0,5 Kg/ha	40 DAE
Inseticida	Imidacloprid	Imidacloprid nortox	0,25 L/ha	40 DAE
Inseticida	Clorantraniliprole	Premio	0,12 L/ha	40 DAE
Inseticida	Acetamiprido + Piriproxifem	Trivor	0,3 L/ha	40 DAE
Inseticida	Metomil	Lannate	1,0 L/ha	65 DAE
Inseticida	Dinotefuram + Lambda-cialotrina	Zeus	0,5 L/ha	65 DAE
Inseticida	Clorfenapir	Pirate	1,0 L/ha	65 DAE
Inseticida	Acetamiprido	Trivor	0,3 L/ha	65 DAE
Inseticida	Acefato	Magnum	1,5 kg/ha	65 DAE

^{*}Utilização de adjuvantes conforme recomendação do fabricante.*Foram realizadas aplicações sequenciais para o controle de mosca-branca (Bemisia tabaci), com intervalo de 5 dias e rotacionando os princípios ativos a partir dos 65 DAE.

Figura 4. Drone da marca DJI, modelo T20-P, utilizado na manutenção dos ensaios. Ponta Porã, MS, 2024.

\uparrow 2,5 m 6 m Bloco D 1 m Rua Bloco C 2,5 m Rua Bloco B Rua Bloco A

Área da parcela: $2,5 \text{ m x } 6 \text{ m} = 15 \text{ m}^2$

Croqui do experimento

Tratamentos

Tabela 3. Produto comercial (p.c.), ingrediente ativo (i.a.), dose dos fungicidas e timming de aplicação nos tratamentos para controle da mancha-alvo da soja, safra 2023/2024.

T.	PRODUTOS	I.A.	DOSE	COD. DA APLICAÇÃO
1	Testemunha			
	Score Flexi	Difenoconazol + Propiconazol	150 mL.ha	A
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Aureo	Ester Metílico De Óleo De Soja	0,25 %	BD
2	Unizeb Gold	Mancozebe	1.500 g.ha	BC
	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	C
	Mess	Ester Metílico De Óleo De Soja	0,25 %	C
	Sphere Max	Ciproconazol + Trifloxistrobina	200 mL.ha	D
	Score Flexi	Difenoconazol + Propiconazol	250 mL.ha	A
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Aureo	Ester Metílico De Óleo De Soja	0,25 %	BD
3	Unizeb Gold	Mancozebe	1.500 g.ha	BC
	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	C
	Mess	Ester Metílico De Óleo De Soja	0,25 %	C
	Sphere Max	Ciproconazol + Trifloxistrobina	200 mL.ha	D
	Nativo	Tebuconazol + Trifloxistrobina	500 mL.ha	A
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Aureo	Ester Metílico De Óleo De Soja	0,25 %	ABD
4	Unizeb Gold	Mancozebe	1.500 g.ha	BC
	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	С
	Mess	Ester Metílico De Óleo De Soja	0,25 %	C
	Sphere Max	Ciproconazol + Trifloxistrobina	200 mL.ha	D
	Fusão EC	Metominostrobin + Tebuconazol	580 g.ha	A
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Aureo	Ester Metílico De Óleo De Soja	0,25 %	BD
5	Unizeb Gold	Mancozebe	1.500 g.ha	BC
3	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	С
	Mess	Ester Metílico De Óleo De Soja	0,25 %	С
	Sphere Max	Ciproconazol + Trifloxistrobina	200 mL.ha	D
	Iharol gold		0,5 %	A
	Cypress 400 EC	Ciproconazol + Difenoconazol	300 mL.ha	A
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Aureo	Ester Metílico De Óleo De Soja	0,25 %	BD
6	Unizeb Gold	Mancozebe	1.500 g.ha	BC
	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	С
	Mess	Ester Metílico De Óleo De Soja	0,25 %	С
	Sphere Max	Ciproconazol + Trifloxistrobina	200 mL.ha	D
	TWIXX	Bacillus Amyloliquefaciens	750 mL.ha	A
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Aureo	Ester Metílico De Óleo De Soja	0,25 %	BD
7	Unizeb Gold	Mancozebe	1.500 g.ha	BC
	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	С
	Mess	Ester Metílico De Óleo De Soja	0,25 %	С
	Sphere Max	Ciproconazol + Trifloxistrobina	200 mL.ha	D
8	Azimut	Azoxistrobina + Tebuconazol	500 mL.ha	A
J	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В

	Aureo	Ester Metílico De Óleo De Soja	0,25 %	BD
	Unizeb Gold	Mancozebe	1.500 g.ha	BC
	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	С
	Mess	Ester Metílico De Óleo De Soja	0,25 %	С
	Sphere Max	Ciproconazol + Trifloxistrobina	200 mL.ha	D
	Rumba Ester Metílico De Óleo De Soja		0,25 %	A
	Abacus HC	Piraclostrobina + Epoxiconazol	250 mL.ha	A
	Fox Xpro	Bixafem + Protioconazol + Trifloxistrobina	500 mL.ha	В
	Aureo	Ester Metílico De Óleo De Soja	0,25 %	BD
9	Unizeb Gold	Mancozebe	1.500 g.ha	BC
	Ativum	Epoxiconazol + Fluxapiroxade + Piraclostrobina	800 mL.ha	С
	Mess	Ester Metílico De Óleo De Soja	0,25 %	AC
	Sphere Max	Ciproconazol + Trifloxistrobina	200 mL.ha	D

¹Aplicação A: 25 DAE (dias após emergência), B: 35 DAE, C: 50 DAE e D: 65 DAE.

Método de avaliação

Durante a condução do experimento realizou-se dez avaliações de severidade da doença, em estádios distintos de desenvolvimento da cultura. A primeira avaliação foi realizada na prévia da aplicação, e posteriormente, aos 7 e 14 dias após cada aplicação, e aos 7, 14, 21 e 28 dias após a última aplicação. A avaliação da severidade da mancha-alvo (porcentagem de área foliar com sintomas) das parcelas foi estimada com auxílio de escala diagramática descrita por Soares (2009) (Figura 5) e a escala proposta por Martins et al. (2004), para a avaliação das doenças de final de ciclo (Figura 6).

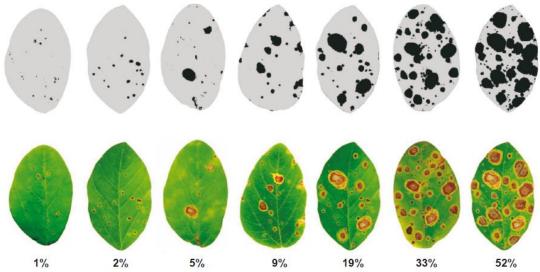


Figura 5. Escala diagramática para a avaliação de severidade de mancha-alvo em soja (SOARES et al., 2009).

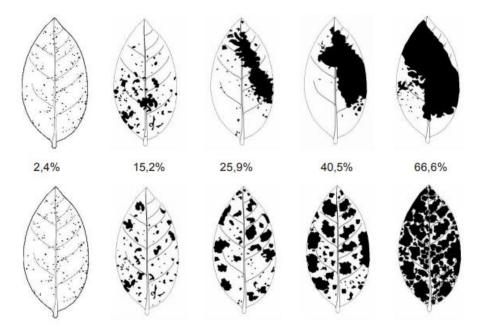


Figura 6. Escala diagramática das doenças de final de ciclo da soja causadas por Septoria glycines e Cercospora kikuchii. Painel superior: Sintomas agregados. Painel inferior: sintomas aleatoriamente distribuídos (MARTINS et al., 2004).

A severidade da doença resulta do tamanho e número de lesões, sendo que estes dois componentes podem atuar de formas independentes durante o progresso da doença (KRANZ 1988; BOFF et al. 1991). Além disso, a melhor representação de uma epidemia é a curva de progresso da doença, geralmente expressa plotando-se a proporção de doença em função do tempo (PAULA e OLIVEIRA 2003). Desta forma, os dados de severidade foram utilizados para o cálculo da área abaixo da curva de progresso da doença (AACPD) baseado no modelo proposto por Campbell e Madden (1990), em que:

$$AACPD = \sum_{1}^{n-1} \frac{(Yi + Yi + 1)}{2} (ti + 1 - ti)$$

Onde n é o número de avaliações, y a severidade da doença e t é o tempo em dias de cada avaliação.

Com base nos dados obtidos da severidade de doença na área experimental, foi calculada a eficiência de controle de cada tratamento segundo método proposto por Abbott (1925), em que:

$$E(\%) = \frac{(T-t)100}{T}$$

Onde E (%) é a eficiência de controle do tratamento expressa em porcentagem, T é o valor da AACPD na testemunha, e t é o valor da AACPD no tratamento avaliado.

A fitotoxicidade dos produtos aplicados sobre a cultura foi avaliada visualmente no mesmo momento das avaliações de severidade da doença, sendo realizadas observações nas folhas das plantas, com a finalidade de registrar possíveis ocorrências de sintomas de injúrias. Foram atribuídas notas de acordo com a escala descritiva e diagramática proposta por Campo e Silva (2012) em função da clorose observada nos diferentes tratamentos (Tabela 4 e Figura 7).

Figura 7. Escalas descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de bronzeamentos, cloroses e necroses foliares causadas por fungicidas em soja (Campos e Silva 2012).

Fundação MS para Pesquisa e Difusão de Tecnologias Agropecuárias

Estrada da Usina Velha, Km02, Zona Rural CEP 79.150-000, Maracaju - MS. Caixa Postal - 137

Tabela 4. Escala descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de bronzeamentos, cloroses e necroses foliares causadas por fungicidas em soja. (Campos et al., 2012).

Nota	Descrição
0	Ausência de fitotoxidez;
1	Muito leve: até 10% da área foliar com presença de cloroses ou bronzeamento;
2	Medianamente leve: entre 11 a 25% da área foliar com presença de cloroses ou bronzeamento;
3	Leve: entre 11 e 25% da área foliar com presença de cloroses ou bronzeamento e com necroses;
4	Medianamente forte: entre 25% e 50% de área foliar afetada e com presença de necroses;
5	Forte: entre 50% e 75% da área foliar afetada e com presença de necroses pronunciadas;
6	Muito forte: mais de 75% de área foliar afetada e com presença de necroses pronunciadas;
7	Extremamente forte: seca total do folíolo afetado;

A avaliação da desfolha nos tratamentos foi realizada visualmente a partir do momento em que a testemunha apresentava desfolha próxima a 80%, com auxílio da escala diagramática descrita por Hirano et al. (2010) (Figura 8).

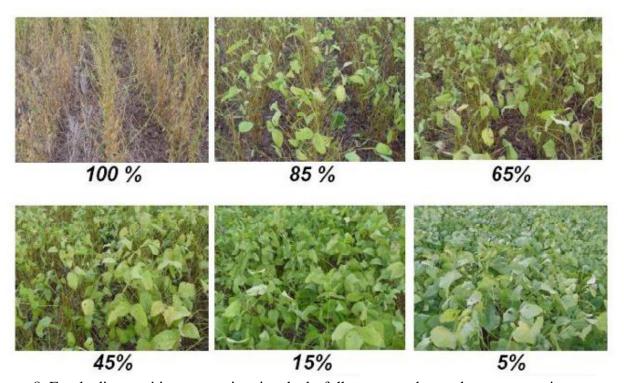


Figura 8. Escala diagramática para estimativa de desfolha provocada por doenças em soja.

O rendimento de grãos foi obtido pela colheita da área útil de cada parcela, que correspondeu a 5,4 m² (3 linhas x 4 metros), convertendo-se para kg.ha⁻¹ a 13% de umidade. As parcelas foram colhidas mecanicamente com colhedora de parcelas automotriz. A massa de mil

Fundação MS para Pesquisa e Difusão

Estrada da Usina Velha, Km02, de Tecnologias Agropecuárias | CEP 79.150-000, Maracaju - MS. Caixa Postal - 137

grãos foi avaliada realizando-se a contagem dos grãos em contador automático e pesagem em balança de precisão, ajustando-se a umidade para 13%, umidade esta que foi mensurada através de determinador portátil. Para a correção da umidade dos grãos utilizou-se a fórmula abaixo:

$$Rendimento = \frac{10 \times (100 - US) \times PP}{(100 - 13) \times AC}$$

Onde rendimento é expresso em toneladas por hectare, US é a umidade da semente em %, PP é o peso colhido na parcela em kg, e AC é a área colhida da parcela em m².

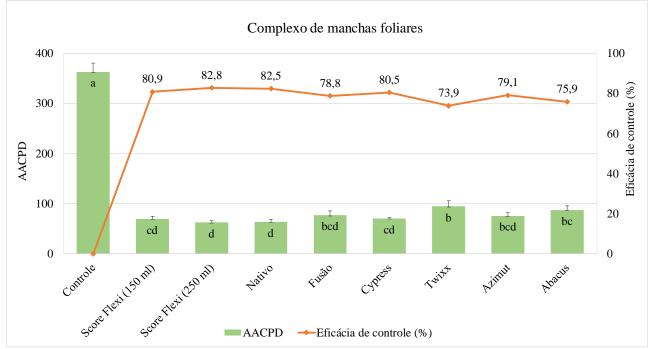
Os dados foram analisados utilizando-se o software estatístico SASM — Agri versão 8.2, Sistema para Análise e Separação de Médias em Experimentos Agrícolas (CANTERI, et al. 2001), sem transformação e as médias comparadas através do teste de Duncan a 5% de probabilidade.

RESULTADOS

Tabela 5. Fitotoxidade em plantas de soja submetida ao tratamento com diferentes fungicidas em seis avaliações realizadas aos sete e quatorze dias após cada aplicação. Ponta Porã, MS, 2024.

N	7	14	7	14	7	14	7	14
N.	DAA11	DAA1	DAA2	DAA2	DAA3	DAA3	DAA4	DAA4
Controle	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Score Flexi (150 ml)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Score Flexi (250 ml)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Nativo	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Fusão	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Cypress	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Twixx	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Azimut	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Abacus	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Teste F								
CV (%)								

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. *nsnão-significativo. CV: coeficiente de variação. ¹DAA: Dias após a aplicação.

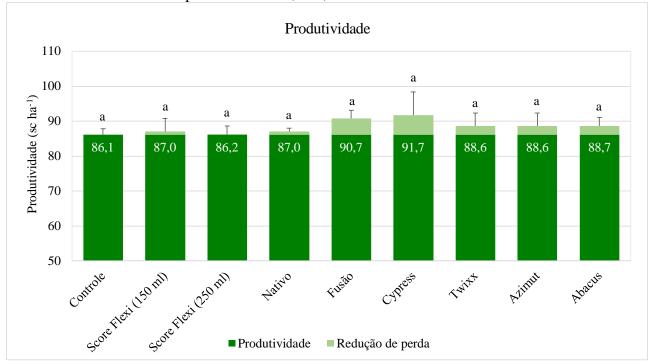

Tabela 6. Severidade (%) do complexo de manchas foliares (crestamento foliar de cercospora, mancha-alvo e míldio) em plantas de soja submetida a diferentes programas de fungicidas e área abaixo da curva de progresso da doença (AACPD). Ponta Porã, MS, 2023.

N.	Prévia	7DAA1	14DAA1	7DAA2	14DAA2	7DAA3	14DAA3	21DAA3	AACPD	C (%)
Controle	0,0	0,0	0,0	0,0	5,1 a	8,0 a	15,8 a	23,0 a	363,1 a	0,0
Score Flexi (150 ml)	0,0	0,0	0,0	0,0	0,0 b	0,4 b	4,6 c	5,0 bcd	69,4 cd	80,9
Score Flexi (250 ml)	0,0	0,0	0,0	0,0	0,0 b	0,3 b	4,2 c	4,5 cd	62,4 d	82,8
Nativo	0,0	0,0	0,0	0,0	0,0 b	0,3 b	4,7 c	4,1 d	63,7 d	82,5
Fusão	0,0	0,0	0,0	0,0	0,0 b	0,4 b	5,3 c	5,3 bcd	76,9 bcd	78,8
Cypress	0,0	0,0	0,0	0,0	0,0 b	0,3 b	4,8 c	5,0 bcd	70,8 cd	80,5
Twixx	0,0	0,0	0,0	0,0	0,0 b	0,3 b	7,5 b	5,7 bc	94,7 b	73,9
Azimut	0,0	0,0	0,0	0,0	0,0 b	0,2 b	6,0 bc	4,6 cd	75,8 bcd	79,1
Abacus	0,0	0,0	0,0	0,0	0,0 b	0,3 b	5,8 bc	6,5 b	87,4 bc	75,9
Teste F					1.681,0	291,3	39,9	161,2	223,5	
CV (%)					14,6	25,9	17,5	13,4	12,1	

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de

Figura 9. Área Abaixo da Curva de Progresso da Doença (AACPD) e eficácia de controle (%) do complexo de manchas foliares (crestamento foliar de cercospora, mancha-alvo e míldio) em plantas de soja submetidas a diferentes programas de fungicidas. Ponta Porã, MS, 2024.

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05).


Tabela 7. Desfolha (%), rendimento de grãos (sc ha⁻¹), redução de perdas da produtividade (%), massa de mil grãos (MMG) (g) e redução deperdas da massa de mil grãos de plantas de soja plantas de soja submetidas a diferentes programas de fungicidas para o controle de mancha-alvo e crestamento foliar de cercospora. Ponta Porã, MS, 2024.

N.	Desfolha (%)	Rendimento de grãos (sc ha ⁻¹)	PD (%)		RP da MMG (%)
Controle	87,5 a	86,1 a	0,0		
Score Flexi (150 ml)	76,8 b	87,0 a	-1,0		
Score Flexi (250 ml)	81,0 b	86,2 a	-0,1		
Nativo	81,0 b	87,0 a	-1,0		
Fusão	76,5 b	90,8 a	-5,4		
Cypress	77,8 b	91,7 a	-6,5		
Twixx	80,0 b	88,6 a	-2,8		
Azimut	78,5 b	88,6 a	-2,9		
Abacus	77,3 b	88,7 a	-3,0		
Teste F	2,6	0,6			
CV (%)	5,4	5,5			

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05). **significativo a 1% de probabilidade. *significativo a 5% de probabilidade. nsnão-significativo. CV: coeficiente de variação.

Figura 10. Produtividade (sc ha⁻¹) e incremento relativo de produtividade (sc ha⁻¹) de plantas de soja plantas de soja submetidas a diferentes programas de fungicidas para o controle de mancha-alvo e crestamento foliar de cercospora. Ponta Porã, MS, 2024.

Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente entre si pelo teste de Duncan (p<0,05).

CONCLUSÕES

Nas condições edafoclimáticas em que o ensaio foi realizado, constatou-se que não foram observados sintomas de fitotoxidez em nenhum dos tratamentos.

Em decorrência da **baixa pressão de doenças**, não foi possível separar as avaliações por alvo. Dessa forma, no complexo de manchas foliares estão englobadas o míldio (*Peronospora manshurica*), o crestamento foliar de cercospora e a mancha-alvo. Com base nos resultados obtidos, os tratamentos com Score Flexi na dose de 250 ml ha⁻¹, e Nativo demonstraram maior eficácia de controle (82,8% e 82,5%, respectivamente) para o complexo de manchas foliares, seguido pelos tratamentos com Score Flexi na dose de 150 ml ha⁻¹ (80,9%) e Cypress (80,5%) quando utilizados na aplicação no estádio vegetativo (V3/V4).

Todos os tratamentos reduziram significativamente a desfolha em relação à testemunha, porém não houve diferença significa entre os tratamentos, que apresentaram desfolha entra 76,8% a 81,0%.

Não houve diferenças significativas no parâmetro rendimento de grãos.

Considerações finais: Os fungicidas não foram associados a nenhum tipo de produto além do adjuvante recomendado pelo fabricante; dessa forma, a associação com herbicidas, adjuvantes, fertilizantes, entre outros que podem alterar o pH da calda, pode resultar em uma modificação na eficácia do controle dos produtos.

IMAGENS

Figura 11. Imagem da primeira parcela dos tratamentos do 1 ao 6.

Figura 12. Imagem da primeira parcela dos tratamentos do 7 ao 9.

REFERÊNCIAS BIBLIOGRÁFICAS

ABBOTT, W.S. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, v.18, p.265-267, 1925.

AMORIM, Lilian et al. Manual de fitopatologia. 2016.

BOFF, P.; ZAMBOLIM, L.; VALE, F.X.R. Escalas para avaliação de severidade de mancha-deestenfílio (*Stemphylium solani*) e da pinta preta (*Alternaria solani*) em tomateiro. Fitopatologia Brasileira, v.16, n.1, p.280-283, 1991.

CAMPBELL, C.L.; MADDEN, L.V. Introduction to plant disease epidemiology. New York: John Wiley & Sons, 1990. 532p.

CAMPOS, H. D; SILVA, L. H. C. P. Escalas descritiva e diagramática para avaliação de fitotoxidez em função da intensidade de cloroses e/ou bronzeamentos e necroses foliares causadas por fungicidas. Rio Verde/GO: UniRV, 2012.

CANTERI, Marcelo G. et al. SASM-Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Duncan , Tukey e Duncan. **Revista Brasileira de agrocomputação**, v. 1, n. 2, p. 18-24, 2001.

CONAB. Companhia Nacional de Abastecimento. Acompanhamento da Safra brasileira de grãos. V. 11 – safra 2023/24, nº 4, quarto levantamento, 2024.

FRAC - FUNGICIDE RESISTANCE ACTION COMMITTEE. Frac code list. Disponível em: https://www.frac.info. Acesso em: 31 de Janeiro 2024.

HENNING, A. A. et al. Manual de identificação de doenças de soja. 5.ed. Londrina: Embrapa Soja, 2014. 76 p. (Documentos / Embrapa Soja, ISSN 1516-781X; n. 256).

HIRANO, Mario et al. Validação de escala diagramática para estimativa de desfolha provocada pela ferrugem asiática em soja. Summa phytopathologica, v. 36, p. 248-250, 2010.

KAJIHARA, L. H. et al. Ação in vitro e in vivo de fungicida sistêmico e multissítio sobre *Phakopsora pachyrhizi*. Summa Phytopathologica, v. 47, p. 216-221, 2022.

Fundação MS para Pesquisa e Difusão

KRANZ, J. Measuring plant disease. In KRANZ, J.; ROTEM, J. (Eds.) Experimental techniques in plant disease epidemiology, p.35-50. Heldelberg: Springer-Verlag, 1988. 299p.

LEMES, E. M. et al. Doenças da soja: melhoramento genético e técnicas de manejo. 1. Ed. Campinas: Millennium Editora, 2015. 363 p.

MARTINS, Mônica C. et al. Escala diagramática para a quantificação do complexo de doenças foliares de final de ciclo em soja. Fitopatologia Brasileira, v. 29, p. 179-184, 2004.

MOLINA, J. P. E.; PAUL, P. A.; AMORIM, L.; SILVA, L. H. C. P. da; SIQUERI, F. V.; BORGES, E. P.; CAMPOS, H. D.; VENANCIO, W. S.; MEYER, M. C.; MARTINS, M. C.; BALARDIN, R. S.; CARLIN, V. J.; GRIGOLLI, J. F. J.; BELUFI, L. M. de R.; NUNES JUNIOR, J.; GODOY, C. V. Effect of target spot on soybean yield and factors affecting this relationship. Plant Pathology, v. 68, p. 107-115, 2019.

PAULA, R.S.; OLIVEIRA, W.R. Resistência de tomateiro (Lycopersicon esculentum) ao patógeno Alternaria solani. Pesquisa Agropecuária Tropical, v.33, n.2, p.89-95, 2003.

SOARES, R.M.; GODOY, C.V.; OLIVEIRA, M.C.N. Escala diagramática para avaliação da severidade da mancha alvo da soja. Tropical Plant Pathology, v.34, n.5, p.333-338, 2009.

SOARES, Ana Paula Gomes et al. More Cercospora species infect soybeans across the Americas than meets the eye. **PLoS One**, v. 10, n. 8, p. e0133495, 2015.

SOSA-GÓMEZ, D. R.; CORRÊA-FERREIRA, B. S.; HOFFMANN-CAMPO, C. B.; CORSO, I. C.; OLIVEIRA, L. J.; MOSCARDI, F.; PANIZZI, A. R.; BUENO, A. F.; HIROSE, E.; ROGGIA, S. Manual de identificação de insetos e outros invertebrados da cultura da soja. 3. ed. Londrina: Embrapa Soja, 2014.

Ponta Porã, MS,3 de abril de 2024

ana Claudia Ruschel machko

Dra. Ana Claudia Ruschel Mochko CREA 65838/MS Pesquisadora – Fundação MS