Coverage Report

Created: 2024-01-20 12:28

/src/libjpeg-turbo.main/jclhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jclhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2022, D. R. Commander.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains Huffman entropy encoding routines for lossless JPEG.
14
 *
15
 * Much of the complexity here has to do with supporting output suspension.
16
 * If the data destination module demands suspension, we want to be able to
17
 * back up to the start of the current MCU.  To do this, we copy state
18
 * variables into local working storage, and update them back to the
19
 * permanent JPEG objects only upon successful completion of an MCU.
20
 */
21
22
#define JPEG_INTERNALS
23
#include "jinclude.h"
24
#include "jpeglib.h"
25
#include "jlossls.h"            /* Private declarations for lossless codec */
26
#include "jchuff.h"             /* Declarations shared with jc*huff.c */
27
28
29
#ifdef C_LOSSLESS_SUPPORTED
30
31
/* The legal range of a spatial difference is
32
 * -32767 .. +32768.
33
 * Hence the magnitude should always fit in 16 bits.
34
 */
35
36
0
#define MAX_DIFF_BITS  16
37
38
39
/* Expanded entropy encoder object for Huffman encoding in lossless mode.
40
 *
41
 * The savable_state subrecord contains fields that change within an MCU,
42
 * but must not be updated permanently until we complete the MCU.
43
 */
44
45
typedef struct {
46
  size_t put_buffer;            /* current bit-accumulation buffer */
47
  int put_bits;                 /* # of bits now in it */
48
} savable_state;
49
50
51
typedef struct {
52
  int ci, yoffset, MCU_width;
53
} lhe_input_ptr_info;
54
55
56
typedef struct {
57
  struct jpeg_entropy_encoder pub; /* public fields */
58
59
  savable_state saved;          /* Bit buffer at start of MCU */
60
61
  /* These fields are NOT loaded into local working state. */
62
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
63
  int next_restart_num;         /* next restart number to write (0-7) */
64
65
  /* Pointers to derived tables (these workspaces have image lifespan) */
66
  c_derived_tbl *derived_tbls[NUM_HUFF_TBLS];
67
68
  /* Pointers to derived tables to be used for each data unit within an MCU */
69
  c_derived_tbl *cur_tbls[C_MAX_BLOCKS_IN_MCU];
70
71
#ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
72
  long *count_ptrs[NUM_HUFF_TBLS];
73
74
  /* Pointers to stats tables to be used for each data unit within an MCU */
75
  long *cur_counts[C_MAX_BLOCKS_IN_MCU];
76
#endif
77
78
  /* Pointers to the proper input difference row for each group of data units
79
   * within an MCU.  For each component, there are Vi groups of Hi data units.
80
   */
81
  JDIFFROW input_ptr[C_MAX_BLOCKS_IN_MCU];
82
83
  /* Number of input pointers in use for the current MCU.  This is the sum
84
   * of all Vi in the MCU.
85
   */
86
  int num_input_ptrs;
87
88
  /* Information used for positioning the input pointers within the input
89
   * difference rows.
90
   */
91
  lhe_input_ptr_info input_ptr_info[C_MAX_BLOCKS_IN_MCU];
92
93
  /* Index of the proper input pointer for each data unit within an MCU */
94
  int input_ptr_index[C_MAX_BLOCKS_IN_MCU];
95
96
} lhuff_entropy_encoder;
97
98
typedef lhuff_entropy_encoder *lhuff_entropy_ptr;
99
100
/* Working state while writing an MCU.
101
 * This struct contains all the fields that are needed by subroutines.
102
 */
103
104
typedef struct {
105
  JOCTET *next_output_byte;     /* => next byte to write in buffer */
106
  size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
107
  savable_state cur;            /* Current bit buffer & DC state */
108
  j_compress_ptr cinfo;         /* dump_buffer needs access to this */
109
} working_state;
110
111
112
/* Forward declarations */
113
METHODDEF(JDIMENSION) encode_mcus_huff(j_compress_ptr cinfo,
114
                                       JDIFFIMAGE diff_buf,
115
                                       JDIMENSION MCU_row_num,
116
                                       JDIMENSION MCU_col_num,
117
                                       JDIMENSION nMCU);
118
METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
119
#ifdef ENTROPY_OPT_SUPPORTED
120
METHODDEF(JDIMENSION) encode_mcus_gather(j_compress_ptr cinfo,
121
                                         JDIFFIMAGE diff_buf,
122
                                         JDIMENSION MCU_row_num,
123
                                         JDIMENSION MCU_col_num,
124
                                         JDIMENSION nMCU);
125
METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
126
#endif
127
128
129
/*
130
 * Initialize for a Huffman-compressed scan.
131
 * If gather_statistics is TRUE, we do not output anything during the scan,
132
 * just count the Huffman symbols used and generate Huffman code tables.
133
 */
134
135
METHODDEF(void)
136
start_pass_lhuff(j_compress_ptr cinfo, boolean gather_statistics)
137
0
{
138
0
  lhuff_entropy_ptr entropy = (lhuff_entropy_ptr)cinfo->entropy;
139
0
  int ci, dctbl, sampn, ptrn, yoffset, xoffset;
140
0
  jpeg_component_info *compptr;
141
142
0
  if (gather_statistics) {
143
0
#ifdef ENTROPY_OPT_SUPPORTED
144
0
    entropy->pub.encode_mcus = encode_mcus_gather;
145
0
    entropy->pub.finish_pass = finish_pass_gather;
146
#else
147
    ERREXIT(cinfo, JERR_NOT_COMPILED);
148
#endif
149
0
  } else {
150
0
    entropy->pub.encode_mcus = encode_mcus_huff;
151
0
    entropy->pub.finish_pass = finish_pass_huff;
152
0
  }
153
154
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
155
0
    compptr = cinfo->cur_comp_info[ci];
156
0
    dctbl = compptr->dc_tbl_no;
157
0
    if (gather_statistics) {
158
0
#ifdef ENTROPY_OPT_SUPPORTED
159
      /* Check for invalid table indexes */
160
      /* (make_c_derived_tbl does this in the other path) */
161
0
      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
162
0
        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
163
      /* Allocate and zero the statistics tables */
164
      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
165
0
      if (entropy->count_ptrs[dctbl] == NULL)
166
0
        entropy->count_ptrs[dctbl] = (long *)
167
0
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
0
                                      257 * sizeof(long));
169
0
      memset(entropy->count_ptrs[dctbl], 0, 257 * sizeof(long));
170
0
#endif
171
0
    } else {
172
      /* Compute derived values for Huffman tables */
173
      /* We may do this more than once for a table, but it's not expensive */
174
0
      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
175
0
                              &entropy->derived_tbls[dctbl]);
176
0
    }
177
0
  }
178
179
  /* Precalculate encoding info for each sample in an MCU of this scan */
180
0
  for (sampn = 0, ptrn = 0; sampn < cinfo->blocks_in_MCU;) {
181
0
    compptr = cinfo->cur_comp_info[cinfo->MCU_membership[sampn]];
182
0
    ci = compptr->component_index;
183
0
    for (yoffset = 0; yoffset < compptr->MCU_height; yoffset++, ptrn++) {
184
      /* Precalculate the setup info for each input pointer */
185
0
      entropy->input_ptr_info[ptrn].ci = ci;
186
0
      entropy->input_ptr_info[ptrn].yoffset = yoffset;
187
0
      entropy->input_ptr_info[ptrn].MCU_width = compptr->MCU_width;
188
0
      for (xoffset = 0; xoffset < compptr->MCU_width; xoffset++, sampn++) {
189
        /* Precalculate the input pointer index for each sample */
190
0
        entropy->input_ptr_index[sampn] = ptrn;
191
        /* Precalculate which tables to use for each sample */
192
0
        entropy->cur_tbls[sampn] = entropy->derived_tbls[compptr->dc_tbl_no];
193
0
        entropy->cur_counts[sampn] = entropy->count_ptrs[compptr->dc_tbl_no];
194
0
      }
195
0
    }
196
0
  }
197
0
  entropy->num_input_ptrs = ptrn;
198
199
  /* Initialize bit buffer to empty */
200
0
  entropy->saved.put_buffer = 0;
201
0
  entropy->saved.put_bits = 0;
202
203
  /* Initialize restart stuff */
204
0
  entropy->restarts_to_go = cinfo->restart_interval;
205
0
  entropy->next_restart_num = 0;
206
0
}
207
208
209
/* Outputting bytes to the file */
210
211
/* Emit a byte, taking 'action' if must suspend. */
212
0
#define emit_byte(state, val, action) { \
213
0
  *(state)->next_output_byte++ = (JOCTET)(val); \
214
0
  if (--(state)->free_in_buffer == 0) \
215
0
    if (!dump_buffer(state)) \
216
0
      { action; } \
217
0
}
218
219
220
LOCAL(boolean)
221
dump_buffer(working_state *state)
222
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
223
0
{
224
0
  struct jpeg_destination_mgr *dest = state->cinfo->dest;
225
226
0
  if (!(*dest->empty_output_buffer) (state->cinfo))
227
0
    return FALSE;
228
  /* After a successful buffer dump, must reset buffer pointers */
229
0
  state->next_output_byte = dest->next_output_byte;
230
0
  state->free_in_buffer = dest->free_in_buffer;
231
0
  return TRUE;
232
0
}
233
234
235
/* Outputting bits to the file */
236
237
/* Only the right 24 bits of put_buffer are used; the valid bits are
238
 * left-justified in this part.  At most 16 bits can be passed to emit_bits
239
 * in one call, and we never retain more than 7 bits in put_buffer
240
 * between calls, so 24 bits are sufficient.
241
 */
242
243
INLINE
244
LOCAL(boolean)
245
emit_bits(working_state *state, unsigned int code, int size)
246
/* Emit some bits; return TRUE if successful, FALSE if must suspend */
247
0
{
248
  /* This routine is heavily used, so it's worth coding tightly. */
249
0
  register size_t put_buffer = (size_t)code;
250
0
  register int put_bits = state->cur.put_bits;
251
252
  /* if size is 0, caller used an invalid Huffman table entry */
253
0
  if (size == 0)
254
0
    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
255
256
0
  put_buffer &= (((size_t)1) << size) - 1; /* mask off any extra bits in code */
257
258
0
  put_bits += size;             /* new number of bits in buffer */
259
260
0
  put_buffer <<= 24 - put_bits; /* align incoming bits */
261
262
0
  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
263
264
0
  while (put_bits >= 8) {
265
0
    int c = (int)((put_buffer >> 16) & 0xFF);
266
267
0
    emit_byte(state, c, return FALSE);
268
0
    if (c == 0xFF) {            /* need to stuff a zero byte? */
269
0
      emit_byte(state, 0, return FALSE);
270
0
    }
271
0
    put_buffer <<= 8;
272
0
    put_bits -= 8;
273
0
  }
274
275
0
  state->cur.put_buffer = put_buffer; /* update state variables */
276
0
  state->cur.put_bits = put_bits;
277
278
0
  return TRUE;
279
0
}
280
281
282
LOCAL(boolean)
283
flush_bits(working_state *state)
284
0
{
285
0
  if (!emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
286
0
    return FALSE;
287
0
  state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
288
0
  state->cur.put_bits = 0;
289
0
  return TRUE;
290
0
}
291
292
293
/*
294
 * Emit a restart marker & resynchronize predictions.
295
 */
296
297
LOCAL(boolean)
298
emit_restart(working_state *state, int restart_num)
299
0
{
300
0
  if (!flush_bits(state))
301
0
    return FALSE;
302
303
0
  emit_byte(state, 0xFF, return FALSE);
304
0
  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
305
306
  /* The restart counter is not updated until we successfully write the MCU. */
307
308
0
  return TRUE;
309
0
}
310
311
312
/*
313
 * Encode and output nMCU MCUs' worth of Huffman-compressed differences.
314
 */
315
316
METHODDEF(JDIMENSION)
317
encode_mcus_huff(j_compress_ptr cinfo, JDIFFIMAGE diff_buf,
318
                 JDIMENSION MCU_row_num, JDIMENSION MCU_col_num,
319
                 JDIMENSION nMCU)
320
0
{
321
0
  lhuff_entropy_ptr entropy = (lhuff_entropy_ptr)cinfo->entropy;
322
0
  working_state state;
323
0
  int sampn, ci, yoffset, MCU_width, ptrn;
324
0
  JDIMENSION mcu_num;
325
326
  /* Load up working state */
327
0
  state.next_output_byte = cinfo->dest->next_output_byte;
328
0
  state.free_in_buffer = cinfo->dest->free_in_buffer;
329
0
  state.cur = entropy->saved;
330
0
  state.cinfo = cinfo;
331
332
  /* Emit restart marker if needed */
333
0
  if (cinfo->restart_interval) {
334
0
    if (entropy->restarts_to_go == 0)
335
0
      if (!emit_restart(&state, entropy->next_restart_num))
336
0
        return 0;
337
0
  }
338
339
  /* Set input pointer locations based on MCU_col_num */
340
0
  for (ptrn = 0; ptrn < entropy->num_input_ptrs; ptrn++) {
341
0
    ci = entropy->input_ptr_info[ptrn].ci;
342
0
    yoffset = entropy->input_ptr_info[ptrn].yoffset;
343
0
    MCU_width = entropy->input_ptr_info[ptrn].MCU_width;
344
0
    entropy->input_ptr[ptrn] =
345
0
      diff_buf[ci][MCU_row_num + yoffset] + (MCU_col_num * MCU_width);
346
0
  }
347
348
0
  for (mcu_num = 0; mcu_num < nMCU; mcu_num++) {
349
350
    /* Inner loop handles the samples in the MCU */
351
0
    for (sampn = 0; sampn < cinfo->blocks_in_MCU; sampn++) {
352
0
      register int temp, temp2;
353
0
      register int nbits;
354
0
      c_derived_tbl *dctbl = entropy->cur_tbls[sampn];
355
356
      /* Encode the difference per section H.1.2.2 */
357
358
      /* Input the sample difference */
359
0
      temp = *entropy->input_ptr[entropy->input_ptr_index[sampn]]++;
360
361
0
      if (temp & 0x8000) {      /* instead of temp < 0 */
362
0
        temp = (-temp) & 0x7FFF; /* absolute value, mod 2^16 */
363
0
        if (temp == 0)          /* special case: magnitude = 32768 */
364
0
          temp2 = temp = 0x8000;
365
0
        temp2 = ~temp;          /* one's complement of magnitude */
366
0
      } else {
367
0
        temp &= 0x7FFF;         /* abs value mod 2^16 */
368
0
        temp2 = temp;           /* magnitude */
369
0
      }
370
371
      /* Find the number of bits needed for the magnitude of the difference */
372
0
      nbits = 0;
373
0
      while (temp) {
374
0
        nbits++;
375
0
        temp >>= 1;
376
0
      }
377
      /* Check for out-of-range difference values.
378
       */
379
0
      if (nbits > MAX_DIFF_BITS)
380
0
        ERREXIT(cinfo, JERR_BAD_DCT_COEF);
381
382
      /* Emit the Huffman-coded symbol for the number of bits */
383
0
      if (!emit_bits(&state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
384
0
        return mcu_num;
385
386
      /* Emit that number of bits of the value, if positive, */
387
      /* or the complement of its magnitude, if negative. */
388
0
      if (nbits &&              /* emit_bits rejects calls with size 0 */
389
0
          nbits != 16)          /* special case: no bits should be emitted */
390
0
        if (!emit_bits(&state, (unsigned int)temp2, nbits))
391
0
          return mcu_num;
392
0
    }
393
394
    /* Completed MCU, so update state */
395
0
    cinfo->dest->next_output_byte = state.next_output_byte;
396
0
    cinfo->dest->free_in_buffer = state.free_in_buffer;
397
0
    entropy->saved = state.cur;
398
399
    /* Update restart-interval state too */
400
0
    if (cinfo->restart_interval) {
401
0
      if (entropy->restarts_to_go == 0) {
402
0
        entropy->restarts_to_go = cinfo->restart_interval;
403
0
        entropy->next_restart_num++;
404
0
        entropy->next_restart_num &= 7;
405
0
      }
406
0
      entropy->restarts_to_go--;
407
0
    }
408
409
0
  }
410
411
0
  return nMCU;
412
0
}
413
414
415
/*
416
 * Finish up at the end of a Huffman-compressed scan.
417
 */
418
419
METHODDEF(void)
420
finish_pass_huff(j_compress_ptr cinfo)
421
0
{
422
0
  lhuff_entropy_ptr entropy = (lhuff_entropy_ptr)cinfo->entropy;
423
0
  working_state state;
424
425
  /* Load up working state ... flush_bits needs it */
426
0
  state.next_output_byte = cinfo->dest->next_output_byte;
427
0
  state.free_in_buffer = cinfo->dest->free_in_buffer;
428
0
  state.cur = entropy->saved;
429
0
  state.cinfo = cinfo;
430
431
  /* Flush out the last data */
432
0
  if (!flush_bits(&state))
433
0
    ERREXIT(cinfo, JERR_CANT_SUSPEND);
434
435
  /* Update state */
436
0
  cinfo->dest->next_output_byte = state.next_output_byte;
437
0
  cinfo->dest->free_in_buffer = state.free_in_buffer;
438
0
  entropy->saved = state.cur;
439
0
}
440
441
442
/*
443
 * Huffman coding optimization.
444
 *
445
 * We first scan the supplied data and count the number of uses of each symbol
446
 * that is to be Huffman-coded. (This process MUST agree with the code above.)
447
 * Then we build a Huffman coding tree for the observed counts.
448
 * Symbols which are not needed at all for the particular image are not
449
 * assigned any code, which saves space in the DHT marker as well as in
450
 * the compressed data.
451
 */
452
453
#ifdef ENTROPY_OPT_SUPPORTED
454
455
/*
456
 * Trial-encode nMCU MCUs' worth of Huffman-compressed differences.
457
 * No data is actually output, so no suspension return is possible.
458
 */
459
460
METHODDEF(JDIMENSION)
461
encode_mcus_gather(j_compress_ptr cinfo, JDIFFIMAGE diff_buf,
462
                   JDIMENSION MCU_row_num, JDIMENSION MCU_col_num,
463
                   JDIMENSION nMCU)
464
0
{
465
0
  lhuff_entropy_ptr entropy = (lhuff_entropy_ptr)cinfo->entropy;
466
0
  int sampn, ci, yoffset, MCU_width, ptrn;
467
0
  JDIMENSION mcu_num;
468
469
  /* Take care of restart intervals if needed */
470
0
  if (cinfo->restart_interval) {
471
0
    if (entropy->restarts_to_go == 0) {
472
      /* Update restart state */
473
0
      entropy->restarts_to_go = cinfo->restart_interval;
474
0
    }
475
0
    entropy->restarts_to_go--;
476
0
  }
477
478
  /* Set input pointer locations based on MCU_col_num */
479
0
  for (ptrn = 0; ptrn < entropy->num_input_ptrs; ptrn++) {
480
0
    ci = entropy->input_ptr_info[ptrn].ci;
481
0
    yoffset = entropy->input_ptr_info[ptrn].yoffset;
482
0
    MCU_width = entropy->input_ptr_info[ptrn].MCU_width;
483
0
    entropy->input_ptr[ptrn] =
484
0
      diff_buf[ci][MCU_row_num + yoffset] + (MCU_col_num * MCU_width);
485
0
  }
486
487
0
  for (mcu_num = 0; mcu_num < nMCU; mcu_num++) {
488
489
    /* Inner loop handles the samples in the MCU */
490
0
    for (sampn = 0; sampn < cinfo->blocks_in_MCU; sampn++) {
491
0
      register int temp;
492
0
      register int nbits;
493
0
      long *counts = entropy->cur_counts[sampn];
494
495
      /* Encode the difference per section H.1.2.2 */
496
497
      /* Input the sample difference */
498
0
      temp = *entropy->input_ptr[entropy->input_ptr_index[sampn]]++;
499
500
0
      if (temp & 0x8000) {      /* instead of temp < 0 */
501
0
        temp = (-temp) & 0x7FFF; /* absolute value, mod 2^16 */
502
0
        if (temp == 0)          /* special case: magnitude = 32768 */
503
0
          temp = 0x8000;
504
0
      } else
505
0
        temp &= 0x7FFF;         /* abs value mod 2^16 */
506
507
      /* Find the number of bits needed for the magnitude of the difference */
508
0
      nbits = 0;
509
0
      while (temp) {
510
0
        nbits++;
511
0
        temp >>= 1;
512
0
      }
513
      /* Check for out-of-range difference values.
514
       */
515
0
      if (nbits > MAX_DIFF_BITS)
516
0
        ERREXIT(cinfo, JERR_BAD_DCT_COEF);
517
518
      /* Count the Huffman symbol for the number of bits */
519
0
      counts[nbits]++;
520
0
    }
521
0
  }
522
523
0
  return nMCU;
524
0
}
525
526
527
/*
528
 * Finish up a statistics-gathering pass and create the new Huffman tables.
529
 */
530
531
METHODDEF(void)
532
finish_pass_gather(j_compress_ptr cinfo)
533
0
{
534
0
  lhuff_entropy_ptr entropy = (lhuff_entropy_ptr)cinfo->entropy;
535
0
  int ci, dctbl;
536
0
  jpeg_component_info *compptr;
537
0
  JHUFF_TBL **htblptr;
538
0
  boolean did_dc[NUM_HUFF_TBLS];
539
540
  /* It's important not to apply jpeg_gen_optimal_table more than once
541
   * per table, because it clobbers the input frequency counts!
542
   */
543
0
  memset(did_dc, 0, sizeof(did_dc));
544
545
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
546
0
    compptr = cinfo->cur_comp_info[ci];
547
0
    dctbl = compptr->dc_tbl_no;
548
0
    if (!did_dc[dctbl]) {
549
0
      htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
550
0
      if (*htblptr == NULL)
551
0
        *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
552
0
      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[dctbl]);
553
0
      did_dc[dctbl] = TRUE;
554
0
    }
555
0
  }
556
0
}
557
558
559
#endif /* ENTROPY_OPT_SUPPORTED */
560
561
562
/*
563
 * Module initialization routine for Huffman entropy encoding.
564
 */
565
566
GLOBAL(void)
567
jinit_lhuff_encoder(j_compress_ptr cinfo)
568
0
{
569
0
  lhuff_entropy_ptr entropy;
570
0
  int i;
571
572
0
  entropy = (lhuff_entropy_ptr)
573
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
574
0
                                sizeof(lhuff_entropy_encoder));
575
0
  cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
576
0
  entropy->pub.start_pass = start_pass_lhuff;
577
578
  /* Mark tables unallocated */
579
0
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
580
0
    entropy->derived_tbls[i] = NULL;
581
0
#ifdef ENTROPY_OPT_SUPPORTED
582
0
    entropy->count_ptrs[i] = NULL;
583
0
#endif
584
0
  }
585
0
}
586
587
#endif /* C_LOSSLESS_SUPPORTED */