/src/libjpeg-turbo.main/jctrans.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jctrans.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1995-1998, Thomas G. Lane. |
6 | | * Modified 2000-2009 by Guido Vollbeding. |
7 | | * libjpeg-turbo Modifications: |
8 | | * Copyright (C) 2020, 2022, D. R. Commander. |
9 | | * For conditions of distribution and use, see the accompanying README.ijg |
10 | | * file. |
11 | | * |
12 | | * This file contains library routines for transcoding compression, |
13 | | * that is, writing raw DCT coefficient arrays to an output JPEG file. |
14 | | * The routines in jcapimin.c will also be needed by a transcoder. |
15 | | */ |
16 | | |
17 | | #define JPEG_INTERNALS |
18 | | #include "jinclude.h" |
19 | | #include "jpeglib.h" |
20 | | #include "jpegapicomp.h" |
21 | | |
22 | | |
23 | | /* Forward declarations */ |
24 | | LOCAL(void) transencode_master_selection(j_compress_ptr cinfo, |
25 | | jvirt_barray_ptr *coef_arrays); |
26 | | LOCAL(void) transencode_coef_controller(j_compress_ptr cinfo, |
27 | | jvirt_barray_ptr *coef_arrays); |
28 | | |
29 | | |
30 | | /* |
31 | | * Compression initialization for writing raw-coefficient data. |
32 | | * Before calling this, all parameters and a data destination must be set up. |
33 | | * Call jpeg_finish_compress() to actually write the data. |
34 | | * |
35 | | * The number of passed virtual arrays must match cinfo->num_components. |
36 | | * Note that the virtual arrays need not be filled or even realized at |
37 | | * the time write_coefficients is called; indeed, if the virtual arrays |
38 | | * were requested from this compression object's memory manager, they |
39 | | * typically will be realized during this routine and filled afterwards. |
40 | | */ |
41 | | |
42 | | GLOBAL(void) |
43 | | jpeg_write_coefficients(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays) |
44 | 0 | { |
45 | 0 | if (cinfo->master->lossless) |
46 | 0 | ERREXIT(cinfo, JERR_NOTIMPL); |
47 | |
|
48 | 0 | if (cinfo->global_state != CSTATE_START) |
49 | 0 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); |
50 | | /* Mark all tables to be written */ |
51 | 0 | jpeg_suppress_tables(cinfo, FALSE); |
52 | | /* (Re)initialize error mgr and destination modules */ |
53 | 0 | (*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo); |
54 | 0 | (*cinfo->dest->init_destination) (cinfo); |
55 | | /* Perform master selection of active modules */ |
56 | 0 | transencode_master_selection(cinfo, coef_arrays); |
57 | | /* Wait for jpeg_finish_compress() call */ |
58 | 0 | cinfo->next_scanline = 0; /* so jpeg_write_marker works */ |
59 | 0 | cinfo->global_state = CSTATE_WRCOEFS; |
60 | 0 | } |
61 | | |
62 | | |
63 | | /* |
64 | | * Initialize the compression object with default parameters, |
65 | | * then copy from the source object all parameters needed for lossless |
66 | | * transcoding. Parameters that can be varied without loss (such as |
67 | | * scan script and Huffman optimization) are left in their default states. |
68 | | */ |
69 | | |
70 | | GLOBAL(void) |
71 | | jpeg_copy_critical_parameters(j_decompress_ptr srcinfo, j_compress_ptr dstinfo) |
72 | 0 | { |
73 | 0 | JQUANT_TBL **qtblptr; |
74 | 0 | jpeg_component_info *incomp, *outcomp; |
75 | 0 | JQUANT_TBL *c_quant, *slot_quant; |
76 | 0 | int tblno, ci, coefi; |
77 | |
|
78 | 0 | if (srcinfo->master->lossless) |
79 | 0 | ERREXIT(dstinfo, JERR_NOTIMPL); |
80 | | |
81 | | /* Safety check to ensure start_compress not called yet. */ |
82 | 0 | if (dstinfo->global_state != CSTATE_START) |
83 | 0 | ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); |
84 | | /* Copy fundamental image dimensions */ |
85 | 0 | dstinfo->image_width = srcinfo->image_width; |
86 | 0 | dstinfo->image_height = srcinfo->image_height; |
87 | 0 | dstinfo->input_components = srcinfo->num_components; |
88 | 0 | dstinfo->in_color_space = srcinfo->jpeg_color_space; |
89 | | #if JPEG_LIB_VERSION >= 70 |
90 | | dstinfo->jpeg_width = srcinfo->output_width; |
91 | | dstinfo->jpeg_height = srcinfo->output_height; |
92 | | dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; |
93 | | dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; |
94 | | #endif |
95 | | /* Initialize all parameters to default values */ |
96 | 0 | jpeg_set_defaults(dstinfo); |
97 | | /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. |
98 | | * Fix it to get the right header markers for the image colorspace. |
99 | | */ |
100 | 0 | jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); |
101 | 0 | dstinfo->data_precision = srcinfo->data_precision; |
102 | 0 | dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; |
103 | | /* Copy the source's quantization tables. */ |
104 | 0 | for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
105 | 0 | if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { |
106 | 0 | qtblptr = &dstinfo->quant_tbl_ptrs[tblno]; |
107 | 0 | if (*qtblptr == NULL) |
108 | 0 | *qtblptr = jpeg_alloc_quant_table((j_common_ptr)dstinfo); |
109 | 0 | memcpy((*qtblptr)->quantval, srcinfo->quant_tbl_ptrs[tblno]->quantval, |
110 | 0 | sizeof((*qtblptr)->quantval)); |
111 | 0 | (*qtblptr)->sent_table = FALSE; |
112 | 0 | } |
113 | 0 | } |
114 | | /* Copy the source's per-component info. |
115 | | * Note we assume jpeg_set_defaults has allocated the dest comp_info array. |
116 | | */ |
117 | 0 | dstinfo->num_components = srcinfo->num_components; |
118 | 0 | if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) |
119 | 0 | ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, |
120 | 0 | MAX_COMPONENTS); |
121 | 0 | for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; |
122 | 0 | ci < dstinfo->num_components; ci++, incomp++, outcomp++) { |
123 | 0 | outcomp->component_id = incomp->component_id; |
124 | 0 | outcomp->h_samp_factor = incomp->h_samp_factor; |
125 | 0 | outcomp->v_samp_factor = incomp->v_samp_factor; |
126 | 0 | outcomp->quant_tbl_no = incomp->quant_tbl_no; |
127 | | /* Make sure saved quantization table for component matches the qtable |
128 | | * slot. If not, the input file re-used this qtable slot. |
129 | | * IJG encoder currently cannot duplicate this. |
130 | | */ |
131 | 0 | tblno = outcomp->quant_tbl_no; |
132 | 0 | if (tblno < 0 || tblno >= NUM_QUANT_TBLS || |
133 | 0 | srcinfo->quant_tbl_ptrs[tblno] == NULL) |
134 | 0 | ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); |
135 | 0 | slot_quant = srcinfo->quant_tbl_ptrs[tblno]; |
136 | 0 | c_quant = incomp->quant_table; |
137 | 0 | if (c_quant != NULL) { |
138 | 0 | for (coefi = 0; coefi < DCTSIZE2; coefi++) { |
139 | 0 | if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) |
140 | 0 | ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); |
141 | 0 | } |
142 | 0 | } |
143 | | /* Note: we do not copy the source's Huffman table assignments; |
144 | | * instead we rely on jpeg_set_colorspace to have made a suitable choice. |
145 | | */ |
146 | 0 | } |
147 | | /* Also copy JFIF version and resolution information, if available. |
148 | | * Strictly speaking this isn't "critical" info, but it's nearly |
149 | | * always appropriate to copy it if available. In particular, |
150 | | * if the application chooses to copy JFIF 1.02 extension markers from |
151 | | * the source file, we need to copy the version to make sure we don't |
152 | | * emit a file that has 1.02 extensions but a claimed version of 1.01. |
153 | | * We will *not*, however, copy version info from mislabeled "2.01" files. |
154 | | */ |
155 | 0 | if (srcinfo->saw_JFIF_marker) { |
156 | 0 | if (srcinfo->JFIF_major_version == 1) { |
157 | 0 | dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; |
158 | 0 | dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; |
159 | 0 | } |
160 | 0 | dstinfo->density_unit = srcinfo->density_unit; |
161 | 0 | dstinfo->X_density = srcinfo->X_density; |
162 | 0 | dstinfo->Y_density = srcinfo->Y_density; |
163 | 0 | } |
164 | 0 | } |
165 | | |
166 | | |
167 | | /* |
168 | | * Master selection of compression modules for transcoding. |
169 | | * This substitutes for jcinit.c's initialization of the full compressor. |
170 | | */ |
171 | | |
172 | | LOCAL(void) |
173 | | transencode_master_selection(j_compress_ptr cinfo, |
174 | | jvirt_barray_ptr *coef_arrays) |
175 | 0 | { |
176 | | /* Although we don't actually use input_components for transcoding, |
177 | | * jcmaster.c's initial_setup will complain if input_components is 0. |
178 | | */ |
179 | 0 | cinfo->input_components = 1; |
180 | | /* Initialize master control (includes parameter checking/processing) */ |
181 | 0 | jinit_c_master_control(cinfo, TRUE /* transcode only */); |
182 | | |
183 | | /* Entropy encoding: either Huffman or arithmetic coding. */ |
184 | 0 | if (cinfo->arith_code) { |
185 | 0 | #ifdef C_ARITH_CODING_SUPPORTED |
186 | 0 | jinit_arith_encoder(cinfo); |
187 | | #else |
188 | | ERREXIT(cinfo, JERR_ARITH_NOTIMPL); |
189 | | #endif |
190 | 0 | } else { |
191 | 0 | if (cinfo->progressive_mode) { |
192 | 0 | #ifdef C_PROGRESSIVE_SUPPORTED |
193 | 0 | jinit_phuff_encoder(cinfo); |
194 | | #else |
195 | | ERREXIT(cinfo, JERR_NOT_COMPILED); |
196 | | #endif |
197 | 0 | } else |
198 | 0 | jinit_huff_encoder(cinfo); |
199 | 0 | } |
200 | | |
201 | | /* We need a special coefficient buffer controller. */ |
202 | 0 | transencode_coef_controller(cinfo, coef_arrays); |
203 | |
|
204 | 0 | jinit_marker_writer(cinfo); |
205 | | |
206 | | /* We can now tell the memory manager to allocate virtual arrays. */ |
207 | 0 | (*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo); |
208 | | |
209 | | /* Write the datastream header (SOI, JFIF) immediately. |
210 | | * Frame and scan headers are postponed till later. |
211 | | * This lets application insert special markers after the SOI. |
212 | | */ |
213 | 0 | (*cinfo->marker->write_file_header) (cinfo); |
214 | 0 | } |
215 | | |
216 | | |
217 | | /* |
218 | | * The rest of this file is a special implementation of the coefficient |
219 | | * buffer controller. This is similar to jccoefct.c, but it handles only |
220 | | * output from presupplied virtual arrays. Furthermore, we generate any |
221 | | * dummy padding blocks on-the-fly rather than expecting them to be present |
222 | | * in the arrays. |
223 | | */ |
224 | | |
225 | | /* Private buffer controller object */ |
226 | | |
227 | | typedef struct { |
228 | | struct jpeg_c_coef_controller pub; /* public fields */ |
229 | | |
230 | | JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
231 | | JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
232 | | int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
233 | | int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
234 | | |
235 | | /* Virtual block array for each component. */ |
236 | | jvirt_barray_ptr *whole_image; |
237 | | |
238 | | /* Workspace for constructing dummy blocks at right/bottom edges. */ |
239 | | JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; |
240 | | } my_coef_controller; |
241 | | |
242 | | typedef my_coef_controller *my_coef_ptr; |
243 | | |
244 | | |
245 | | LOCAL(void) |
246 | | start_iMCU_row(j_compress_ptr cinfo) |
247 | | /* Reset within-iMCU-row counters for a new row */ |
248 | 0 | { |
249 | 0 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
250 | | |
251 | | /* In an interleaved scan, an MCU row is the same as an iMCU row. |
252 | | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
253 | | * But at the bottom of the image, process only what's left. |
254 | | */ |
255 | 0 | if (cinfo->comps_in_scan > 1) { |
256 | 0 | coef->MCU_rows_per_iMCU_row = 1; |
257 | 0 | } else { |
258 | 0 | if (coef->iMCU_row_num < (cinfo->total_iMCU_rows - 1)) |
259 | 0 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
260 | 0 | else |
261 | 0 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
262 | 0 | } |
263 | |
|
264 | 0 | coef->mcu_ctr = 0; |
265 | 0 | coef->MCU_vert_offset = 0; |
266 | 0 | } |
267 | | |
268 | | |
269 | | /* |
270 | | * Initialize for a processing pass. |
271 | | */ |
272 | | |
273 | | METHODDEF(void) |
274 | | start_pass_coef(j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
275 | 0 | { |
276 | 0 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
277 | |
|
278 | 0 | if (pass_mode != JBUF_CRANK_DEST) |
279 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
280 | |
|
281 | 0 | coef->iMCU_row_num = 0; |
282 | 0 | start_iMCU_row(cinfo); |
283 | 0 | } |
284 | | |
285 | | |
286 | | /* |
287 | | * Process some data. |
288 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
289 | | * per call, ie, v_samp_factor block rows for each component in the scan. |
290 | | * The data is obtained from the virtual arrays and fed to the entropy coder. |
291 | | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
292 | | * |
293 | | * NB: input_buf is ignored; it is likely to be a NULL pointer. |
294 | | */ |
295 | | |
296 | | METHODDEF(boolean) |
297 | | compress_output(j_compress_ptr cinfo, JSAMPIMAGE input_buf) |
298 | 0 | { |
299 | 0 | my_coef_ptr coef = (my_coef_ptr)cinfo->coef; |
300 | 0 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
301 | 0 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; |
302 | 0 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
303 | 0 | int blkn, ci, xindex, yindex, yoffset, blockcnt; |
304 | 0 | JDIMENSION start_col; |
305 | 0 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; |
306 | 0 | JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; |
307 | 0 | JBLOCKROW buffer_ptr; |
308 | 0 | jpeg_component_info *compptr; |
309 | | |
310 | | /* Align the virtual buffers for the components used in this scan. */ |
311 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
312 | 0 | compptr = cinfo->cur_comp_info[ci]; |
313 | 0 | buffer[ci] = (*cinfo->mem->access_virt_barray) |
314 | 0 | ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index], |
315 | 0 | coef->iMCU_row_num * compptr->v_samp_factor, |
316 | 0 | (JDIMENSION)compptr->v_samp_factor, FALSE); |
317 | 0 | } |
318 | | |
319 | | /* Loop to process one whole iMCU row */ |
320 | 0 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; |
321 | 0 | yoffset++) { |
322 | 0 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; |
323 | 0 | MCU_col_num++) { |
324 | | /* Construct list of pointers to DCT blocks belonging to this MCU */ |
325 | 0 | blkn = 0; /* index of current DCT block within MCU */ |
326 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
327 | 0 | compptr = cinfo->cur_comp_info[ci]; |
328 | 0 | start_col = MCU_col_num * compptr->MCU_width; |
329 | 0 | blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : |
330 | 0 | compptr->last_col_width; |
331 | 0 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { |
332 | 0 | if (coef->iMCU_row_num < last_iMCU_row || |
333 | 0 | yindex + yoffset < compptr->last_row_height) { |
334 | | /* Fill in pointers to real blocks in this row */ |
335 | 0 | buffer_ptr = buffer[ci][yindex + yoffset] + start_col; |
336 | 0 | for (xindex = 0; xindex < blockcnt; xindex++) |
337 | 0 | MCU_buffer[blkn++] = buffer_ptr++; |
338 | 0 | } else { |
339 | | /* At bottom of image, need a whole row of dummy blocks */ |
340 | 0 | xindex = 0; |
341 | 0 | } |
342 | | /* Fill in any dummy blocks needed in this row. |
343 | | * Dummy blocks are filled in the same way as in jccoefct.c: |
344 | | * all zeroes in the AC entries, DC entries equal to previous |
345 | | * block's DC value. The init routine has already zeroed the |
346 | | * AC entries, so we need only set the DC entries correctly. |
347 | | */ |
348 | 0 | for (; xindex < compptr->MCU_width; xindex++) { |
349 | 0 | MCU_buffer[blkn] = coef->dummy_buffer[blkn]; |
350 | 0 | MCU_buffer[blkn][0][0] = MCU_buffer[blkn - 1][0][0]; |
351 | 0 | blkn++; |
352 | 0 | } |
353 | 0 | } |
354 | 0 | } |
355 | | /* Try to write the MCU. */ |
356 | 0 | if (!(*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { |
357 | | /* Suspension forced; update state counters and exit */ |
358 | 0 | coef->MCU_vert_offset = yoffset; |
359 | 0 | coef->mcu_ctr = MCU_col_num; |
360 | 0 | return FALSE; |
361 | 0 | } |
362 | 0 | } |
363 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
364 | 0 | coef->mcu_ctr = 0; |
365 | 0 | } |
366 | | /* Completed the iMCU row, advance counters for next one */ |
367 | 0 | coef->iMCU_row_num++; |
368 | 0 | start_iMCU_row(cinfo); |
369 | 0 | return TRUE; |
370 | 0 | } |
371 | | |
372 | | |
373 | | METHODDEF(boolean) |
374 | | compress_output_12(j_compress_ptr cinfo, J12SAMPIMAGE input_buf) |
375 | 0 | { |
376 | 0 | return compress_output(cinfo, (JSAMPIMAGE)input_buf); |
377 | 0 | } |
378 | | |
379 | | |
380 | | /* |
381 | | * Initialize coefficient buffer controller. |
382 | | * |
383 | | * Each passed coefficient array must be the right size for that |
384 | | * coefficient: width_in_blocks wide and height_in_blocks high, |
385 | | * with unitheight at least v_samp_factor. |
386 | | */ |
387 | | |
388 | | LOCAL(void) |
389 | | transencode_coef_controller(j_compress_ptr cinfo, |
390 | | jvirt_barray_ptr *coef_arrays) |
391 | 0 | { |
392 | 0 | my_coef_ptr coef; |
393 | 0 | JBLOCKROW buffer; |
394 | 0 | int i; |
395 | |
|
396 | 0 | coef = (my_coef_ptr) |
397 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
398 | 0 | sizeof(my_coef_controller)); |
399 | 0 | cinfo->coef = (struct jpeg_c_coef_controller *)coef; |
400 | 0 | coef->pub.start_pass = start_pass_coef; |
401 | 0 | coef->pub.compress_data = compress_output; |
402 | 0 | coef->pub.compress_data_12 = compress_output_12; |
403 | | |
404 | | /* Save pointer to virtual arrays */ |
405 | 0 | coef->whole_image = coef_arrays; |
406 | | |
407 | | /* Allocate and pre-zero space for dummy DCT blocks. */ |
408 | 0 | buffer = (JBLOCKROW) |
409 | 0 | (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
410 | 0 | C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
411 | 0 | jzero_far((void *)buffer, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); |
412 | 0 | for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { |
413 | 0 | coef->dummy_buffer[i] = buffer + i; |
414 | 0 | } |
415 | 0 | } |