Coverage Report

Created: 2024-01-20 12:28

/src/libjpeg-turbo.main/jfdctflt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jfdctflt.c
3
 *
4
 * Copyright (C) 1994-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README.ijg
7
 * file.
8
 *
9
 * This file contains a floating-point implementation of the
10
 * forward DCT (Discrete Cosine Transform).
11
 *
12
 * This implementation should be more accurate than either of the integer
13
 * DCT implementations.  However, it may not give the same results on all
14
 * machines because of differences in roundoff behavior.  Speed will depend
15
 * on the hardware's floating point capacity.
16
 *
17
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
18
 * on each column.  Direct algorithms are also available, but they are
19
 * much more complex and seem not to be any faster when reduced to code.
20
 *
21
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
22
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
23
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
24
 * JPEG textbook (see REFERENCES section in file README.ijg).  The following
25
 * code is based directly on figure 4-8 in P&M.
26
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
27
 * possible to arrange the computation so that many of the multiplies are
28
 * simple scalings of the final outputs.  These multiplies can then be
29
 * folded into the multiplications or divisions by the JPEG quantization
30
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
31
 * to be done in the DCT itself.
32
 * The primary disadvantage of this method is that with a fixed-point
33
 * implementation, accuracy is lost due to imprecise representation of the
34
 * scaled quantization values.  However, that problem does not arise if
35
 * we use floating point arithmetic.
36
 */
37
38
#define JPEG_INTERNALS
39
#include "jinclude.h"
40
#include "jpeglib.h"
41
#include "jdct.h"               /* Private declarations for DCT subsystem */
42
43
#ifdef DCT_FLOAT_SUPPORTED
44
45
46
/*
47
 * This module is specialized to the case DCTSIZE = 8.
48
 */
49
50
#if DCTSIZE != 8
51
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
52
#endif
53
54
55
/*
56
 * Perform the forward DCT on one block of samples.
57
 */
58
59
GLOBAL(void)
60
jpeg_fdct_float(FAST_FLOAT *data)
61
0
{
62
0
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
63
0
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
64
0
  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
65
0
  FAST_FLOAT *dataptr;
66
0
  int ctr;
67
68
  /* Pass 1: process rows. */
69
70
0
  dataptr = data;
71
0
  for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
72
0
    tmp0 = dataptr[0] + dataptr[7];
73
0
    tmp7 = dataptr[0] - dataptr[7];
74
0
    tmp1 = dataptr[1] + dataptr[6];
75
0
    tmp6 = dataptr[1] - dataptr[6];
76
0
    tmp2 = dataptr[2] + dataptr[5];
77
0
    tmp5 = dataptr[2] - dataptr[5];
78
0
    tmp3 = dataptr[3] + dataptr[4];
79
0
    tmp4 = dataptr[3] - dataptr[4];
80
81
    /* Even part */
82
83
0
    tmp10 = tmp0 + tmp3;        /* phase 2 */
84
0
    tmp13 = tmp0 - tmp3;
85
0
    tmp11 = tmp1 + tmp2;
86
0
    tmp12 = tmp1 - tmp2;
87
88
0
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
89
0
    dataptr[4] = tmp10 - tmp11;
90
91
0
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */
92
0
    dataptr[2] = tmp13 + z1;    /* phase 5 */
93
0
    dataptr[6] = tmp13 - z1;
94
95
    /* Odd part */
96
97
0
    tmp10 = tmp4 + tmp5;        /* phase 2 */
98
0
    tmp11 = tmp5 + tmp6;
99
0
    tmp12 = tmp6 + tmp7;
100
101
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
102
0
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */
103
0
    z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */
104
0
    z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */
105
0
    z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */
106
107
0
    z11 = tmp7 + z3;            /* phase 5 */
108
0
    z13 = tmp7 - z3;
109
110
0
    dataptr[5] = z13 + z2;      /* phase 6 */
111
0
    dataptr[3] = z13 - z2;
112
0
    dataptr[1] = z11 + z4;
113
0
    dataptr[7] = z11 - z4;
114
115
0
    dataptr += DCTSIZE;         /* advance pointer to next row */
116
0
  }
117
118
  /* Pass 2: process columns. */
119
120
0
  dataptr = data;
121
0
  for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
122
0
    tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
123
0
    tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
124
0
    tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
125
0
    tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
126
0
    tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
127
0
    tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
128
0
    tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
129
0
    tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
130
131
    /* Even part */
132
133
0
    tmp10 = tmp0 + tmp3;        /* phase 2 */
134
0
    tmp13 = tmp0 - tmp3;
135
0
    tmp11 = tmp1 + tmp2;
136
0
    tmp12 = tmp1 - tmp2;
137
138
0
    dataptr[DCTSIZE * 0] = tmp10 + tmp11; /* phase 3 */
139
0
    dataptr[DCTSIZE * 4] = tmp10 - tmp11;
140
141
0
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */
142
0
    dataptr[DCTSIZE * 2] = tmp13 + z1; /* phase 5 */
143
0
    dataptr[DCTSIZE * 6] = tmp13 - z1;
144
145
    /* Odd part */
146
147
0
    tmp10 = tmp4 + tmp5;        /* phase 2 */
148
0
    tmp11 = tmp5 + tmp6;
149
0
    tmp12 = tmp6 + tmp7;
150
151
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
152
0
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */
153
0
    z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */
154
0
    z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */
155
0
    z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */
156
157
0
    z11 = tmp7 + z3;            /* phase 5 */
158
0
    z13 = tmp7 - z3;
159
160
0
    dataptr[DCTSIZE * 5] = z13 + z2; /* phase 6 */
161
0
    dataptr[DCTSIZE * 3] = z13 - z2;
162
0
    dataptr[DCTSIZE * 1] = z11 + z4;
163
0
    dataptr[DCTSIZE * 7] = z11 - z4;
164
165
0
    dataptr++;                  /* advance pointer to next column */
166
0
  }
167
0
}
168
169
#endif /* DCT_FLOAT_SUPPORTED */