/src/libjpeg-turbo.main/jcdiffct.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jcdiffct.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1994-1997, Thomas G. Lane. |
6 | | * Lossless JPEG Modifications: |
7 | | * Copyright (C) 1999, Ken Murchison. |
8 | | * libjpeg-turbo Modifications: |
9 | | * Copyright (C) 2022, D. R. Commander. |
10 | | * For conditions of distribution and use, see the accompanying README.ijg |
11 | | * file. |
12 | | * |
13 | | * This file contains the difference buffer controller for compression. |
14 | | * This controller is the top level of the lossless JPEG compressor proper. |
15 | | * The difference buffer lies between the prediction/differencing and entropy |
16 | | * encoding steps. |
17 | | */ |
18 | | |
19 | | #define JPEG_INTERNALS |
20 | | #include "jinclude.h" |
21 | | #include "jpeglib.h" |
22 | | #include "jlossls.h" /* Private declarations for lossless codec */ |
23 | | |
24 | | |
25 | | #ifdef C_LOSSLESS_SUPPORTED |
26 | | |
27 | | /* We use a full-image sample buffer when doing Huffman optimization, |
28 | | * and also for writing multiple-scan JPEG files. In all cases, the |
29 | | * full-image buffer is filled during the first pass, and the scaling, |
30 | | * prediction and differencing steps are run during subsequent passes. |
31 | | */ |
32 | | #ifdef ENTROPY_OPT_SUPPORTED |
33 | | #define FULL_SAMP_BUFFER_SUPPORTED |
34 | | #else |
35 | | #ifdef C_MULTISCAN_FILES_SUPPORTED |
36 | | #define FULL_SAMP_BUFFER_SUPPORTED |
37 | | #endif |
38 | | #endif |
39 | | |
40 | | |
41 | | /* Private buffer controller object */ |
42 | | |
43 | | typedef struct { |
44 | | struct jpeg_c_coef_controller pub; /* public fields */ |
45 | | |
46 | | JDIMENSION iMCU_row_num; /* iMCU row # within image */ |
47 | | JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ |
48 | | int MCU_vert_offset; /* counts MCU rows within iMCU row */ |
49 | | int MCU_rows_per_iMCU_row; /* number of such rows needed */ |
50 | | |
51 | | _JSAMPROW cur_row[MAX_COMPONENTS]; /* row of point-transformed samples */ |
52 | | _JSAMPROW prev_row[MAX_COMPONENTS]; /* previous row of Pt'd samples */ |
53 | | JDIFFARRAY diff_buf[MAX_COMPONENTS]; /* iMCU row of differences */ |
54 | | |
55 | | /* In multi-pass modes, we need a virtual sample array for each component. */ |
56 | | jvirt_sarray_ptr whole_image[MAX_COMPONENTS]; |
57 | | } my_diff_controller; |
58 | | |
59 | | typedef my_diff_controller *my_diff_ptr; |
60 | | |
61 | | |
62 | | /* Forward declarations */ |
63 | | METHODDEF(boolean) compress_data(j_compress_ptr cinfo, _JSAMPIMAGE input_buf); |
64 | | #ifdef FULL_SAMP_BUFFER_SUPPORTED |
65 | | METHODDEF(boolean) compress_first_pass(j_compress_ptr cinfo, |
66 | | _JSAMPIMAGE input_buf); |
67 | | METHODDEF(boolean) compress_output(j_compress_ptr cinfo, |
68 | | _JSAMPIMAGE input_buf); |
69 | | #endif |
70 | | |
71 | | |
72 | | LOCAL(void) |
73 | | start_iMCU_row(j_compress_ptr cinfo) |
74 | | /* Reset within-iMCU-row counters for a new row */ |
75 | 0 | { |
76 | 0 | my_diff_ptr diff = (my_diff_ptr)cinfo->coef; |
77 | | |
78 | | /* In an interleaved scan, an MCU row is the same as an iMCU row. |
79 | | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. |
80 | | * But at the bottom of the image, process only what's left. |
81 | | */ |
82 | 0 | if (cinfo->comps_in_scan > 1) { |
83 | 0 | diff->MCU_rows_per_iMCU_row = 1; |
84 | 0 | } else { |
85 | 0 | if (diff->iMCU_row_num < (cinfo->total_iMCU_rows-1)) |
86 | 0 | diff->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; |
87 | 0 | else |
88 | 0 | diff->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; |
89 | 0 | } |
90 | |
|
91 | 0 | diff->mcu_ctr = 0; |
92 | 0 | diff->MCU_vert_offset = 0; |
93 | 0 | } |
94 | | |
95 | | |
96 | | /* |
97 | | * Initialize for a processing pass. |
98 | | */ |
99 | | |
100 | | METHODDEF(void) |
101 | | start_pass_diff(j_compress_ptr cinfo, J_BUF_MODE pass_mode) |
102 | 0 | { |
103 | 0 | my_diff_ptr diff = (my_diff_ptr)cinfo->coef; |
104 | | |
105 | | /* Because it is hitching a ride on the jpeg_forward_dct struct, |
106 | | * start_pass_lossless() will be called at the start of the initial pass. |
107 | | * This ensures that it will be called at the start of the Huffman |
108 | | * optimization and output passes as well. |
109 | | */ |
110 | 0 | if (pass_mode == JBUF_CRANK_DEST) |
111 | 0 | (*cinfo->fdct->start_pass) (cinfo); |
112 | |
|
113 | 0 | diff->iMCU_row_num = 0; |
114 | 0 | start_iMCU_row(cinfo); |
115 | |
|
116 | 0 | switch (pass_mode) { |
117 | 0 | case JBUF_PASS_THRU: |
118 | 0 | if (diff->whole_image[0] != NULL) |
119 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
120 | 0 | diff->pub._compress_data = compress_data; |
121 | 0 | break; |
122 | 0 | #ifdef FULL_SAMP_BUFFER_SUPPORTED |
123 | 0 | case JBUF_SAVE_AND_PASS: |
124 | 0 | if (diff->whole_image[0] == NULL) |
125 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
126 | 0 | diff->pub._compress_data = compress_first_pass; |
127 | 0 | break; |
128 | 0 | case JBUF_CRANK_DEST: |
129 | 0 | if (diff->whole_image[0] == NULL) |
130 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
131 | 0 | diff->pub._compress_data = compress_output; |
132 | 0 | break; |
133 | 0 | #endif |
134 | 0 | default: |
135 | 0 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
136 | 0 | break; |
137 | 0 | } |
138 | 0 | } |
139 | | |
140 | | |
141 | 0 | #define SWAP_ROWS(rowa, rowb) { \ |
142 | 0 | _JSAMPROW temp = rowa; \ |
143 | 0 | rowa = rowb; rowb = temp; \ |
144 | 0 | } |
145 | | |
146 | | /* |
147 | | * Process some data in the single-pass case. |
148 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
149 | | * per call, ie, v_samp_factor rows for each component in the image. |
150 | | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
151 | | * |
152 | | * NB: input_buf contains a plane for each component in image, |
153 | | * which we index according to the component's SOF position. |
154 | | */ |
155 | | |
156 | | METHODDEF(boolean) |
157 | | compress_data(j_compress_ptr cinfo, _JSAMPIMAGE input_buf) |
158 | 0 | { |
159 | 0 | my_diff_ptr diff = (my_diff_ptr)cinfo->coef; |
160 | 0 | lossless_comp_ptr losslessc = (lossless_comp_ptr)cinfo->fdct; |
161 | 0 | JDIMENSION MCU_col_num; /* index of current MCU within row */ |
162 | 0 | JDIMENSION MCU_count; /* number of MCUs encoded */ |
163 | 0 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
164 | 0 | int ci, compi, yoffset, samp_row, samp_rows, samps_across; |
165 | 0 | jpeg_component_info *compptr; |
166 | | |
167 | | /* Loop to write as much as one whole iMCU row */ |
168 | 0 | for (yoffset = diff->MCU_vert_offset; yoffset < diff->MCU_rows_per_iMCU_row; |
169 | 0 | yoffset++) { |
170 | |
|
171 | 0 | MCU_col_num = diff->mcu_ctr; |
172 | | |
173 | | /* Scale and predict each scanline of the MCU row separately. |
174 | | * |
175 | | * Note: We only do this if we are at the start of an MCU row, ie, |
176 | | * we don't want to reprocess a row suspended by the output. |
177 | | */ |
178 | 0 | if (MCU_col_num == 0) { |
179 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
180 | 0 | compptr = cinfo->cur_comp_info[ci]; |
181 | 0 | compi = compptr->component_index; |
182 | 0 | if (diff->iMCU_row_num < last_iMCU_row) |
183 | 0 | samp_rows = compptr->v_samp_factor; |
184 | 0 | else { |
185 | | /* NB: can't use last_row_height here, since may not be set! */ |
186 | 0 | samp_rows = |
187 | 0 | (int)(compptr->height_in_blocks % compptr->v_samp_factor); |
188 | 0 | if (samp_rows == 0) samp_rows = compptr->v_samp_factor; |
189 | 0 | else { |
190 | | /* Fill dummy difference rows at the bottom edge with zeros, which |
191 | | * will encode to the smallest amount of data. |
192 | | */ |
193 | 0 | for (samp_row = samp_rows; samp_row < compptr->v_samp_factor; |
194 | 0 | samp_row++) |
195 | 0 | memset(diff->diff_buf[compi][samp_row], 0, |
196 | 0 | jround_up((long)compptr->width_in_blocks, |
197 | 0 | (long)compptr->h_samp_factor) * sizeof(JDIFF)); |
198 | 0 | } |
199 | 0 | } |
200 | 0 | samps_across = compptr->width_in_blocks; |
201 | |
|
202 | 0 | for (samp_row = 0; samp_row < samp_rows; samp_row++) { |
203 | 0 | (*losslessc->scaler_scale) (cinfo, |
204 | 0 | input_buf[compi][samp_row], |
205 | 0 | diff->cur_row[compi], |
206 | 0 | samps_across); |
207 | 0 | (*losslessc->predict_difference[compi]) |
208 | 0 | (cinfo, compi, diff->cur_row[compi], diff->prev_row[compi], |
209 | 0 | diff->diff_buf[compi][samp_row], samps_across); |
210 | 0 | SWAP_ROWS(diff->cur_row[compi], diff->prev_row[compi]); |
211 | 0 | } |
212 | 0 | } |
213 | 0 | } |
214 | | /* Try to write the MCU row (or remaining portion of suspended MCU row). */ |
215 | 0 | MCU_count = |
216 | 0 | (*cinfo->entropy->encode_mcus) (cinfo, |
217 | 0 | diff->diff_buf, yoffset, MCU_col_num, |
218 | 0 | cinfo->MCUs_per_row - MCU_col_num); |
219 | 0 | if (MCU_count != cinfo->MCUs_per_row - MCU_col_num) { |
220 | | /* Suspension forced; update state counters and exit */ |
221 | 0 | diff->MCU_vert_offset = yoffset; |
222 | 0 | diff->mcu_ctr += MCU_col_num; |
223 | 0 | return FALSE; |
224 | 0 | } |
225 | | /* Completed an MCU row, but perhaps not an iMCU row */ |
226 | 0 | diff->mcu_ctr = 0; |
227 | 0 | } |
228 | | /* Completed the iMCU row, advance counters for next one */ |
229 | 0 | diff->iMCU_row_num++; |
230 | 0 | start_iMCU_row(cinfo); |
231 | 0 | return TRUE; |
232 | 0 | } |
233 | | |
234 | | |
235 | | #ifdef FULL_SAMP_BUFFER_SUPPORTED |
236 | | |
237 | | /* |
238 | | * Process some data in the first pass of a multi-pass case. |
239 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
240 | | * per call, ie, v_samp_factor rows for each component in the image. |
241 | | * This amount of data is read from the source buffer and saved into the |
242 | | * virtual arrays. |
243 | | * |
244 | | * We must also emit the data to the compressor. This is conveniently |
245 | | * done by calling compress_output() after we've loaded the current strip |
246 | | * of the virtual arrays. |
247 | | * |
248 | | * NB: input_buf contains a plane for each component in image. All components |
249 | | * are loaded into the virtual arrays in this pass. However, it may be that |
250 | | * only a subset of the components are emitted to the compressor during |
251 | | * this first pass; be careful about looking at the scan-dependent variables |
252 | | * (MCU dimensions, etc). |
253 | | */ |
254 | | |
255 | | METHODDEF(boolean) |
256 | | compress_first_pass(j_compress_ptr cinfo, _JSAMPIMAGE input_buf) |
257 | 0 | { |
258 | 0 | my_diff_ptr diff = (my_diff_ptr)cinfo->coef; |
259 | 0 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; |
260 | 0 | JDIMENSION samps_across; |
261 | 0 | int ci, samp_row, samp_rows; |
262 | 0 | _JSAMPARRAY buffer; |
263 | 0 | jpeg_component_info *compptr; |
264 | |
|
265 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
266 | 0 | ci++, compptr++) { |
267 | | /* Align the virtual buffer for this component. */ |
268 | 0 | buffer = (_JSAMPARRAY)(*cinfo->mem->access_virt_sarray) |
269 | 0 | ((j_common_ptr)cinfo, diff->whole_image[ci], |
270 | 0 | diff->iMCU_row_num * compptr->v_samp_factor, |
271 | 0 | (JDIMENSION)compptr->v_samp_factor, TRUE); |
272 | | |
273 | | /* Count non-dummy sample rows in this iMCU row. */ |
274 | 0 | if (diff->iMCU_row_num < last_iMCU_row) |
275 | 0 | samp_rows = compptr->v_samp_factor; |
276 | 0 | else { |
277 | | /* NB: can't use last_row_height here, since may not be set! */ |
278 | 0 | samp_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); |
279 | 0 | if (samp_rows == 0) samp_rows = compptr->v_samp_factor; |
280 | 0 | } |
281 | 0 | samps_across = compptr->width_in_blocks; |
282 | | |
283 | | /* Perform point transform scaling and prediction/differencing for all |
284 | | * non-dummy rows in this iMCU row. Each call on these functions |
285 | | * processes a complete row of samples. |
286 | | */ |
287 | 0 | for (samp_row = 0; samp_row < samp_rows; samp_row++) { |
288 | 0 | memcpy(buffer[samp_row], input_buf[ci][samp_row], |
289 | 0 | samps_across * sizeof(_JSAMPLE)); |
290 | 0 | } |
291 | 0 | } |
292 | | /* NB: compress_output will increment iMCU_row_num if successful. |
293 | | * A suspension return will result in redoing all the work above next time. |
294 | | */ |
295 | | |
296 | | /* Emit data to the compressor, sharing code with subsequent passes */ |
297 | 0 | return compress_output(cinfo, input_buf); |
298 | 0 | } |
299 | | |
300 | | |
301 | | /* |
302 | | * Process some data in subsequent passes of a multi-pass case. |
303 | | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) |
304 | | * per call, ie, v_samp_factor rows for each component in the scan. |
305 | | * The data is obtained from the virtual arrays and fed to the compressor. |
306 | | * Returns TRUE if the iMCU row is completed, FALSE if suspended. |
307 | | * |
308 | | * NB: input_buf is ignored; it is likely to be a NULL pointer. |
309 | | */ |
310 | | |
311 | | METHODDEF(boolean) |
312 | | compress_output(j_compress_ptr cinfo, _JSAMPIMAGE input_buf) |
313 | 0 | { |
314 | 0 | my_diff_ptr diff = (my_diff_ptr)cinfo->coef; |
315 | 0 | int ci, compi; |
316 | 0 | _JSAMPARRAY buffer[MAX_COMPS_IN_SCAN]; |
317 | 0 | jpeg_component_info *compptr; |
318 | | |
319 | | /* Align the virtual buffers for the components used in this scan. |
320 | | * NB: during first pass, this is safe only because the buffers will |
321 | | * already be aligned properly, so jmemmgr.c won't need to do any I/O. |
322 | | */ |
323 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
324 | 0 | compptr = cinfo->cur_comp_info[ci]; |
325 | 0 | compi = compptr->component_index; |
326 | 0 | buffer[compi] = (_JSAMPARRAY)(*cinfo->mem->access_virt_sarray) |
327 | 0 | ((j_common_ptr)cinfo, diff->whole_image[compi], |
328 | 0 | diff->iMCU_row_num * compptr->v_samp_factor, |
329 | 0 | (JDIMENSION)compptr->v_samp_factor, FALSE); |
330 | 0 | } |
331 | |
|
332 | 0 | return compress_data(cinfo, buffer); |
333 | 0 | } |
334 | | |
335 | | #endif /* FULL_SAMP_BUFFER_SUPPORTED */ |
336 | | |
337 | | |
338 | | /* |
339 | | * Initialize difference buffer controller. |
340 | | */ |
341 | | |
342 | | GLOBAL(void) |
343 | | _jinit_c_diff_controller(j_compress_ptr cinfo, boolean need_full_buffer) |
344 | 0 | { |
345 | 0 | my_diff_ptr diff; |
346 | 0 | int ci, row; |
347 | 0 | jpeg_component_info *compptr; |
348 | |
|
349 | 0 | diff = (my_diff_ptr) |
350 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
351 | 0 | sizeof(my_diff_controller)); |
352 | 0 | cinfo->coef = (struct jpeg_c_coef_controller *)diff; |
353 | 0 | diff->pub.start_pass = start_pass_diff; |
354 | | |
355 | | /* Create the prediction row buffers. */ |
356 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
357 | 0 | ci++, compptr++) { |
358 | 0 | diff->cur_row[ci] = *(_JSAMPARRAY)(*cinfo->mem->alloc_sarray) |
359 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, |
360 | 0 | (JDIMENSION)jround_up((long)compptr->width_in_blocks, |
361 | 0 | (long)compptr->h_samp_factor), |
362 | 0 | (JDIMENSION)1); |
363 | 0 | diff->prev_row[ci] = *(_JSAMPARRAY)(*cinfo->mem->alloc_sarray) |
364 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, |
365 | 0 | (JDIMENSION)jround_up((long)compptr->width_in_blocks, |
366 | 0 | (long)compptr->h_samp_factor), |
367 | 0 | (JDIMENSION)1); |
368 | 0 | } |
369 | | |
370 | | /* Create the difference buffer. */ |
371 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
372 | 0 | ci++, compptr++) { |
373 | 0 | diff->diff_buf[ci] = |
374 | 0 | ALLOC_DARRAY(JPOOL_IMAGE, |
375 | 0 | (JDIMENSION)jround_up((long)compptr->width_in_blocks, |
376 | 0 | (long)compptr->h_samp_factor), |
377 | 0 | (JDIMENSION)compptr->v_samp_factor); |
378 | | /* Prefill difference rows with zeros. We do this because only actual |
379 | | * data is placed in the buffers during prediction/differencing, leaving |
380 | | * any dummy differences at the right edge as zeros, which will encode |
381 | | * to the smallest amount of data. |
382 | | */ |
383 | 0 | for (row = 0; row < compptr->v_samp_factor; row++) |
384 | 0 | memset(diff->diff_buf[ci][row], 0, |
385 | 0 | jround_up((long)compptr->width_in_blocks, |
386 | 0 | (long)compptr->h_samp_factor) * sizeof(JDIFF)); |
387 | 0 | } |
388 | | |
389 | | /* Create the sample buffer. */ |
390 | 0 | if (need_full_buffer) { |
391 | 0 | #ifdef FULL_SAMP_BUFFER_SUPPORTED |
392 | | /* Allocate a full-image virtual array for each component, */ |
393 | | /* padded to a multiple of samp_factor differences in each direction. */ |
394 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
395 | 0 | ci++, compptr++) { |
396 | 0 | diff->whole_image[ci] = (*cinfo->mem->request_virt_sarray) |
397 | 0 | ((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE, |
398 | 0 | (JDIMENSION)jround_up((long)compptr->width_in_blocks, |
399 | 0 | (long)compptr->h_samp_factor), |
400 | 0 | (JDIMENSION)jround_up((long)compptr->height_in_blocks, |
401 | 0 | (long)compptr->v_samp_factor), |
402 | 0 | (JDIMENSION)compptr->v_samp_factor); |
403 | 0 | } |
404 | | #else |
405 | | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); |
406 | | #endif |
407 | 0 | } else |
408 | 0 | diff->whole_image[0] = NULL; /* flag for no virtual arrays */ |
409 | 0 | } Unexecuted instantiation: j12init_c_diff_controller Unexecuted instantiation: j16init_c_diff_controller Unexecuted instantiation: jinit_c_diff_controller |
410 | | |
411 | | #endif /* C_LOSSLESS_SUPPORTED */ |