Coverage Report

Created: 2024-01-20 12:28

/src/libjpeg-turbo.main/turbojpeg.h
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (C)2009-2015, 2017, 2020-2023 D. R. Commander.
3
 *                                         All Rights Reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions are met:
7
 *
8
 * - Redistributions of source code must retain the above copyright notice,
9
 *   this list of conditions and the following disclaimer.
10
 * - Redistributions in binary form must reproduce the above copyright notice,
11
 *   this list of conditions and the following disclaimer in the documentation
12
 *   and/or other materials provided with the distribution.
13
 * - Neither the name of the libjpeg-turbo Project nor the names of its
14
 *   contributors may be used to endorse or promote products derived from this
15
 *   software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
18
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
21
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27
 * POSSIBILITY OF SUCH DAMAGE.
28
 */
29
30
#ifndef __TURBOJPEG_H__
31
#define __TURBOJPEG_H__
32
33
#include <stddef.h>
34
35
#if defined(_WIN32) && defined(DLLDEFINE)
36
#define DLLEXPORT  __declspec(dllexport)
37
#else
38
#define DLLEXPORT
39
#endif
40
#define DLLCALL
41
42
43
/**
44
 * @addtogroup TurboJPEG
45
 * TurboJPEG API.  This API provides an interface for generating, decoding, and
46
 * transforming planar YUV and JPEG images in memory.
47
 *
48
 * @anchor YUVnotes
49
 * YUV Image Format Notes
50
 * ----------------------
51
 * Technically, the JPEG format uses the YCbCr colorspace (which is technically
52
 * not a colorspace but a color transform), but per the convention of the
53
 * digital video community, the TurboJPEG API uses "YUV" to refer to an image
54
 * format consisting of Y, Cb, and Cr image planes.
55
 *
56
 * Each plane is simply a 2D array of bytes, each byte representing the value
57
 * of one of the components (Y, Cb, or Cr) at a particular location in the
58
 * image.  The width and height of each plane are determined by the image
59
 * width, height, and level of chrominance subsampling.  The luminance plane
60
 * width is the image width padded to the nearest multiple of the horizontal
61
 * subsampling factor (1 in the case of 4:4:4, grayscale, 4:4:0, or 4:4:1; 2 in
62
 * the case of 4:2:2 or 4:2:0; 4 in the case of 4:1:1.)  Similarly, the
63
 * luminance plane height is the image height padded to the nearest multiple of
64
 * the vertical subsampling factor (1 in the case of 4:4:4, 4:2:2, grayscale,
65
 * or 4:1:1; 2 in the case of 4:2:0 or 4:4:0; 4 in the case of 4:4:1.)  This is
66
 * irrespective of any additional padding that may be specified as an argument
67
 * to the various YUV functions.  The chrominance plane width is equal to the
68
 * luminance plane width divided by the horizontal subsampling factor, and the
69
 * chrominance plane height is equal to the luminance plane height divided by
70
 * the vertical subsampling factor.
71
 *
72
 * For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is
73
 * used, then the luminance plane would be 36 x 35 bytes, and each of the
74
 * chrominance planes would be 18 x 35 bytes.  If you specify a row alignment
75
 * of 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes,
76
 * and each of the chrominance planes would be 20 x 35 bytes.
77
 *
78
 * @{
79
 */
80
81
82
/**
83
 * The number of initialization options
84
 */
85
186k
#define TJ_NUMINIT  3
86
87
/**
88
 * Initialization options.
89
 */
90
enum TJINIT {
91
  /**
92
   * Initialize the TurboJPEG instance for compression.
93
   */
94
  TJINIT_COMPRESS,
95
  /**
96
   * Initialize the TurboJPEG instance for decompression.
97
   */
98
  TJINIT_DECOMPRESS,
99
  /**
100
   * Initialize the TurboJPEG instance for lossless transformation (both
101
   * compression and decompression.)
102
   */
103
  TJINIT_TRANSFORM
104
};
105
106
107
/**
108
 * The number of chrominance subsampling options
109
 */
110
1.51M
#define TJ_NUMSAMP  7
111
112
/**
113
 * Chrominance subsampling options.
114
 * When pixels are converted from RGB to YCbCr (see #TJCS_YCbCr) or from CMYK
115
 * to YCCK (see #TJCS_YCCK) as part of the JPEG compression process, some of
116
 * the Cb and Cr (chrominance) components can be discarded or averaged together
117
 * to produce a smaller image with little perceptible loss of image clarity.
118
 * (The human eye is more sensitive to small changes in brightness than to
119
 * small changes in color.)  This is called "chrominance subsampling".
120
 */
121
enum TJSAMP {
122
  /**
123
   * 4:4:4 chrominance subsampling (no chrominance subsampling).  The JPEG or
124
   * YUV image will contain one chrominance component for every pixel in the
125
   * source image.
126
   */
127
  TJSAMP_444,
128
  /**
129
   * 4:2:2 chrominance subsampling.  The JPEG or YUV image will contain one
130
   * chrominance component for every 2x1 block of pixels in the source image.
131
   */
132
  TJSAMP_422,
133
  /**
134
   * 4:2:0 chrominance subsampling.  The JPEG or YUV image will contain one
135
   * chrominance component for every 2x2 block of pixels in the source image.
136
   */
137
  TJSAMP_420,
138
  /**
139
   * Grayscale.  The JPEG or YUV image will contain no chrominance components.
140
   */
141
  TJSAMP_GRAY,
142
  /**
143
   * 4:4:0 chrominance subsampling.  The JPEG or YUV image will contain one
144
   * chrominance component for every 1x2 block of pixels in the source image.
145
   *
146
   * @note 4:4:0 subsampling is not fully accelerated in libjpeg-turbo.
147
   */
148
  TJSAMP_440,
149
  /**
150
   * 4:1:1 chrominance subsampling.  The JPEG or YUV image will contain one
151
   * chrominance component for every 4x1 block of pixels in the source image.
152
   * JPEG images compressed with 4:1:1 subsampling will be almost exactly the
153
   * same size as those compressed with 4:2:0 subsampling, and in the
154
   * aggregate, both subsampling methods produce approximately the same
155
   * perceptual quality.  However, 4:1:1 is better able to reproduce sharp
156
   * horizontal features.
157
   *
158
   * @note 4:1:1 subsampling is not fully accelerated in libjpeg-turbo.
159
   */
160
  TJSAMP_411,
161
  /**
162
   * 4:4:1 chrominance subsampling.  The JPEG or YUV image will contain one
163
   * chrominance component for every 1x4 block of pixels in the source image.
164
   * JPEG images compressed with 4:4:1 subsampling will be almost exactly the
165
   * same size as those compressed with 4:2:0 subsampling, and in the
166
   * aggregate, both subsampling methods produce approximately the same
167
   * perceptual quality.  However, 4:4:1 is better able to reproduce sharp
168
   * vertical features.
169
   *
170
   * @note 4:4:1 subsampling is not fully accelerated in libjpeg-turbo.
171
   */
172
  TJSAMP_441,
173
  /**
174
   * Unknown subsampling.  The JPEG image uses an unusual type of chrominance
175
   * subsampling.  Such images can be decompressed into packed-pixel images,
176
   * but they cannot be
177
   * - decompressed into planar YUV images,
178
   * - losslessly transformed if #TJXOPT_CROP is specified, or
179
   * - partially decompressed using a cropping region.
180
   */
181
  TJSAMP_UNKNOWN = -1
182
};
183
184
/**
185
 * MCU block width (in pixels) for a given level of chrominance subsampling.
186
 * MCU block sizes:
187
 * - 8x8 for no subsampling or grayscale
188
 * - 16x8 for 4:2:2
189
 * - 8x16 for 4:4:0
190
 * - 16x16 for 4:2:0
191
 * - 32x8 for 4:1:1
192
 * - 8x32 for 4:4:1
193
 */
194
static const int tjMCUWidth[TJ_NUMSAMP]  = { 8, 16, 16, 8, 8, 32, 8 };
195
196
/**
197
 * MCU block height (in pixels) for a given level of chrominance subsampling.
198
 * MCU block sizes:
199
 * - 8x8 for no subsampling or grayscale
200
 * - 16x8 for 4:2:2
201
 * - 8x16 for 4:4:0
202
 * - 16x16 for 4:2:0
203
 * - 32x8 for 4:1:1
204
 * - 8x32 for 4:4:1
205
 */
206
static const int tjMCUHeight[TJ_NUMSAMP] = { 8, 8, 16, 8, 16, 8, 32 };
207
208
209
/**
210
 * The number of pixel formats
211
 */
212
149k
#define TJ_NUMPF  12
213
214
/**
215
 * Pixel formats
216
 */
217
enum TJPF {
218
  /**
219
   * RGB pixel format.  The red, green, and blue components in the image are
220
   * stored in 3-sample pixels in the order R, G, B from lowest to highest
221
   * memory address within each pixel.
222
   */
223
  TJPF_RGB,
224
  /**
225
   * BGR pixel format.  The red, green, and blue components in the image are
226
   * stored in 3-sample pixels in the order B, G, R from lowest to highest
227
   * memory address within each pixel.
228
   */
229
  TJPF_BGR,
230
  /**
231
   * RGBX pixel format.  The red, green, and blue components in the image are
232
   * stored in 4-sample pixels in the order R, G, B from lowest to highest
233
   * memory address within each pixel.  The X component is ignored when
234
   * compressing and undefined when decompressing.
235
   */
236
  TJPF_RGBX,
237
  /**
238
   * BGRX pixel format.  The red, green, and blue components in the image are
239
   * stored in 4-sample pixels in the order B, G, R from lowest to highest
240
   * memory address within each pixel.  The X component is ignored when
241
   * compressing and undefined when decompressing.
242
   */
243
  TJPF_BGRX,
244
  /**
245
   * XBGR pixel format.  The red, green, and blue components in the image are
246
   * stored in 4-sample pixels in the order R, G, B from highest to lowest
247
   * memory address within each pixel.  The X component is ignored when
248
   * compressing and undefined when decompressing.
249
   */
250
  TJPF_XBGR,
251
  /**
252
   * XRGB pixel format.  The red, green, and blue components in the image are
253
   * stored in 4-sample pixels in the order B, G, R from highest to lowest
254
   * memory address within each pixel.  The X component is ignored when
255
   * compressing and undefined when decompressing.
256
   */
257
  TJPF_XRGB,
258
  /**
259
   * Grayscale pixel format.  Each 1-sample pixel represents a luminance
260
   * (brightness) level from 0 to the maximum sample value (255 for 8-bit
261
   * samples, 4095 for 12-bit samples, and 65535 for 16-bit samples.)
262
   */
263
  TJPF_GRAY,
264
  /**
265
   * RGBA pixel format.  This is the same as @ref TJPF_RGBX, except that when
266
   * decompressing, the X component is guaranteed to be equal to the maximum
267
   * sample value, which can be interpreted as an opaque alpha channel.
268
   */
269
  TJPF_RGBA,
270
  /**
271
   * BGRA pixel format.  This is the same as @ref TJPF_BGRX, except that when
272
   * decompressing, the X component is guaranteed to be equal to the maximum
273
   * sample value, which can be interpreted as an opaque alpha channel.
274
   */
275
  TJPF_BGRA,
276
  /**
277
   * ABGR pixel format.  This is the same as @ref TJPF_XBGR, except that when
278
   * decompressing, the X component is guaranteed to be equal to the maximum
279
   * sample value, which can be interpreted as an opaque alpha channel.
280
   */
281
  TJPF_ABGR,
282
  /**
283
   * ARGB pixel format.  This is the same as @ref TJPF_XRGB, except that when
284
   * decompressing, the X component is guaranteed to be equal to the maximum
285
   * sample value, which can be interpreted as an opaque alpha channel.
286
   */
287
  TJPF_ARGB,
288
  /**
289
   * CMYK pixel format.  Unlike RGB, which is an additive color model used
290
   * primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive
291
   * color model used primarily for printing.  In the CMYK color model, the
292
   * value of each color component typically corresponds to an amount of cyan,
293
   * magenta, yellow, or black ink that is applied to a white background.  In
294
   * order to convert between CMYK and RGB, it is necessary to use a color
295
   * management system (CMS.)  A CMS will attempt to map colors within the
296
   * printer's gamut to perceptually similar colors in the display's gamut and
297
   * vice versa, but the mapping is typically not 1:1 or reversible, nor can it
298
   * be defined with a simple formula.  Thus, such a conversion is out of scope
299
   * for a codec library.  However, the TurboJPEG API allows for compressing
300
   * packed-pixel CMYK images into YCCK JPEG images (see #TJCS_YCCK) and
301
   * decompressing YCCK JPEG images into packed-pixel CMYK images.
302
   */
303
  TJPF_CMYK,
304
  /**
305
   * Unknown pixel format.  Currently this is only used by #tj3LoadImage8(),
306
   * #tj3LoadImage12(), and #tj3LoadImage16().
307
   */
308
  TJPF_UNKNOWN = -1
309
};
310
311
/**
312
 * Red offset (in samples) for a given pixel format.  This specifies the number
313
 * of samples that the red component is offset from the start of the pixel.
314
 * For instance, if an 8-bit-per-component pixel of format TJPF_BGRX is stored
315
 * in `unsigned char pixel[]`, then the red component will be
316
 * `pixel[tjRedOffset[TJPF_BGRX]]`.  This will be -1 if the pixel format does
317
 * not have a red component.
318
 */
319
static const int tjRedOffset[TJ_NUMPF] = {
320
  0, 2, 0, 2, 3, 1, -1, 0, 2, 3, 1, -1
321
};
322
/**
323
 * Green offset (in samples) for a given pixel format.  This specifies the
324
 * number of samples that the green component is offset from the start of the
325
 * pixel.  For instance, if an 8-bit-per-component pixel of format TJPF_BGRX is
326
 * stored in `unsigned char pixel[]`, then the green component will be
327
 * `pixel[tjGreenOffset[TJPF_BGRX]]`.  This will be -1 if the pixel format does
328
 * not have a green component.
329
 */
330
static const int tjGreenOffset[TJ_NUMPF] = {
331
  1, 1, 1, 1, 2, 2, -1, 1, 1, 2, 2, -1
332
};
333
/**
334
 * Blue offset (in samples) for a given pixel format.  This specifies the
335
 * number of samples that the blue component is offset from the start of the
336
 * pixel.  For instance, if an 8-bit-per-component pixel of format TJPF_BGRX is
337
 * stored in `unsigned char pixel[]`, then the blue component will be
338
 * `pixel[tjBlueOffset[TJPF_BGRX]]`.  This will be -1 if the pixel format does
339
 * not have a blue component.
340
 */
341
static const int tjBlueOffset[TJ_NUMPF] = {
342
  2, 0, 2, 0, 1, 3, -1, 2, 0, 1, 3, -1
343
};
344
/**
345
 * Alpha offset (in samples) for a given pixel format.  This specifies the
346
 * number of samples that the alpha component is offset from the start of the
347
 * pixel.  For instance, if an 8-bit-per-component pixel of format TJPF_BGRA is
348
 * stored in `unsigned char pixel[]`, then the alpha component will be
349
 * `pixel[tjAlphaOffset[TJPF_BGRA]]`.  This will be -1 if the pixel format does
350
 * not have an alpha component.
351
 */
352
static const int tjAlphaOffset[TJ_NUMPF] = {
353
  -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, -1
354
};
355
/**
356
 * Pixel size (in samples) for a given pixel format
357
 */
358
static const int tjPixelSize[TJ_NUMPF] = {
359
  3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4
360
};
361
362
363
/**
364
 * The number of JPEG colorspaces
365
 */
366
#define TJ_NUMCS  5
367
368
/**
369
 * JPEG colorspaces
370
 */
371
enum TJCS {
372
  /**
373
   * RGB colorspace.  When compressing the JPEG image, the R, G, and B
374
   * components in the source image are reordered into image planes, but no
375
   * colorspace conversion or subsampling is performed.  RGB JPEG images can be
376
   * compressed from and decompressed to packed-pixel images with any of the
377
   * extended RGB or grayscale pixel formats, but they cannot be compressed
378
   * from or decompressed to planar YUV images.
379
   */
380
  TJCS_RGB,
381
  /**
382
   * YCbCr colorspace.  YCbCr is not an absolute colorspace but rather a
383
   * mathematical transformation of RGB designed solely for storage and
384
   * transmission.  YCbCr images must be converted to RGB before they can
385
   * actually be displayed.  In the YCbCr colorspace, the Y (luminance)
386
   * component represents the black & white portion of the original image, and
387
   * the Cb and Cr (chrominance) components represent the color portion of the
388
   * original image.  Originally, the analog equivalent of this transformation
389
   * allowed the same signal to drive both black & white and color televisions,
390
   * but JPEG images use YCbCr primarily because it allows the color data to be
391
   * optionally subsampled for the purposes of reducing network or disk usage.
392
   * YCbCr is the most common JPEG colorspace, and YCbCr JPEG images can be
393
   * compressed from and decompressed to packed-pixel images with any of the
394
   * extended RGB or grayscale pixel formats.  YCbCr JPEG images can also be
395
   * compressed from and decompressed to planar YUV images.
396
   */
397
  TJCS_YCbCr,
398
  /**
399
   * Grayscale colorspace.  The JPEG image retains only the luminance data (Y
400
   * component), and any color data from the source image is discarded.
401
   * Grayscale JPEG images can be compressed from and decompressed to
402
   * packed-pixel images with any of the extended RGB or grayscale pixel
403
   * formats, or they can be compressed from and decompressed to planar YUV
404
   * images.
405
   */
406
  TJCS_GRAY,
407
  /**
408
   * CMYK colorspace.  When compressing the JPEG image, the C, M, Y, and K
409
   * components in the source image are reordered into image planes, but no
410
   * colorspace conversion or subsampling is performed.  CMYK JPEG images can
411
   * only be compressed from and decompressed to packed-pixel images with the
412
   * CMYK pixel format.
413
   */
414
  TJCS_CMYK,
415
  /**
416
   * YCCK colorspace.  YCCK (AKA "YCbCrK") is not an absolute colorspace but
417
   * rather a mathematical transformation of CMYK designed solely for storage
418
   * and transmission.  It is to CMYK as YCbCr is to RGB.  CMYK pixels can be
419
   * reversibly transformed into YCCK, and as with YCbCr, the chrominance
420
   * components in the YCCK pixels can be subsampled without incurring major
421
   * perceptual loss.  YCCK JPEG images can only be compressed from and
422
   * decompressed to packed-pixel images with the CMYK pixel format.
423
   */
424
  TJCS_YCCK
425
};
426
427
428
/**
429
 * The number of parameters
430
 */
431
#define TJ_NUMPARAM
432
433
/**
434
 * Parameters
435
 */
436
enum TJPARAM {
437
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
438
  TJPARAM_MAXPIXELS = -1,
439
#endif
440
  /**
441
   * Error handling behavior
442
   *
443
   * **Value**
444
   * - `0` *[default]* Allow the current compression/decompression/transform
445
   * operation to complete unless a fatal error is encountered.
446
   * - `1` Immediately discontinue the current
447
   * compression/decompression/transform operation if a warning (non-fatal
448
   * error) occurs.
449
   */
450
  TJPARAM_STOPONWARNING,
451
  /**
452
   * Row order in packed-pixel source/destination images
453
   *
454
   * **Value**
455
   * - `0` *[default]* top-down (X11) order
456
   * - `1` bottom-up (Windows, OpenGL) order
457
   */
458
  TJPARAM_BOTTOMUP,
459
  /**
460
   * JPEG destination buffer (re)allocation [compression, lossless
461
   * transformation]
462
   *
463
   * **Value**
464
   * - `0` *[default]* Attempt to allocate or reallocate the JPEG destination
465
   * buffer as needed.
466
   * - `1` Generate an error if the JPEG destination buffer is invalid or too
467
   * small.
468
   */
469
  TJPARAM_NOREALLOC,
470
  /**
471
   * Perceptual quality of lossy JPEG images [compression only]
472
   *
473
   * **Value**
474
   * - `1`-`100` (`1` = worst quality but best compression, `100` = best
475
   * quality but worst compression) *[no default; must be explicitly
476
   * specified]*
477
   */
478
  TJPARAM_QUALITY,
479
  /**
480
   * Chrominance subsampling level
481
   *
482
   * The JPEG or YUV image uses (decompression, decoding) or will use (lossy
483
   * compression, encoding) the specified level of chrominance subsampling.
484
   *
485
   * **Value**
486
   * - One of the @ref TJSAMP "chrominance subsampling options" *[no default;
487
   * must be explicitly specified for lossy compression, encoding, and
488
   * decoding]*
489
   */
490
  TJPARAM_SUBSAMP,
491
  /**
492
   * JPEG width (in pixels) [decompression only, read-only]
493
   */
494
  TJPARAM_JPEGWIDTH,
495
  /**
496
   * JPEG height (in pixels) [decompression only, read-only]
497
   */
498
  TJPARAM_JPEGHEIGHT,
499
  /**
500
   * JPEG data precision (bits per sample) [decompression only, read-only]
501
   *
502
   * The JPEG image uses the specified number of bits per sample.
503
   *
504
   * **Value**
505
   * - `8`, `12`, or `16`
506
   *
507
   * 12-bit data precision implies #TJPARAM_OPTIMIZE unless #TJPARAM_ARITHMETIC
508
   * is set.
509
   */
510
  TJPARAM_PRECISION,
511
  /**
512
   * JPEG colorspace
513
   *
514
   * The JPEG image uses (decompression) or will use (lossy compression) the
515
   * specified colorspace.
516
   *
517
   * **Value**
518
   * - One of the @ref TJCS "JPEG colorspaces" *[default for lossy compression:
519
   * automatically selected based on the subsampling level and pixel format]*
520
   */
521
  TJPARAM_COLORSPACE,
522
  /**
523
   * Chrominance upsampling algorithm [lossy decompression only]
524
   *
525
   * **Value**
526
   * - `0` *[default]* Use smooth upsampling when decompressing a JPEG image
527
   * that was compressed using chrominance subsampling.  This creates a smooth
528
   * transition between neighboring chrominance components in order to reduce
529
   * upsampling artifacts in the decompressed image.
530
   * - `1` Use the fastest chrominance upsampling algorithm available, which
531
   * may combine upsampling with color conversion.
532
   */
533
  TJPARAM_FASTUPSAMPLE,
534
  /**
535
   * DCT/IDCT algorithm [lossy compression and decompression]
536
   *
537
   * **Value**
538
   * - `0` *[default]* Use the most accurate DCT/IDCT algorithm available.
539
   * - `1` Use the fastest DCT/IDCT algorithm available.
540
   *
541
   * This parameter is provided mainly for backward compatibility with libjpeg,
542
   * which historically implemented several different DCT/IDCT algorithms
543
   * because of performance limitations with 1990s CPUs.  In the libjpeg-turbo
544
   * implementation of the TurboJPEG API:
545
   * - The "fast" and "accurate" DCT/IDCT algorithms perform similarly on
546
   * modern x86/x86-64 CPUs that support AVX2 instructions.
547
   * - The "fast" algorithm is generally only about 5-15% faster than the
548
   * "accurate" algorithm on other types of CPUs.
549
   * - The difference in accuracy between the "fast" and "accurate" algorithms
550
   * is the most pronounced at JPEG quality levels above 90 and tends to be
551
   * more pronounced with decompression than with compression.
552
   * - The "fast" algorithm degrades and is not fully accelerated for JPEG
553
   * quality levels above 97, so it will be slower than the "accurate"
554
   * algorithm.
555
   */
556
  TJPARAM_FASTDCT,
557
  /**
558
   * Optimized baseline entropy coding [lossy compression only]
559
   *
560
   * **Value**
561
   * - `0` *[default]* The JPEG image will use the default Huffman tables.
562
   * - `1` Optimal Huffman tables will be computed for the JPEG image.  For
563
   * lossless transformation, this can also be specified using
564
   * #TJXOPT_OPTIMIZE.
565
   *
566
   * Optimized baseline entropy coding will improve compression slightly
567
   * (generally 5% or less), but it will reduce compression performance
568
   * considerably.
569
   */
570
  TJPARAM_OPTIMIZE,
571
  /**
572
   * Progressive entropy coding
573
   *
574
   * **Value**
575
   * - `0` *[default for compression, lossless transformation]* The lossy JPEG
576
   * image uses (decompression) or will use (compression, lossless
577
   * transformation) baseline entropy coding.
578
   * - `1` The lossy JPEG image uses (decompression) or will use (compression,
579
   * lossless transformation) progressive entropy coding.  For lossless
580
   * transformation, this can also be specified using #TJXOPT_PROGRESSIVE.
581
   *
582
   * Progressive entropy coding will generally improve compression relative to
583
   * baseline entropy coding, but it will reduce compression and decompression
584
   * performance considerably.  Can be combined with #TJPARAM_ARITHMETIC.
585
   * Implies #TJPARAM_OPTIMIZE unless #TJPARAM_ARITHMETIC is also set.
586
   */
587
  TJPARAM_PROGRESSIVE,
588
  /**
589
   * Progressive JPEG scan limit for lossy JPEG images [decompression, lossless
590
   * transformation]
591
   *
592
   * Setting this parameter will cause the decompression and transform
593
   * functions to return an error if the number of scans in a progressive JPEG
594
   * image exceeds the specified limit.  The primary purpose of this is to
595
   * allow security-critical applications to guard against an exploit of the
596
   * progressive JPEG format described in
597
   * <a href="https://libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf" target="_blank">this report</a>.
598
   *
599
   * **Value**
600
   * - maximum number of progressive JPEG scans that the decompression and
601
   * transform functions will process *[default: `0` (no limit)]*
602
   *
603
   * @see #TJPARAM_PROGRESSIVE
604
   */
605
  TJPARAM_SCANLIMIT,
606
  /**
607
   * Arithmetic entropy coding
608
   *
609
   * **Value**
610
   * - `0` *[default for compression, lossless transformation]* The lossy JPEG
611
   * image uses (decompression) or will use (compression, lossless
612
   * transformation) Huffman entropy coding.
613
   * - `1` The lossy JPEG image uses (decompression) or will use (compression,
614
   * lossless transformation) arithmetic entropy coding.  For lossless
615
   * transformation, this can also be specified using #TJXOPT_ARITHMETIC.
616
   *
617
   * Arithmetic entropy coding will generally improve compression relative to
618
   * Huffman entropy coding, but it will reduce compression and decompression
619
   * performance considerably.  Can be combined with #TJPARAM_PROGRESSIVE.
620
   */
621
  TJPARAM_ARITHMETIC,
622
  /**
623
   * Lossless JPEG
624
   *
625
   * **Value**
626
   * - `0` *[default for compression]* The JPEG image is (decompression) or
627
   * will be (compression) lossy/DCT-based.
628
   * - `1` The JPEG image is (decompression) or will be (compression)
629
   * lossless/predictive.
630
   *
631
   * In most cases, compressing and decompressing lossless JPEG images is
632
   * considerably slower than compressing and decompressing lossy JPEG images.
633
   * Also note that the following features are not available with lossless JPEG
634
   * images:
635
   * - Colorspace conversion (lossless JPEG images always use #TJCS_RGB,
636
   * #TJCS_GRAY, or #TJCS_CMYK, depending on the pixel format of the source
637
   * image)
638
   * - Chrominance subsampling (lossless JPEG images always use #TJSAMP_444)
639
   * - JPEG quality selection
640
   * - DCT/IDCT algorithm selection
641
   * - Progressive entropy coding
642
   * - Arithmetic entropy coding
643
   * - Compression from/decompression to planar YUV images
644
   * - Decompression scaling
645
   * - Lossless transformation
646
   *
647
   * @see #TJPARAM_LOSSLESSPSV, #TJPARAM_LOSSLESSPT
648
   */
649
  TJPARAM_LOSSLESS,
650
  /**
651
   * Lossless JPEG predictor selection value (PSV)
652
   *
653
   * **Value**
654
   * - `1`-`7` *[default for compression: `1`]*
655
   *
656
   * @see #TJPARAM_LOSSLESS
657
   */
658
  TJPARAM_LOSSLESSPSV,
659
  /**
660
   * Lossless JPEG point transform (Pt)
661
   *
662
   * **Value**
663
   * - `0` through ***precision*** *- 1*, where ***precision*** is the JPEG
664
   * data precision in bits *[default for compression: `0`]*
665
   *
666
   * A point transform value of `0` is necessary in order to generate a fully
667
   * lossless JPEG image.  (A non-zero point transform value right-shifts the
668
   * input samples by the specified number of bits, which is effectively a form
669
   * of lossy color quantization.)
670
   *
671
   * @see #TJPARAM_LOSSLESS, #TJPARAM_PRECISION
672
   */
673
  TJPARAM_LOSSLESSPT,
674
  /**
675
   * JPEG restart marker interval in MCU blocks (lossy) or samples (lossless)
676
   * [compression only]
677
   *
678
   * The nature of entropy coding is such that a corrupt JPEG image cannot
679
   * be decompressed beyond the point of corruption unless it contains restart
680
   * markers.  A restart marker stops and restarts the entropy coding algorithm
681
   * so that, if a JPEG image is corrupted, decompression can resume at the
682
   * next marker.  Thus, adding more restart markers improves the fault
683
   * tolerance of the JPEG image, but adding too many restart markers can
684
   * adversely affect the compression ratio and performance.
685
   *
686
   * **Value**
687
   * - the number of MCU blocks or samples between each restart marker
688
   * *[default: `0` (no restart markers)]*
689
   *
690
   * Setting this parameter to a non-zero value sets #TJPARAM_RESTARTROWS to 0.
691
   */
692
  TJPARAM_RESTARTBLOCKS,
693
  /**
694
   * JPEG restart marker interval in MCU rows (lossy) or sample rows (lossless)
695
   * [compression only]
696
   *
697
   * See #TJPARAM_RESTARTBLOCKS for a description of restart markers.
698
   *
699
   * **Value**
700
   * - the number of MCU rows or sample rows between each restart marker
701
   * *[default: `0` (no restart markers)]*
702
   *
703
   * Setting this parameter to a non-zero value sets #TJPARAM_RESTARTBLOCKS to
704
   * 0.
705
   */
706
  TJPARAM_RESTARTROWS,
707
  /**
708
   * JPEG horizontal pixel density
709
   *
710
   * **Value**
711
   * - The JPEG image has (decompression) or will have (compression) the
712
   * specified horizontal pixel density *[default for compression: `1`]*.
713
   *
714
   * This value is stored in or read from the JPEG header.  It does not affect
715
   * the contents of the JPEG image.  Note that this parameter is set by
716
   * #tj3LoadImage8() when loading a Windows BMP file that contains pixel
717
   * density information, and the value of this parameter is stored to a
718
   * Windows BMP file by #tj3SaveImage8() if the value of #TJPARAM_DENSITYUNIT
719
   * is `2`.
720
   *
721
   * @see TJPARAM_DENSITYUNIT
722
   */
723
  TJPARAM_XDENSITY,
724
  /**
725
   * JPEG vertical pixel density
726
   *
727
   * **Value**
728
   * - The JPEG image has (decompression) or will have (compression) the
729
   * specified vertical pixel density *[default for compression: `1`]*.
730
   *
731
   * This value is stored in or read from the JPEG header.  It does not affect
732
   * the contents of the JPEG image.  Note that this parameter is set by
733
   * #tj3LoadImage8() when loading a Windows BMP file that contains pixel
734
   * density information, and the value of this parameter is stored to a
735
   * Windows BMP file by #tj3SaveImage8() if the value of #TJPARAM_DENSITYUNIT
736
   * is `2`.
737
   *
738
   * @see TJPARAM_DENSITYUNIT
739
   */
740
  TJPARAM_YDENSITY,
741
  /**
742
   * JPEG pixel density units
743
   *
744
   * **Value**
745
   * - `0` *[default for compression]* The pixel density of the JPEG image is
746
   * expressed (decompression) or will be expressed (compression) in unknown
747
   * units.
748
   * - `1` The pixel density of the JPEG image is expressed (decompression) or
749
   * will be expressed (compression) in units of pixels/inch.
750
   * - `2` The pixel density of the JPEG image is expressed (decompression) or
751
   * will be expressed (compression) in units of pixels/cm.
752
   *
753
   * This value is stored in or read from the JPEG header.  It does not affect
754
   * the contents of the JPEG image.  Note that this parameter is set by
755
   * #tj3LoadImage8() when loading a Windows BMP file that contains pixel
756
   * density information, and the value of this parameter is stored to a
757
   * Windows BMP file by #tj3SaveImage8() if the value is `2`.
758
   *
759
   * @see TJPARAM_XDENSITY, TJPARAM_YDENSITY
760
   */
761
  TJPARAM_DENSITYUNITS
762
};
763
764
765
/**
766
 * The number of error codes
767
 */
768
#define TJ_NUMERR  2
769
770
/**
771
 * Error codes
772
 */
773
enum TJERR {
774
  /**
775
   * The error was non-fatal and recoverable, but the destination image may
776
   * still be corrupt.
777
   */
778
  TJERR_WARNING,
779
  /**
780
   * The error was fatal and non-recoverable.
781
   */
782
  TJERR_FATAL
783
};
784
785
786
/**
787
 * The number of transform operations
788
 */
789
#define TJ_NUMXOP  8
790
791
/**
792
 * Transform operations for #tj3Transform()
793
 */
794
enum TJXOP {
795
  /**
796
   * Do not transform the position of the image pixels
797
   */
798
  TJXOP_NONE,
799
  /**
800
   * Flip (mirror) image horizontally.  This transform is imperfect if there
801
   * are any partial MCU blocks on the right edge (see #TJXOPT_PERFECT.)
802
   */
803
  TJXOP_HFLIP,
804
  /**
805
   * Flip (mirror) image vertically.  This transform is imperfect if there are
806
   * any partial MCU blocks on the bottom edge (see #TJXOPT_PERFECT.)
807
   */
808
  TJXOP_VFLIP,
809
  /**
810
   * Transpose image (flip/mirror along upper left to lower right axis.)  This
811
   * transform is always perfect.
812
   */
813
  TJXOP_TRANSPOSE,
814
  /**
815
   * Transverse transpose image (flip/mirror along upper right to lower left
816
   * axis.)  This transform is imperfect if there are any partial MCU blocks in
817
   * the image (see #TJXOPT_PERFECT.)
818
   */
819
  TJXOP_TRANSVERSE,
820
  /**
821
   * Rotate image clockwise by 90 degrees.  This transform is imperfect if
822
   * there are any partial MCU blocks on the bottom edge (see
823
   * #TJXOPT_PERFECT.)
824
   */
825
  TJXOP_ROT90,
826
  /**
827
   * Rotate image 180 degrees.  This transform is imperfect if there are any
828
   * partial MCU blocks in the image (see #TJXOPT_PERFECT.)
829
   */
830
  TJXOP_ROT180,
831
  /**
832
   * Rotate image counter-clockwise by 90 degrees.  This transform is imperfect
833
   * if there are any partial MCU blocks on the right edge (see
834
   * #TJXOPT_PERFECT.)
835
   */
836
  TJXOP_ROT270
837
};
838
839
840
/**
841
 * This option will cause #tj3Transform() to return an error if the transform
842
 * is not perfect.  Lossless transforms operate on MCU blocks, whose size
843
 * depends on the level of chrominance subsampling used (see #tjMCUWidth and
844
 * #tjMCUHeight.)  If the image's width or height is not evenly divisible by
845
 * the MCU block size, then there will be partial MCU blocks on the right
846
 * and/or bottom edges.  It is not possible to move these partial MCU blocks to
847
 * the top or left of the image, so any transform that would require that is
848
 * "imperfect."  If this option is not specified, then any partial MCU blocks
849
 * that cannot be transformed will be left in place, which will create
850
 * odd-looking strips on the right or bottom edge of the image.
851
 */
852
0
#define TJXOPT_PERFECT  (1 << 0)
853
/**
854
 * This option will cause #tj3Transform() to discard any partial MCU blocks
855
 * that cannot be transformed.
856
 */
857
0
#define TJXOPT_TRIM  (1 << 1)
858
/**
859
 * This option will enable lossless cropping.  See #tj3Transform() for more
860
 * information.
861
 */
862
0
#define TJXOPT_CROP  (1 << 2)
863
/**
864
 * This option will discard the color data in the source image and produce a
865
 * grayscale destination image.
866
 */
867
0
#define TJXOPT_GRAY  (1 << 3)
868
/**
869
 * This option will prevent #tj3Transform() from outputting a JPEG image for
870
 * this particular transform.  (This can be used in conjunction with a custom
871
 * filter to capture the transformed DCT coefficients without transcoding
872
 * them.)
873
 */
874
0
#define TJXOPT_NOOUTPUT  (1 << 4)
875
/**
876
 * This option will enable progressive entropy coding in the JPEG image
877
 * generated by this particular transform.  Progressive entropy coding will
878
 * generally improve compression relative to baseline entropy coding (the
879
 * default), but it will reduce decompression performance considerably.
880
 * Can be combined with #TJXOPT_ARITHMETIC.  Implies #TJXOPT_OPTIMIZE unless
881
 * #TJXOPT_ARITHMETIC is also specified.
882
 */
883
0
#define TJXOPT_PROGRESSIVE  (1 << 5)
884
/**
885
 * This option will prevent #tj3Transform() from copying any extra markers
886
 * (including EXIF and ICC profile data) from the source image to the
887
 * destination image.
888
 */
889
0
#define TJXOPT_COPYNONE  (1 << 6)
890
/**
891
 * This option will enable arithmetic entropy coding in the JPEG image
892
 * generated by this particular transform.  Arithmetic entropy coding will
893
 * generally improve compression relative to Huffman entropy coding (the
894
 * default), but it will reduce decompression performance considerably.  Can be
895
 * combined with #TJXOPT_PROGRESSIVE.
896
 */
897
0
#define TJXOPT_ARITHMETIC  (1 << 7)
898
/**
899
 * This option will enable optimized baseline entropy coding in the JPEG image
900
 * generated by this particular transform.  Optimized baseline entropy coding
901
 * will improve compression slightly (generally 5% or less.)
902
 */
903
0
#define TJXOPT_OPTIMIZE  (1 << 8)
904
905
906
/**
907
 * Scaling factor
908
 */
909
typedef struct {
910
  /**
911
   * Numerator
912
   */
913
  int num;
914
  /**
915
   * Denominator
916
   */
917
  int denom;
918
} tjscalingfactor;
919
920
/**
921
 * Cropping region
922
 */
923
typedef struct {
924
  /**
925
   * The left boundary of the cropping region.  This must be evenly divisible
926
   * by the MCU block width (see #tjMCUWidth.)
927
   */
928
  int x;
929
  /**
930
   * The upper boundary of the cropping region.  For lossless transformation,
931
   * this must be evenly divisible by the MCU block height (see #tjMCUHeight.)
932
   */
933
  int y;
934
  /**
935
   * The width of the cropping region.  Setting this to 0 is the equivalent of
936
   * setting it to the width of the source JPEG image - x.
937
   */
938
  int w;
939
  /**
940
   * The height of the cropping region.  Setting this to 0 is the equivalent of
941
   * setting it to the height of the source JPEG image - y.
942
   */
943
  int h;
944
} tjregion;
945
946
/**
947
 * A #tjregion structure that specifies no cropping
948
 */
949
static const tjregion TJUNCROPPED = { 0, 0, 0, 0 };
950
951
/**
952
 * Lossless transform
953
 */
954
typedef struct tjtransform {
955
  /**
956
   * Cropping region
957
   */
958
  tjregion r;
959
  /**
960
   * One of the @ref TJXOP "transform operations"
961
   */
962
  int op;
963
  /**
964
   * The bitwise OR of one of more of the @ref TJXOPT_ARITHMETIC
965
   * "transform options"
966
   */
967
  int options;
968
  /**
969
   * Arbitrary data that can be accessed within the body of the callback
970
   * function
971
   */
972
  void *data;
973
  /**
974
   * A callback function that can be used to modify the DCT coefficients after
975
   * they are losslessly transformed but before they are transcoded to a new
976
   * JPEG image.  This allows for custom filters or other transformations to be
977
   * applied in the frequency domain.
978
   *
979
   * @param coeffs pointer to an array of transformed DCT coefficients.  (NOTE:
980
   * this pointer is not guaranteed to be valid once the callback returns, so
981
   * applications wishing to hand off the DCT coefficients to another function
982
   * or library should make a copy of them within the body of the callback.)
983
   *
984
   * @param arrayRegion #tjregion structure containing the width and height of
985
   * the array pointed to by `coeffs` as well as its offset relative to the
986
   * component plane.  TurboJPEG implementations may choose to split each
987
   * component plane into multiple DCT coefficient arrays and call the callback
988
   * function once for each array.
989
   *
990
   * @param planeRegion #tjregion structure containing the width and height of
991
   * the component plane to which `coeffs` belongs
992
   *
993
   * @param componentID ID number of the component plane to which `coeffs`
994
   * belongs.  (Y, Cb, and Cr have, respectively, ID's of 0, 1, and 2 in
995
   * typical JPEG images.)
996
   *
997
   * @param transformID ID number of the transformed image to which `coeffs`
998
   * belongs.  This is the same as the index of the transform in the
999
   * `transforms` array that was passed to #tj3Transform().
1000
   *
1001
   * @param transform a pointer to a #tjtransform structure that specifies the
1002
   * parameters and/or cropping region for this transform
1003
   *
1004
   * @return 0 if the callback was successful, or -1 if an error occurred.
1005
   */
1006
  int (*customFilter) (short *coeffs, tjregion arrayRegion,
1007
                       tjregion planeRegion, int componentIndex,
1008
                       int transformIndex, struct tjtransform *transform);
1009
} tjtransform;
1010
1011
/**
1012
 * TurboJPEG instance handle
1013
 */
1014
typedef void *tjhandle;
1015
1016
1017
/**
1018
 * Compute the scaled value of `dimension` using the given scaling factor.
1019
 * This macro performs the integer equivalent of `ceil(dimension *
1020
 * scalingFactor)`.
1021
 */
1022
#define TJSCALED(dimension, scalingFactor) \
1023
126k
  (((dimension) * scalingFactor.num + scalingFactor.denom - 1) / \
1024
126k
   scalingFactor.denom)
1025
1026
/**
1027
 * A #tjscalingfactor structure that specifies a scaling factor of 1/1 (no
1028
 * scaling)
1029
 */
1030
static const tjscalingfactor TJUNSCALED = { 1, 1 };
1031
1032
1033
#ifdef __cplusplus
1034
extern "C" {
1035
#endif
1036
1037
1038
/**
1039
 * Create a new TurboJPEG instance.
1040
 *
1041
 * @param initType one of the @ref TJINIT "initialization options"
1042
 *
1043
 * @return a handle to the newly-created instance, or NULL if an error occurred
1044
 * (see #tj3GetErrorStr().)
1045
 */
1046
DLLEXPORT tjhandle tj3Init(int initType);
1047
1048
1049
/**
1050
 * Set the value of a parameter.
1051
 *
1052
 * @param handle handle to a TurboJPEG instance
1053
 *
1054
 * @param param one of the @ref TJPARAM "parameters"
1055
 *
1056
 * @param value value of the parameter (refer to @ref TJPARAM
1057
 * "parameter documentation")
1058
 *
1059
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr().)
1060
 */
1061
DLLEXPORT int tj3Set(tjhandle handle, int param, int value);
1062
1063
1064
/**
1065
 * Get the value of a parameter.
1066
 *
1067
 * @param handle handle to a TurboJPEG instance
1068
 *
1069
 * @param param one of the @ref TJPARAM "parameters"
1070
 *
1071
 * @return the value of the specified parameter, or -1 if the value is unknown.
1072
 */
1073
DLLEXPORT int tj3Get(tjhandle handle, int param);
1074
1075
1076
/**
1077
 * Compress an 8-bit-per-sample packed-pixel RGB, grayscale, or CMYK image into
1078
 * an 8-bit-per-sample JPEG image.
1079
 *
1080
 * @param handle handle to a TurboJPEG instance that has been initialized for
1081
 * compression
1082
 *
1083
 * @param srcBuf pointer to a buffer containing a packed-pixel RGB, grayscale,
1084
 * or CMYK source image to be compressed.  This buffer should normally be
1085
 * `pitch * height` samples in size.  However, you can also use this parameter
1086
 * to compress from a specific region of a larger buffer.
1087
 *
1088
 * @param width width (in pixels) of the source image
1089
 *
1090
 * @param pitch samples per row in the source image.  Normally this should be
1091
 * <tt>width * #tjPixelSize[pixelFormat]</tt>, if the image is unpadded.
1092
 * (Setting this parameter to 0 is the equivalent of setting it to
1093
 * <tt>width * #tjPixelSize[pixelFormat]</tt>.)  However, you can also use this
1094
 * parameter to specify the row alignment/padding of the source image, to skip
1095
 * rows, or to compress from a specific region of a larger buffer.
1096
 *
1097
 * @param height height (in pixels) of the source image
1098
 *
1099
 * @param pixelFormat pixel format of the source image (see @ref TJPF
1100
 * "Pixel formats".)
1101
 *
1102
 * @param jpegBuf address of a pointer to a byte buffer that will receive the
1103
 * JPEG image.  TurboJPEG has the ability to reallocate the JPEG buffer to
1104
 * accommodate the size of the JPEG image.  Thus, you can choose to:
1105
 * -# pre-allocate the JPEG buffer with an arbitrary size using #tj3Alloc() and
1106
 * let TurboJPEG grow the buffer as needed,
1107
 * -# set `*jpegBuf` to NULL to tell TurboJPEG to allocate the buffer for you,
1108
 * or
1109
 * -# pre-allocate the buffer to a "worst case" size determined by calling
1110
 * #tj3JPEGBufSize().  This should ensure that the buffer never has to be
1111
 * re-allocated.  (Setting #TJPARAM_NOREALLOC guarantees that it won't be.)
1112
 * .
1113
 * If you choose option 1, then `*jpegSize` should be set to the size of your
1114
 * pre-allocated buffer.  In any case, unless you have set #TJPARAM_NOREALLOC,
1115
 * you should always check `*jpegBuf` upon return from this function, as it may
1116
 * have changed.
1117
 *
1118
 * @param jpegSize pointer to a size_t variable that holds the size of the JPEG
1119
 * buffer.  If `*jpegBuf` points to a pre-allocated buffer, then `*jpegSize`
1120
 * should be set to the size of the buffer.  Upon return, `*jpegSize` will
1121
 * contain the size of the JPEG image (in bytes.)  If `*jpegBuf` points to a
1122
 * JPEG buffer that is being reused from a previous call to one of the JPEG
1123
 * compression functions, then `*jpegSize` is ignored.
1124
 *
1125
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1126
 * and #tj3GetErrorCode().)
1127
 */
1128
DLLEXPORT int tj3Compress8(tjhandle handle, const unsigned char *srcBuf,
1129
                           int width, int pitch, int height, int pixelFormat,
1130
                           unsigned char **jpegBuf, size_t *jpegSize);
1131
1132
/**
1133
 * Compress a 12-bit-per-sample packed-pixel RGB, grayscale, or CMYK image into
1134
 * a 12-bit-per-sample JPEG image.
1135
 *
1136
 * \details \copydetails tj3Compress8()
1137
 */
1138
DLLEXPORT int tj3Compress12(tjhandle handle, const short *srcBuf, int width,
1139
                            int pitch, int height, int pixelFormat,
1140
                            unsigned char **jpegBuf, size_t *jpegSize);
1141
1142
/**
1143
 * Compress a 16-bit-per-sample packed-pixel RGB, grayscale, or CMYK image into
1144
 * a 16-bit-per-sample lossless JPEG image.
1145
 *
1146
 * \details \copydetails tj3Compress8()
1147
 */
1148
DLLEXPORT int tj3Compress16(tjhandle handle, const unsigned short *srcBuf,
1149
                            int width, int pitch, int height, int pixelFormat,
1150
                            unsigned char **jpegBuf, size_t *jpegSize);
1151
1152
1153
/**
1154
 * Compress an 8-bit-per-sample unified planar YUV image into an
1155
 * 8-bit-per-sample JPEG image.
1156
 *
1157
 * @param handle handle to a TurboJPEG instance that has been initialized for
1158
 * compression
1159
 *
1160
 * @param srcBuf pointer to a buffer containing a unified planar YUV source
1161
 * image to be compressed.  The size of this buffer should match the value
1162
 * returned by #tj3YUVBufSize() for the given image width, height, row
1163
 * alignment, and level of chrominance subsampling (see #TJPARAM_SUBSAMP.)  The
1164
 * Y, U (Cb), and V (Cr) image planes should be stored sequentially in the
1165
 * buffer.  (Refer to @ref YUVnotes "YUV Image Format Notes".)
1166
 *
1167
 * @param width width (in pixels) of the source image.  If the width is not an
1168
 * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate
1169
 * buffer copy will be performed.
1170
 *
1171
 * @param align row alignment (in bytes) of the source image (must be a power
1172
 * of 2.)  Setting this parameter to n indicates that each row in each plane of
1173
 * the source image is padded to the nearest multiple of n bytes
1174
 * (1 = unpadded.)
1175
 *
1176
 * @param height height (in pixels) of the source image.  If the height is not
1177
 * an even multiple of the MCU block height (see #tjMCUHeight), then an
1178
 * intermediate buffer copy will be performed.
1179
 *
1180
 * @param jpegBuf address of a pointer to a byte buffer that will receive the
1181
 * JPEG image.  TurboJPEG has the ability to reallocate the JPEG buffer to
1182
 * accommodate the size of the JPEG image.  Thus, you can choose to:
1183
 * -# pre-allocate the JPEG buffer with an arbitrary size using #tj3Alloc() and
1184
 * let TurboJPEG grow the buffer as needed,
1185
 * -# set `*jpegBuf` to NULL to tell TurboJPEG to allocate the buffer for you,
1186
 * or
1187
 * -# pre-allocate the buffer to a "worst case" size determined by calling
1188
 * #tj3JPEGBufSize().  This should ensure that the buffer never has to be
1189
 * re-allocated.  (Setting #TJPARAM_NOREALLOC guarantees that it won't be.)
1190
 * .
1191
 * If you choose option 1, then `*jpegSize` should be set to the size of your
1192
 * pre-allocated buffer.  In any case, unless you have set #TJPARAM_NOREALLOC,
1193
 * you should always check `*jpegBuf` upon return from this function, as it may
1194
 * have changed.
1195
 *
1196
 * @param jpegSize pointer to a size_t variable that holds the size of the JPEG
1197
 * buffer.  If `*jpegBuf` points to a pre-allocated buffer, then `*jpegSize`
1198
 * should be set to the size of the buffer.  Upon return, `*jpegSize` will
1199
 * contain the size of the JPEG image (in bytes.)  If `*jpegBuf` points to a
1200
 * JPEG buffer that is being reused from a previous call to one of the JPEG
1201
 * compression functions, then `*jpegSize` is ignored.
1202
 *
1203
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1204
 * and #tj3GetErrorCode().)
1205
 */
1206
DLLEXPORT int tj3CompressFromYUV8(tjhandle handle,
1207
                                  const unsigned char *srcBuf, int width,
1208
                                  int align, int height,
1209
                                  unsigned char **jpegBuf, size_t *jpegSize);
1210
1211
1212
/**
1213
 * Compress a set of 8-bit-per-sample Y, U (Cb), and V (Cr) image planes into
1214
 * an 8-bit-per-sample JPEG image.
1215
 *
1216
 * @param handle handle to a TurboJPEG instance that has been initialized for
1217
 * compression
1218
 *
1219
 * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes
1220
 * (or just a Y plane, if compressing a grayscale image) that contain a YUV
1221
 * source image to be compressed.  These planes can be contiguous or
1222
 * non-contiguous in memory.  The size of each plane should match the value
1223
 * returned by #tj3YUVPlaneSize() for the given image width, height, strides,
1224
 * and level of chrominance subsampling (see #TJPARAM_SUBSAMP.)  Refer to
1225
 * @ref YUVnotes "YUV Image Format Notes" for more details.
1226
 *
1227
 * @param width width (in pixels) of the source image.  If the width is not an
1228
 * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate
1229
 * buffer copy will be performed.
1230
 *
1231
 * @param strides an array of integers, each specifying the number of bytes per
1232
 * row in the corresponding plane of the YUV source image.  Setting the stride
1233
 * for any plane to 0 is the same as setting it to the plane width (see
1234
 * @ref YUVnotes "YUV Image Format Notes".)  If `strides` is NULL, then the
1235
 * strides for all planes will be set to their respective plane widths.  You
1236
 * can adjust the strides in order to specify an arbitrary amount of row
1237
 * padding in each plane or to create a JPEG image from a subregion of a larger
1238
 * planar YUV image.
1239
 *
1240
 * @param height height (in pixels) of the source image.  If the height is not
1241
 * an even multiple of the MCU block height (see #tjMCUHeight), then an
1242
 * intermediate buffer copy will be performed.
1243
 *
1244
 * @param jpegBuf address of a pointer to a byte buffer that will receive the
1245
 * JPEG image.  TurboJPEG has the ability to reallocate the JPEG buffer to
1246
 * accommodate the size of the JPEG image.  Thus, you can choose to:
1247
 * -# pre-allocate the JPEG buffer with an arbitrary size using #tj3Alloc() and
1248
 * let TurboJPEG grow the buffer as needed,
1249
 * -# set `*jpegBuf` to NULL to tell TurboJPEG to allocate the buffer for you,
1250
 * or
1251
 * -# pre-allocate the buffer to a "worst case" size determined by calling
1252
 * #tj3JPEGBufSize().  This should ensure that the buffer never has to be
1253
 * re-allocated.  (Setting #TJPARAM_NOREALLOC guarantees that it won't be.)
1254
 * .
1255
 * If you choose option 1, then `*jpegSize` should be set to the size of your
1256
 * pre-allocated buffer.  In any case, unless you have set #TJPARAM_NOREALLOC,
1257
 * you should always check `*jpegBuf` upon return from this function, as it may
1258
 * have changed.
1259
 *
1260
 * @param jpegSize pointer to a size_t variable that holds the size of the JPEG
1261
 * buffer.  If `*jpegBuf` points to a pre-allocated buffer, then `*jpegSize`
1262
 * should be set to the size of the buffer.  Upon return, `*jpegSize` will
1263
 * contain the size of the JPEG image (in bytes.)  If `*jpegBuf` points to a
1264
 * JPEG buffer that is being reused from a previous call to one of the JPEG
1265
 * compression functions, then `*jpegSize` is ignored.
1266
 *
1267
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1268
 * and #tj3GetErrorCode().)
1269
 */
1270
DLLEXPORT int tj3CompressFromYUVPlanes8(tjhandle handle,
1271
                                        const unsigned char * const *srcPlanes,
1272
                                        int width, const int *strides,
1273
                                        int height, unsigned char **jpegBuf,
1274
                                        size_t *jpegSize);
1275
1276
1277
/**
1278
 * The maximum size of the buffer (in bytes) required to hold a JPEG image with
1279
 * the given parameters.  The number of bytes returned by this function is
1280
 * larger than the size of the uncompressed source image.  The reason for this
1281
 * is that the JPEG format uses 16-bit coefficients, so it is possible for a
1282
 * very high-quality source image with very high-frequency content to expand
1283
 * rather than compress when converted to the JPEG format.  Such images
1284
 * represent very rare corner cases, but since there is no way to predict the
1285
 * size of a JPEG image prior to compression, the corner cases have to be
1286
 * handled.
1287
 *
1288
 * @param width width (in pixels) of the image
1289
 *
1290
 * @param height height (in pixels) of the image
1291
 *
1292
 * @param jpegSubsamp the level of chrominance subsampling to be used when
1293
 * generating the JPEG image (see @ref TJSAMP
1294
 * "Chrominance subsampling options".)  #TJSAMP_UNKNOWN is treated like
1295
 * #TJSAMP_444, since a buffer large enough to hold a JPEG image with no
1296
 * subsampling should also be large enough to hold a JPEG image with an
1297
 * arbitrary level of subsampling.  Note that lossless JPEG images always
1298
 * use #TJSAMP_444.
1299
 *
1300
 * @return the maximum size of the buffer (in bytes) required to hold the
1301
 * image, or 0 if the arguments are out of bounds.
1302
 */
1303
DLLEXPORT size_t tj3JPEGBufSize(int width, int height, int jpegSubsamp);
1304
1305
1306
/**
1307
 * The size of the buffer (in bytes) required to hold a unified planar YUV
1308
 * image with the given parameters.
1309
 *
1310
 * @param width width (in pixels) of the image
1311
 *
1312
 * @param align row alignment (in bytes) of the image (must be a power of 2.)
1313
 * Setting this parameter to n specifies that each row in each plane of the
1314
 * image will be padded to the nearest multiple of n bytes (1 = unpadded.)
1315
 *
1316
 * @param height height (in pixels) of the image
1317
 *
1318
 * @param subsamp level of chrominance subsampling in the image (see
1319
 * @ref TJSAMP "Chrominance subsampling options".)
1320
 *
1321
 * @return the size of the buffer (in bytes) required to hold the image, or 0
1322
 * if the arguments are out of bounds.
1323
 */
1324
DLLEXPORT size_t tj3YUVBufSize(int width, int align, int height, int subsamp);
1325
1326
1327
/**
1328
 * The size of the buffer (in bytes) required to hold a YUV image plane with
1329
 * the given parameters.
1330
 *
1331
 * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
1332
 *
1333
 * @param width width (in pixels) of the YUV image.  NOTE: this is the width of
1334
 * the whole image, not the plane width.
1335
 *
1336
 * @param stride bytes per row in the image plane.  Setting this to 0 is the
1337
 * equivalent of setting it to the plane width.
1338
 *
1339
 * @param height height (in pixels) of the YUV image.  NOTE: this is the height
1340
 * of the whole image, not the plane height.
1341
 *
1342
 * @param subsamp level of chrominance subsampling in the image (see
1343
 * @ref TJSAMP "Chrominance subsampling options".)
1344
 *
1345
 * @return the size of the buffer (in bytes) required to hold the YUV image
1346
 * plane, or 0 if the arguments are out of bounds.
1347
 */
1348
DLLEXPORT size_t tj3YUVPlaneSize(int componentID, int width, int stride,
1349
                                 int height, int subsamp);
1350
1351
1352
/**
1353
 * The plane width of a YUV image plane with the given parameters.  Refer to
1354
 * @ref YUVnotes "YUV Image Format Notes" for a description of plane width.
1355
 *
1356
 * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
1357
 *
1358
 * @param width width (in pixels) of the YUV image
1359
 *
1360
 * @param subsamp level of chrominance subsampling in the image (see
1361
 * @ref TJSAMP "Chrominance subsampling options".)
1362
 *
1363
 * @return the plane width of a YUV image plane with the given parameters, or 0
1364
 * if the arguments are out of bounds.
1365
 */
1366
DLLEXPORT int tj3YUVPlaneWidth(int componentID, int width, int subsamp);
1367
1368
1369
/**
1370
 * The plane height of a YUV image plane with the given parameters.  Refer to
1371
 * @ref YUVnotes "YUV Image Format Notes" for a description of plane height.
1372
 *
1373
 * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
1374
 *
1375
 * @param height height (in pixels) of the YUV image
1376
 *
1377
 * @param subsamp level of chrominance subsampling in the image (see
1378
 * @ref TJSAMP "Chrominance subsampling options".)
1379
 *
1380
 * @return the plane height of a YUV image plane with the given parameters, or
1381
 * 0 if the arguments are out of bounds.
1382
 */
1383
DLLEXPORT int tj3YUVPlaneHeight(int componentID, int height, int subsamp);
1384
1385
1386
/**
1387
 * Encode an 8-bit-per-sample packed-pixel RGB or grayscale image into an
1388
 * 8-bit-per-sample unified planar YUV image.  This function performs color
1389
 * conversion (which is accelerated in the libjpeg-turbo implementation) but
1390
 * does not execute any of the other steps in the JPEG compression process.
1391
 *
1392
 * @param handle handle to a TurboJPEG instance that has been initialized for
1393
 * compression
1394
 *
1395
 * @param srcBuf pointer to a buffer containing a packed-pixel RGB or grayscale
1396
 * source image to be encoded.  This buffer should normally be `pitch * height`
1397
 * bytes in size.  However, you can also use this parameter to encode from a
1398
 * specific region of a larger buffer.
1399
 *
1400
 * @param width width (in pixels) of the source image
1401
 *
1402
 * @param pitch bytes per row in the source image.  Normally this should be
1403
 * <tt>width * #tjPixelSize[pixelFormat]</tt>, if the image is unpadded.
1404
 * (Setting this parameter to 0 is the equivalent of setting it to
1405
 * <tt>width * #tjPixelSize[pixelFormat]</tt>.)  However, you can also use this
1406
 * parameter to specify the row alignment/padding of the source image, to skip
1407
 * rows, or to encode from a specific region of a larger packed-pixel image.
1408
 *
1409
 * @param height height (in pixels) of the source image
1410
 *
1411
 * @param pixelFormat pixel format of the source image (see @ref TJPF
1412
 * "Pixel formats".)
1413
 *
1414
 * @param dstBuf pointer to a buffer that will receive the unified planar YUV
1415
 * image.  Use #tj3YUVBufSize() to determine the appropriate size for this
1416
 * buffer based on the image width, height, row alignment, and level of
1417
 * chrominance subsampling (see #TJPARAM_SUBSAMP.)  The Y, U (Cb), and V (Cr)
1418
 * image planes will be stored sequentially in the buffer.  (Refer to
1419
 * @ref YUVnotes "YUV Image Format Notes".)
1420
 *
1421
 * @param align row alignment (in bytes) of the YUV image (must be a power of
1422
 * 2.)  Setting this parameter to n will cause each row in each plane of the
1423
 * YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.)
1424
 * To generate images suitable for X Video, `align` should be set to 4.
1425
 *
1426
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1427
 * and #tj3GetErrorCode().)
1428
 */
1429
DLLEXPORT int tj3EncodeYUV8(tjhandle handle, const unsigned char *srcBuf,
1430
                            int width, int pitch, int height, int pixelFormat,
1431
                            unsigned char *dstBuf, int align);
1432
1433
1434
/**
1435
 * Encode an 8-bit-per-sample packed-pixel RGB or grayscale image into separate
1436
 * 8-bit-per-sample Y, U (Cb), and V (Cr) image planes.  This function performs
1437
 * color conversion (which is accelerated in the libjpeg-turbo implementation)
1438
 * but does not execute any of the other steps in the JPEG compression process.
1439
 *
1440
 * @param handle handle to a TurboJPEG instance that has been initialized for
1441
 * compression
1442
 *
1443
 * @param srcBuf pointer to a buffer containing a packed-pixel RGB or grayscale
1444
 * source image to be encoded.  This buffer should normally be `pitch * height`
1445
 * bytes in size.  However, you can also use this parameter to encode from a
1446
 * specific region of a larger buffer.
1447
 *
1448
 *
1449
 * @param width width (in pixels) of the source image
1450
 *
1451
 * @param pitch bytes per row in the source image.  Normally this should be
1452
 * <tt>width * #tjPixelSize[pixelFormat]</tt>, if the image is unpadded.
1453
 * (Setting this parameter to 0 is the equivalent of setting it to
1454
 * <tt>width * #tjPixelSize[pixelFormat]</tt>.)  However, you can also use this
1455
 * parameter to specify the row alignment/padding of the source image, to skip
1456
 * rows, or to encode from a specific region of a larger packed-pixel image.
1457
 *
1458
 * @param height height (in pixels) of the source image
1459
 *
1460
 * @param pixelFormat pixel format of the source image (see @ref TJPF
1461
 * "Pixel formats".)
1462
 *
1463
 * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes
1464
 * (or just a Y plane, if generating a grayscale image) that will receive the
1465
 * encoded image.  These planes can be contiguous or non-contiguous in memory.
1466
 * Use #tj3YUVPlaneSize() to determine the appropriate size for each plane
1467
 * based on the image width, height, strides, and level of chrominance
1468
 * subsampling (see #TJPARAM_SUBSAMP.)  Refer to @ref YUVnotes
1469
 * "YUV Image Format Notes" for more details.
1470
 *
1471
 * @param strides an array of integers, each specifying the number of bytes per
1472
 * row in the corresponding plane of the YUV image.  Setting the stride for any
1473
 * plane to 0 is the same as setting it to the plane width (see @ref YUVnotes
1474
 * "YUV Image Format Notes".)  If `strides` is NULL, then the strides for all
1475
 * planes will be set to their respective plane widths.  You can adjust the
1476
 * strides in order to add an arbitrary amount of row padding to each plane or
1477
 * to encode an RGB or grayscale image into a subregion of a larger planar YUV
1478
 * image.
1479
 *
1480
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1481
 * and #tj3GetErrorCode().)
1482
 */
1483
DLLEXPORT int tj3EncodeYUVPlanes8(tjhandle handle, const unsigned char *srcBuf,
1484
                                  int width, int pitch, int height,
1485
                                  int pixelFormat, unsigned char **dstPlanes,
1486
                                  int *strides);
1487
1488
1489
/**
1490
 * Retrieve information about a JPEG image without decompressing it, or prime
1491
 * the decompressor with quantization and Huffman tables.  If a JPEG image is
1492
 * passed to this function, then the @ref TJPARAM "parameters" that describe
1493
 * the JPEG image will be set when the function returns.
1494
 *
1495
 * @param handle handle to a TurboJPEG instance that has been initialized for
1496
 * decompression
1497
 *
1498
 * @param jpegBuf pointer to a byte buffer containing a JPEG image or an
1499
 * "abbreviated table specification" (AKA "tables-only") datastream.  Passing a
1500
 * tables-only datastream to this function primes the decompressor with
1501
 * quantization and Huffman tables that can be used when decompressing
1502
 * subsequent "abbreviated image" datastreams.  This is useful, for instance,
1503
 * when decompressing video streams in which all frames share the same
1504
 * quantization and Huffman tables.
1505
 *
1506
 * @param jpegSize size of the JPEG image or tables-only datastream (in bytes)
1507
 *
1508
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1509
 * and #tj3GetErrorCode().)
1510
 */
1511
DLLEXPORT int tj3DecompressHeader(tjhandle handle,
1512
                                  const unsigned char *jpegBuf,
1513
                                  size_t jpegSize);
1514
1515
1516
/**
1517
 * Returns a list of fractional scaling factors that the JPEG decompressor
1518
 * supports.
1519
 *
1520
 * @param numScalingFactors pointer to an integer variable that will receive
1521
 * the number of elements in the list
1522
 *
1523
 * @return a pointer to a list of fractional scaling factors, or NULL if an
1524
 * error is encountered (see #tj3GetErrorStr().)
1525
 */
1526
DLLEXPORT tjscalingfactor *tj3GetScalingFactors(int *numScalingFactors);
1527
1528
1529
/**
1530
 * Set the scaling factor for subsequent lossy decompression operations.
1531
 *
1532
 * @param handle handle to a TurboJPEG instance that has been initialized for
1533
 * decompression
1534
 *
1535
 * @param scalingFactor #tjscalingfactor structure that specifies a fractional
1536
 * scaling factor that the decompressor supports (see #tj3GetScalingFactors()),
1537
 * or <tt>#TJUNSCALED</tt> for no scaling.  Decompression scaling is a function
1538
 * of the IDCT algorithm, so scaling factors are generally limited to multiples
1539
 * of 1/8.  If the entire JPEG image will be decompressed, then the width and
1540
 * height of the scaled destination image can be determined by calling
1541
 * #TJSCALED() with the JPEG width and height (see #TJPARAM_JPEGWIDTH and
1542
 * #TJPARAM_JPEGHEIGHT) and the specified scaling factor.  When decompressing
1543
 * into a planar YUV image, an intermediate buffer copy will be performed if
1544
 * the width or height of the scaled destination image is not an even multiple
1545
 * of the MCU block size (see #tjMCUWidth and #tjMCUHeight.)  Note that
1546
 * decompression scaling is not available (and the specified scaling factor is
1547
 * ignored) when decompressing lossless JPEG images (see #TJPARAM_LOSSLESS),
1548
 * since the IDCT algorithm is not used with those images.  Note also that
1549
 * #TJPARAM_FASTDCT is ignored when decompression scaling is enabled.
1550
 *
1551
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr().)
1552
 */
1553
DLLEXPORT int tj3SetScalingFactor(tjhandle handle,
1554
                                  tjscalingfactor scalingFactor);
1555
1556
1557
/**
1558
 * Set the cropping region for partially decompressing a lossy JPEG image into
1559
 * a packed-pixel image
1560
 *
1561
 * @param handle handle to a TurboJPEG instance that has been initialized for
1562
 * decompression
1563
 *
1564
 * @param croppingRegion #tjregion structure that specifies a subregion of the
1565
 * JPEG image to decompress, or <tt>#TJUNCROPPED</tt> for no cropping.  The
1566
 * left boundary of the cropping region must be evenly divisible by the scaled
1567
 * MCU block width (<tt>#TJSCALED(#tjMCUWidth[subsamp], scalingFactor)</tt>,
1568
 * where `subsamp` is the level of chrominance subsampling in the JPEG image
1569
 * (see #TJPARAM_SUBSAMP) and `scalingFactor` is the decompression scaling
1570
 * factor (see #tj3SetScalingFactor().)  The cropping region should be
1571
 * specified relative to the scaled image dimensions.  Unless `croppingRegion`
1572
 * is <tt>#TJUNCROPPED</tt>, the JPEG header must be read (see
1573
 * #tj3DecompressHeader()) prior to calling this function.
1574
 *
1575
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr().)
1576
 */
1577
DLLEXPORT int tj3SetCroppingRegion(tjhandle handle, tjregion croppingRegion);
1578
1579
1580
/**
1581
 * Decompress an 8-bit-per-sample JPEG image into an 8-bit-per-sample
1582
 * packed-pixel RGB, grayscale, or CMYK image.  The @ref TJPARAM "parameters"
1583
 * that describe the JPEG image will be set when this function returns.
1584
 *
1585
 * @param handle handle to a TurboJPEG instance that has been initialized for
1586
 * decompression
1587
 *
1588
 * @param jpegBuf pointer to a byte buffer containing the JPEG image to
1589
 * decompress
1590
 *
1591
 * @param jpegSize size of the JPEG image (in bytes)
1592
 *
1593
 * @param dstBuf pointer to a buffer that will receive the packed-pixel
1594
 * decompressed image.  This buffer should normally be
1595
 * `pitch * destinationHeight` samples in size.  However, you can also use this
1596
 * parameter to decompress into a specific region of a larger buffer.  NOTE:
1597
 * If the JPEG image is lossy, then `destinationHeight` is either the scaled
1598
 * JPEG height (see #TJSCALED(), #TJPARAM_JPEGHEIGHT, and
1599
 * #tj3SetScalingFactor()) or the height of the cropping region (see
1600
 * #tj3SetCroppingRegion().)  If the JPEG image is lossless, then
1601
 * `destinationHeight` is the JPEG height.
1602
 *
1603
 * @param pitch samples per row in the destination image.  Normally this should
1604
 * be set to <tt>destinationWidth * #tjPixelSize[pixelFormat]</tt>, if the
1605
 * destination image should be unpadded.  (Setting this parameter to 0 is the
1606
 * equivalent of setting it to
1607
 * <tt>destinationWidth * #tjPixelSize[pixelFormat]</tt>.)  However, you can
1608
 * also use this parameter to specify the row alignment/padding of the
1609
 * destination image, to skip rows, or to decompress into a specific region of
1610
 * a larger buffer.  NOTE: If the JPEG image is lossy, then `destinationWidth`
1611
 * is either the scaled JPEG width (see #TJSCALED(), #TJPARAM_JPEGWIDTH, and
1612
 * #tj3SetScalingFactor()) or the width of the cropping region (see
1613
 * #tj3SetCroppingRegion().)  If the JPEG image is lossless, then
1614
 * `destinationWidth` is the JPEG width.
1615
 *
1616
 * @param pixelFormat pixel format of the destination image (see @ref
1617
 * TJPF "Pixel formats".)
1618
 *
1619
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1620
 * and #tj3GetErrorCode().)
1621
 */
1622
DLLEXPORT int tj3Decompress8(tjhandle handle, const unsigned char *jpegBuf,
1623
                             size_t jpegSize, unsigned char *dstBuf, int pitch,
1624
                             int pixelFormat);
1625
1626
/**
1627
 * Decompress a 12-bit-per-sample JPEG image into a 12-bit-per-sample
1628
 * packed-pixel RGB, grayscale, or CMYK image.
1629
 *
1630
 * \details \copydetails tj3Decompress8()
1631
 */
1632
DLLEXPORT int tj3Decompress12(tjhandle handle, const unsigned char *jpegBuf,
1633
                              size_t jpegSize, short *dstBuf, int pitch,
1634
                              int pixelFormat);
1635
1636
/**
1637
 * Decompress a 16-bit-per-sample lossless JPEG image into a 16-bit-per-sample
1638
 * packed-pixel RGB, grayscale, or CMYK image.
1639
 *
1640
 * \details \copydetails tj3Decompress8()
1641
 */
1642
DLLEXPORT int tj3Decompress16(tjhandle handle, const unsigned char *jpegBuf,
1643
                              size_t jpegSize, unsigned short *dstBuf,
1644
                              int pitch, int pixelFormat);
1645
1646
1647
/**
1648
 * Decompress an 8-bit-per-sample JPEG image into an 8-bit-per-sample unified
1649
 * planar YUV image.  This function performs JPEG decompression but leaves out
1650
 * the color conversion step, so a planar YUV image is generated instead of a
1651
 * packed-pixel image.  The @ref TJPARAM "parameters" that describe the JPEG
1652
 * image will be set when this function returns.
1653
 *
1654
 * @param handle handle to a TurboJPEG instance that has been initialized for
1655
 * decompression
1656
 *
1657
 * @param jpegBuf pointer to a byte buffer containing the JPEG image to
1658
 * decompress
1659
 *
1660
 * @param jpegSize size of the JPEG image (in bytes)
1661
 *
1662
 * @param dstBuf pointer to a buffer that will receive the unified planar YUV
1663
 * decompressed image.  Use #tj3YUVBufSize() to determine the appropriate size
1664
 * for this buffer based on the scaled JPEG width and height (see #TJSCALED(),
1665
 * #TJPARAM_JPEGWIDTH, #TJPARAM_JPEGHEIGHT, and #tj3SetScalingFactor()), row
1666
 * alignment, and level of chrominance subsampling (see #TJPARAM_SUBSAMP.)  The
1667
 * Y, U (Cb), and V (Cr) image planes will be stored sequentially in the
1668
 * buffer.  (Refer to @ref YUVnotes "YUV Image Format Notes".)
1669
 *
1670
 * @param align row alignment (in bytes) of the YUV image (must be a power of
1671
 * 2.)  Setting this parameter to n will cause each row in each plane of the
1672
 * YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.)
1673
 * To generate images suitable for X Video, `align` should be set to 4.
1674
 *
1675
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1676
 * and #tj3GetErrorCode().)
1677
 */
1678
DLLEXPORT int tj3DecompressToYUV8(tjhandle handle,
1679
                                  const unsigned char *jpegBuf,
1680
                                  size_t jpegSize,
1681
                                  unsigned char *dstBuf, int align);
1682
1683
1684
/**
1685
 * Decompress an 8-bit-per-sample JPEG image into separate 8-bit-per-sample Y,
1686
 * U (Cb), and V (Cr) image planes.  This function performs JPEG decompression
1687
 * but leaves out the color conversion step, so a planar YUV image is generated
1688
 * instead of a packed-pixel image.  The @ref TJPARAM "parameters" that
1689
 * describe the JPEG image will be set when this function returns.
1690
 *
1691
 * @param handle handle to a TurboJPEG instance that has been initialized for
1692
 * decompression
1693
 *
1694
 * @param jpegBuf pointer to a byte buffer containing the JPEG image to
1695
 * decompress
1696
 *
1697
 * @param jpegSize size of the JPEG image (in bytes)
1698
 *
1699
 * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes
1700
 * (or just a Y plane, if decompressing a grayscale image) that will receive
1701
 * the decompressed image.  These planes can be contiguous or non-contiguous in
1702
 * memory.  Use #tj3YUVPlaneSize() to determine the appropriate size for each
1703
 * plane based on the scaled JPEG width and height (see #TJSCALED(),
1704
 * #TJPARAM_JPEGWIDTH, #TJPARAM_JPEGHEIGHT, and #tj3SetScalingFactor()),
1705
 * strides, and level of chrominance subsampling (see #TJPARAM_SUBSAMP.)  Refer
1706
 * to @ref YUVnotes "YUV Image Format Notes" for more details.
1707
 *
1708
 * @param strides an array of integers, each specifying the number of bytes per
1709
 * row in the corresponding plane of the YUV image.  Setting the stride for any
1710
 * plane to 0 is the same as setting it to the scaled plane width (see
1711
 * @ref YUVnotes "YUV Image Format Notes".)  If `strides` is NULL, then the
1712
 * strides for all planes will be set to their respective scaled plane widths.
1713
 * You can adjust the strides in order to add an arbitrary amount of row
1714
 * padding to each plane or to decompress the JPEG image into a subregion of a
1715
 * larger planar YUV image.
1716
 *
1717
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1718
 * and #tj3GetErrorCode().)
1719
 */
1720
DLLEXPORT int tj3DecompressToYUVPlanes8(tjhandle handle,
1721
                                        const unsigned char *jpegBuf,
1722
                                        size_t jpegSize,
1723
                                        unsigned char **dstPlanes,
1724
                                        int *strides);
1725
1726
1727
/**
1728
 * Decode an 8-bit-per-sample unified planar YUV image into an 8-bit-per-sample
1729
 * packed-pixel RGB or grayscale image.  This function performs color
1730
 * conversion (which is accelerated in the libjpeg-turbo implementation) but
1731
 * does not execute any of the other steps in the JPEG decompression process.
1732
 *
1733
 * @param handle handle to a TurboJPEG instance that has been initialized for
1734
 * decompression
1735
 *
1736
 * @param srcBuf pointer to a buffer containing a unified planar YUV source
1737
 * image to be decoded.  The size of this buffer should match the value
1738
 * returned by #tj3YUVBufSize() for the given image width, height, row
1739
 * alignment, and level of chrominance subsampling (see #TJPARAM_SUBSAMP.)  The
1740
 * Y, U (Cb), and V (Cr) image planes should be stored sequentially in the
1741
 * source buffer.  (Refer to @ref YUVnotes "YUV Image Format Notes".)
1742
 *
1743
 * @param align row alignment (in bytes) of the YUV source image (must be a
1744
 * power of 2.)  Setting this parameter to n indicates that each row in each
1745
 * plane of the YUV source image is padded to the nearest multiple of n bytes
1746
 * (1 = unpadded.)
1747
 *
1748
 * @param dstBuf pointer to a buffer that will receive the packed-pixel decoded
1749
 * image.  This buffer should normally be `pitch * height` bytes in size.
1750
 * However, you can also use this parameter to decode into a specific region of
1751
 * a larger buffer.
1752
 *
1753
 * @param width width (in pixels) of the source and destination images
1754
 *
1755
 * @param pitch bytes per row in the destination image.  Normally this should
1756
 * be set to <tt>width * #tjPixelSize[pixelFormat]</tt>, if the destination
1757
 * image should be unpadded.  (Setting this parameter to 0 is the equivalent of
1758
 * setting it to <tt>width * #tjPixelSize[pixelFormat]</tt>.)  However, you can
1759
 * also use this parameter to specify the row alignment/padding of the
1760
 * destination image, to skip rows, or to decode into a specific region of a
1761
 * larger buffer.
1762
 *
1763
 * @param height height (in pixels) of the source and destination images
1764
 *
1765
 * @param pixelFormat pixel format of the destination image (see @ref TJPF
1766
 * "Pixel formats".)
1767
 *
1768
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1769
 * and #tj3GetErrorCode().)
1770
 */
1771
DLLEXPORT int tj3DecodeYUV8(tjhandle handle, const unsigned char *srcBuf,
1772
                            int align, unsigned char *dstBuf, int width,
1773
                            int pitch, int height, int pixelFormat);
1774
1775
1776
/**
1777
 * Decode a set of 8-bit-per-sample Y, U (Cb), and V (Cr) image planes into an
1778
 * 8-bit-per-sample packed-pixel RGB or grayscale image.  This function
1779
 * performs color conversion (which is accelerated in the libjpeg-turbo
1780
 * implementation) but does not execute any of the other steps in the JPEG
1781
 * decompression process.
1782
 *
1783
 * @param handle handle to a TurboJPEG instance that has been initialized for
1784
 * decompression
1785
 *
1786
 * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes
1787
 * (or just a Y plane, if decoding a grayscale image) that contain a YUV image
1788
 * to be decoded.  These planes can be contiguous or non-contiguous in memory.
1789
 * The size of each plane should match the value returned by #tj3YUVPlaneSize()
1790
 * for the given image width, height, strides, and level of chrominance
1791
 * subsampling (see #TJPARAM_SUBSAMP.)  Refer to @ref YUVnotes
1792
 * "YUV Image Format Notes" for more details.
1793
 *
1794
 * @param strides an array of integers, each specifying the number of bytes per
1795
 * row in the corresponding plane of the YUV source image.  Setting the stride
1796
 * for any plane to 0 is the same as setting it to the plane width (see
1797
 * @ref YUVnotes "YUV Image Format Notes".)  If `strides` is NULL, then the
1798
 * strides for all planes will be set to their respective plane widths.  You
1799
 * can adjust the strides in order to specify an arbitrary amount of row
1800
 * padding in each plane or to decode a subregion of a larger planar YUV image.
1801
 *
1802
 * @param dstBuf pointer to a buffer that will receive the packed-pixel decoded
1803
 * image.  This buffer should normally be `pitch * height` bytes in size.
1804
 * However, you can also use this parameter to decode into a specific region of
1805
 * a larger buffer.
1806
 *
1807
 * @param width width (in pixels) of the source and destination images
1808
 *
1809
 * @param pitch bytes per row in the destination image.  Normally this should
1810
 * be set to <tt>width * #tjPixelSize[pixelFormat]</tt>, if the destination
1811
 * image should be unpadded.  (Setting this parameter to 0 is the equivalent of
1812
 * setting it to <tt>width * #tjPixelSize[pixelFormat]</tt>.)  However, you can
1813
 * also use this parameter to specify the row alignment/padding of the
1814
 * destination image, to skip rows, or to decode into a specific region of a
1815
 * larger buffer.
1816
 *
1817
 * @param height height (in pixels) of the source and destination images
1818
 *
1819
 * @param pixelFormat pixel format of the destination image (see @ref TJPF
1820
 * "Pixel formats".)
1821
 *
1822
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1823
 * and #tj3GetErrorCode().)
1824
 */
1825
DLLEXPORT int tj3DecodeYUVPlanes8(tjhandle handle,
1826
                                  const unsigned char * const *srcPlanes,
1827
                                  const int *strides, unsigned char *dstBuf,
1828
                                  int width, int pitch, int height,
1829
                                  int pixelFormat);
1830
1831
1832
/**
1833
 * Losslessly transform a JPEG image into another JPEG image.  Lossless
1834
 * transforms work by moving the raw DCT coefficients from one JPEG image
1835
 * structure to another without altering the values of the coefficients.  While
1836
 * this is typically faster than decompressing the image, transforming it, and
1837
 * re-compressing it, lossless transforms are not free.  Each lossless
1838
 * transform requires reading and performing entropy decoding on all of the
1839
 * coefficients in the source image, regardless of the size of the destination
1840
 * image.  Thus, this function provides a means of generating multiple
1841
 * transformed images from the same source or applying multiple transformations
1842
 * simultaneously, in order to eliminate the need to read the source
1843
 * coefficients multiple times.
1844
 *
1845
 * @param handle handle to a TurboJPEG instance that has been initialized for
1846
 * lossless transformation
1847
 *
1848
 * @param jpegBuf pointer to a byte buffer containing the JPEG source image to
1849
 * transform
1850
 *
1851
 * @param jpegSize size of the JPEG source image (in bytes)
1852
 *
1853
 * @param n the number of transformed JPEG images to generate
1854
 *
1855
 * @param dstBufs pointer to an array of n byte buffers.  `dstBufs[i]` will
1856
 * receive a JPEG image that has been transformed using the parameters in
1857
 * `transforms[i]`.  TurboJPEG has the ability to reallocate the JPEG
1858
 * destination buffer to accommodate the size of the transformed JPEG image.
1859
 * Thus, you can choose to:
1860
 * -# pre-allocate the JPEG destination buffer with an arbitrary size using
1861
 * #tj3Alloc() and let TurboJPEG grow the buffer as needed,
1862
 * -# set `dstBufs[i]` to NULL to tell TurboJPEG to allocate the buffer for
1863
 * you, or
1864
 * -# pre-allocate the buffer to a "worst case" size determined by calling
1865
 * #tj3JPEGBufSize() with the transformed or cropped width and height.  Under
1866
 * normal circumstances, this should ensure that the buffer never has to be
1867
 * re-allocated.  (Setting #TJPARAM_NOREALLOC guarantees that it won't be.)
1868
 * Note, however, that there are some rare cases (such as transforming images
1869
 * with a large amount of embedded EXIF or ICC profile data) in which the
1870
 * transformed JPEG image will be larger than the worst-case size, and
1871
 * #TJPARAM_NOREALLOC cannot be used in those cases.
1872
 * .
1873
 * If you choose option 1, then `dstSizes[i]` should be set to the size of your
1874
 * pre-allocated buffer.  In any case, unless you have set #TJPARAM_NOREALLOC,
1875
 * you should always check `dstBufs[i]` upon return from this function, as it
1876
 * may have changed.
1877
 *
1878
 * @param dstSizes pointer to an array of n size_t variables that will receive
1879
 * the actual sizes (in bytes) of each transformed JPEG image.  If `dstBufs[i]`
1880
 * points to a pre-allocated buffer, then `dstSizes[i]` should be set to the
1881
 * size of the buffer.  Upon return, `dstSizes[i]` will contain the size of the
1882
 * transformed JPEG image (in bytes.)
1883
 *
1884
 * @param transforms pointer to an array of n #tjtransform structures, each of
1885
 * which specifies the transform parameters and/or cropping region for the
1886
 * corresponding transformed JPEG image.
1887
 *
1888
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr()
1889
 * and #tj3GetErrorCode().)
1890
 */
1891
DLLEXPORT int tj3Transform(tjhandle handle, const unsigned char *jpegBuf,
1892
                           size_t jpegSize, int n, unsigned char **dstBufs,
1893
                           size_t *dstSizes, const tjtransform *transforms);
1894
1895
1896
/**
1897
 * Destroy a TurboJPEG instance.
1898
 *
1899
 * @param handle handle to a TurboJPEG instance.  If the handle is NULL, then
1900
 * this function has no effect.
1901
 */
1902
DLLEXPORT void tj3Destroy(tjhandle handle);
1903
1904
1905
/**
1906
 * Allocate a byte buffer for use with TurboJPEG.  You should always use this
1907
 * function to allocate the JPEG destination buffer(s) for the compression and
1908
 * transform functions unless you are disabling automatic buffer (re)allocation
1909
 * (by setting #TJPARAM_NOREALLOC.)
1910
 *
1911
 * @param bytes the number of bytes to allocate
1912
 *
1913
 * @return a pointer to a newly-allocated buffer with the specified number of
1914
 * bytes.
1915
 *
1916
 * @see tj3Free()
1917
 */
1918
DLLEXPORT void *tj3Alloc(size_t bytes);
1919
1920
1921
/**
1922
 * Load an 8-bit-per-sample packed-pixel image from disk into memory.
1923
 *
1924
 * @param handle handle to a TurboJPEG instance
1925
 *
1926
 * @param filename name of a file containing a packed-pixel image in Windows
1927
 * BMP or PBMPLUS (PPM/PGM) format.  Windows BMP files require 8-bit-per-sample
1928
 * data precision.  If the data precision of the PBMPLUS file does not match
1929
 * the target data precision, then upconverting or downconverting will be
1930
 * performed.
1931
 *
1932
 * @param width pointer to an integer variable that will receive the width (in
1933
 * pixels) of the packed-pixel image
1934
 *
1935
 * @param align row alignment (in samples) of the packed-pixel buffer to be
1936
 * returned (must be a power of 2.)  Setting this parameter to n will cause all
1937
 * rows in the buffer to be padded to the nearest multiple of n samples
1938
 * (1 = unpadded.)
1939
 *
1940
 * @param height pointer to an integer variable that will receive the height
1941
 * (in pixels) of the packed-pixel image
1942
 *
1943
 * @param pixelFormat pointer to an integer variable that specifies or will
1944
 * receive the pixel format of the packed-pixel buffer.  The behavior of this
1945
 * function will vary depending on the value of `*pixelFormat` passed to the
1946
 * function:
1947
 * - @ref TJPF_UNKNOWN : The packed-pixel buffer returned by this function will
1948
 * use the most optimal pixel format for the file type, and `*pixelFormat` will
1949
 * contain the ID of that pixel format upon successful return from this
1950
 * function.
1951
 * - @ref TJPF_GRAY : Only PGM files and 8-bit-per-pixel BMP files with a
1952
 * grayscale colormap can be loaded.
1953
 * - @ref TJPF_CMYK : The RGB or grayscale pixels stored in the file will be
1954
 * converted using a quick & dirty algorithm that is suitable only for testing
1955
 * purposes.  (Proper conversion between CMYK and other formats requires a
1956
 * color management system.)
1957
 * - Other @ref TJPF "pixel formats" : The packed-pixel buffer will use the
1958
 * specified pixel format, and pixel format conversion will be performed if
1959
 * necessary.
1960
 *
1961
 * @return a pointer to a newly-allocated buffer containing the packed-pixel
1962
 * image, converted to the chosen pixel format and with the chosen row
1963
 * alignment, or NULL if an error occurred (see #tj3GetErrorStr().)  This
1964
 * buffer should be freed using #tj3Free().
1965
 */
1966
DLLEXPORT unsigned char *tj3LoadImage8(tjhandle handle, const char *filename,
1967
                                       int *width, int align, int *height,
1968
                                       int *pixelFormat);
1969
1970
/**
1971
 * Load a 12-bit-per-sample packed-pixel image from disk into memory.
1972
 *
1973
 * \details \copydetails tj3LoadImage8()
1974
 */
1975
DLLEXPORT short *tj3LoadImage12(tjhandle handle, const char *filename,
1976
                                int *width, int align, int *height,
1977
                                int *pixelFormat);
1978
1979
/**
1980
 * Load a 16-bit-per-sample packed-pixel image from disk into memory.
1981
 *
1982
 * \details \copydetails tj3LoadImage8()
1983
 */
1984
DLLEXPORT unsigned short *tj3LoadImage16(tjhandle handle, const char *filename,
1985
                                         int *width, int align, int *height,
1986
                                         int *pixelFormat);
1987
1988
1989
/**
1990
 * Save an 8-bit-per-sample packed-pixel image from memory to disk.
1991
 *
1992
 * @param handle handle to a TurboJPEG instance
1993
 *
1994
 * @param filename name of a file to which to save the packed-pixel image.  The
1995
 * image will be stored in Windows BMP or PBMPLUS (PPM/PGM) format, depending
1996
 * on the file extension.  Windows BMP files require 8-bit-per-sample data
1997
 * precision.
1998
 *
1999
 * @param buffer pointer to a buffer containing a packed-pixel RGB, grayscale,
2000
 * or CMYK image to be saved
2001
 *
2002
 * @param width width (in pixels) of the packed-pixel image
2003
 *
2004
 * @param pitch samples per row in the packed-pixel image.  Setting this
2005
 * parameter to 0 is the equivalent of setting it to
2006
 * <tt>width * #tjPixelSize[pixelFormat]</tt>.
2007
 *
2008
 * @param height height (in pixels) of the packed-pixel image
2009
 *
2010
 * @param pixelFormat pixel format of the packed-pixel image (see @ref TJPF
2011
 * "Pixel formats".)  If this parameter is set to @ref TJPF_GRAY, then the
2012
 * image will be stored in PGM or 8-bit-per-pixel (indexed color) BMP format.
2013
 * Otherwise, the image will be stored in PPM or 24-bit-per-pixel BMP format.
2014
 * If this parameter is set to @ref TJPF_CMYK, then the CMYK pixels will be
2015
 * converted to RGB using a quick & dirty algorithm that is suitable only for
2016
 * testing purposes.  (Proper conversion between CMYK and other formats
2017
 * requires a color management system.)
2018
 *
2019
 * @return 0 if successful, or -1 if an error occurred (see #tj3GetErrorStr().)
2020
 */
2021
DLLEXPORT int tj3SaveImage8(tjhandle handle, const char *filename,
2022
                            const unsigned char *buffer, int width, int pitch,
2023
                            int height, int pixelFormat);
2024
2025
/**
2026
 * Save a 12-bit-per-sample packed-pixel image from memory to disk.
2027
 *
2028
 * \details \copydetails tj3SaveImage8()
2029
 */
2030
DLLEXPORT int tj3SaveImage12(tjhandle handle, const char *filename,
2031
                             const short *buffer, int width, int pitch,
2032
                             int height, int pixelFormat);
2033
2034
/**
2035
 * Save a 16-bit-per-sample packed-pixel image from memory to disk.
2036
 *
2037
 * \details \copydetails tj3SaveImage8()
2038
 */
2039
DLLEXPORT int tj3SaveImage16(tjhandle handle, const char *filename,
2040
                             const unsigned short *buffer, int width,
2041
                             int pitch, int height, int pixelFormat);
2042
2043
2044
/**
2045
 * Free a byte buffer previously allocated by TurboJPEG.  You should always use
2046
 * this function to free JPEG destination buffer(s) that were automatically
2047
 * (re)allocated by the compression and transform functions or that were
2048
 * manually allocated using #tj3Alloc().
2049
 *
2050
 * @param buffer address of the buffer to free.  If the address is NULL, then
2051
 * this function has no effect.
2052
 *
2053
 * @see tj3Alloc()
2054
 */
2055
DLLEXPORT void tj3Free(void *buffer);
2056
2057
2058
/**
2059
 * Returns a descriptive error message explaining why the last command failed.
2060
 *
2061
 * @param handle handle to a TurboJPEG instance, or NULL if the error was
2062
 * generated by a global function (but note that retrieving the error message
2063
 * for a global function is thread-safe only on platforms that support
2064
 * thread-local storage.)
2065
 *
2066
 * @return a descriptive error message explaining why the last command failed.
2067
 */
2068
DLLEXPORT char *tj3GetErrorStr(tjhandle handle);
2069
2070
2071
/**
2072
 * Returns a code indicating the severity of the last error.  See
2073
 * @ref TJERR "Error codes".
2074
 *
2075
 * @param handle handle to a TurboJPEG instance
2076
 *
2077
 * @return a code indicating the severity of the last error.  See
2078
 * @ref TJERR "Error codes".
2079
 */
2080
DLLEXPORT int tj3GetErrorCode(tjhandle handle);
2081
2082
2083
/* Backward compatibility functions and macros (nothing to see here) */
2084
2085
/* TurboJPEG 1.0+ */
2086
2087
#define NUMSUBOPT  TJ_NUMSAMP
2088
#define TJ_444  TJSAMP_444
2089
#define TJ_422  TJSAMP_422
2090
#define TJ_420  TJSAMP_420
2091
#define TJ_411  TJSAMP_420
2092
#define TJ_GRAYSCALE  TJSAMP_GRAY
2093
2094
0
#define TJ_BGR  1
2095
#define TJ_BOTTOMUP  TJFLAG_BOTTOMUP
2096
#define TJ_FORCEMMX  TJFLAG_FORCEMMX
2097
#define TJ_FORCESSE  TJFLAG_FORCESSE
2098
#define TJ_FORCESSE2  TJFLAG_FORCESSE2
2099
0
#define TJ_ALPHAFIRST  64
2100
#define TJ_FORCESSE3  TJFLAG_FORCESSE3
2101
#define TJ_FASTUPSAMPLE  TJFLAG_FASTUPSAMPLE
2102
2103
#define TJPAD(width)  (((width) + 3) & (~3))
2104
2105
DLLEXPORT unsigned long TJBUFSIZE(int width, int height);
2106
2107
DLLEXPORT int tjCompress(tjhandle handle, unsigned char *srcBuf, int width,
2108
                         int pitch, int height, int pixelSize,
2109
                         unsigned char *dstBuf, unsigned long *compressedSize,
2110
                         int jpegSubsamp, int jpegQual, int flags);
2111
2112
DLLEXPORT int tjDecompress(tjhandle handle, unsigned char *jpegBuf,
2113
                           unsigned long jpegSize, unsigned char *dstBuf,
2114
                           int width, int pitch, int height, int pixelSize,
2115
                           int flags);
2116
2117
DLLEXPORT int tjDecompressHeader(tjhandle handle, unsigned char *jpegBuf,
2118
                                 unsigned long jpegSize, int *width,
2119
                                 int *height);
2120
2121
DLLEXPORT int tjDestroy(tjhandle handle);
2122
2123
DLLEXPORT char *tjGetErrorStr(void);
2124
2125
DLLEXPORT tjhandle tjInitCompress(void);
2126
2127
DLLEXPORT tjhandle tjInitDecompress(void);
2128
2129
/* TurboJPEG 1.1+ */
2130
2131
0
#define TJ_YUV  512
2132
2133
DLLEXPORT unsigned long TJBUFSIZEYUV(int width, int height, int jpegSubsamp);
2134
2135
DLLEXPORT int tjDecompressHeader2(tjhandle handle, unsigned char *jpegBuf,
2136
                                  unsigned long jpegSize, int *width,
2137
                                  int *height, int *jpegSubsamp);
2138
2139
DLLEXPORT int tjDecompressToYUV(tjhandle handle, unsigned char *jpegBuf,
2140
                                unsigned long jpegSize, unsigned char *dstBuf,
2141
                                int flags);
2142
2143
DLLEXPORT int tjEncodeYUV(tjhandle handle, unsigned char *srcBuf, int width,
2144
                          int pitch, int height, int pixelSize,
2145
                          unsigned char *dstBuf, int subsamp, int flags);
2146
2147
/* TurboJPEG 1.2+ */
2148
2149
0
#define TJFLAG_BOTTOMUP  2
2150
0
#define TJFLAG_FORCEMMX  8
2151
0
#define TJFLAG_FORCESSE  16
2152
0
#define TJFLAG_FORCESSE2  32
2153
#define TJFLAG_FORCESSE3  128
2154
0
#define TJFLAG_FASTUPSAMPLE  256
2155
0
#define TJFLAG_NOREALLOC  1024
2156
2157
DLLEXPORT unsigned char *tjAlloc(int bytes);
2158
2159
DLLEXPORT unsigned long tjBufSize(int width, int height, int jpegSubsamp);
2160
2161
DLLEXPORT unsigned long tjBufSizeYUV(int width, int height, int subsamp);
2162
2163
DLLEXPORT int tjCompress2(tjhandle handle, const unsigned char *srcBuf,
2164
                          int width, int pitch, int height, int pixelFormat,
2165
                          unsigned char **jpegBuf, unsigned long *jpegSize,
2166
                          int jpegSubsamp, int jpegQual, int flags);
2167
2168
DLLEXPORT int tjDecompress2(tjhandle handle, const unsigned char *jpegBuf,
2169
                            unsigned long jpegSize, unsigned char *dstBuf,
2170
                            int width, int pitch, int height, int pixelFormat,
2171
                            int flags);
2172
2173
DLLEXPORT int tjEncodeYUV2(tjhandle handle, unsigned char *srcBuf, int width,
2174
                           int pitch, int height, int pixelFormat,
2175
                           unsigned char *dstBuf, int subsamp, int flags);
2176
2177
DLLEXPORT void tjFree(unsigned char *buffer);
2178
2179
DLLEXPORT tjscalingfactor *tjGetScalingFactors(int *numscalingfactors);
2180
2181
DLLEXPORT tjhandle tjInitTransform(void);
2182
2183
DLLEXPORT int tjTransform(tjhandle handle, const unsigned char *jpegBuf,
2184
                            unsigned long jpegSize, int n,
2185
                            unsigned char **dstBufs, unsigned long *dstSizes,
2186
                            tjtransform *transforms, int flags);
2187
2188
/* TurboJPEG 1.2.1+ */
2189
2190
0
#define TJFLAG_FASTDCT  2048
2191
0
#define TJFLAG_ACCURATEDCT  4096
2192
2193
/* TurboJPEG 1.4+ */
2194
2195
DLLEXPORT unsigned long tjBufSizeYUV2(int width, int align, int height,
2196
                                      int subsamp);
2197
2198
DLLEXPORT int tjCompressFromYUV(tjhandle handle, const unsigned char *srcBuf,
2199
                                int width, int align, int height, int subsamp,
2200
                                unsigned char **jpegBuf,
2201
                                unsigned long *jpegSize, int jpegQual,
2202
                                int flags);
2203
2204
DLLEXPORT int tjCompressFromYUVPlanes(tjhandle handle,
2205
                                      const unsigned char **srcPlanes,
2206
                                      int width, const int *strides,
2207
                                      int height, int subsamp,
2208
                                      unsigned char **jpegBuf,
2209
                                      unsigned long *jpegSize, int jpegQual,
2210
                                      int flags);
2211
2212
DLLEXPORT int tjDecodeYUV(tjhandle handle, const unsigned char *srcBuf,
2213
                          int align, int subsamp, unsigned char *dstBuf,
2214
                          int width, int pitch, int height, int pixelFormat,
2215
                          int flags);
2216
2217
DLLEXPORT int tjDecodeYUVPlanes(tjhandle handle,
2218
                                const unsigned char **srcPlanes,
2219
                                const int *strides, int subsamp,
2220
                                unsigned char *dstBuf, int width, int pitch,
2221
                                int height, int pixelFormat, int flags);
2222
2223
DLLEXPORT int tjDecompressHeader3(tjhandle handle,
2224
                                  const unsigned char *jpegBuf,
2225
                                  unsigned long jpegSize, int *width,
2226
                                  int *height, int *jpegSubsamp,
2227
                                  int *jpegColorspace);
2228
2229
DLLEXPORT int tjDecompressToYUV2(tjhandle handle, const unsigned char *jpegBuf,
2230
                                 unsigned long jpegSize, unsigned char *dstBuf,
2231
                                 int width, int align, int height, int flags);
2232
2233
DLLEXPORT int tjDecompressToYUVPlanes(tjhandle handle,
2234
                                      const unsigned char *jpegBuf,
2235
                                      unsigned long jpegSize,
2236
                                      unsigned char **dstPlanes, int width,
2237
                                      int *strides, int height, int flags);
2238
2239
DLLEXPORT int tjEncodeYUV3(tjhandle handle, const unsigned char *srcBuf,
2240
                           int width, int pitch, int height, int pixelFormat,
2241
                           unsigned char *dstBuf, int align, int subsamp,
2242
                           int flags);
2243
2244
DLLEXPORT int tjEncodeYUVPlanes(tjhandle handle, const unsigned char *srcBuf,
2245
                                int width, int pitch, int height,
2246
                                int pixelFormat, unsigned char **dstPlanes,
2247
                                int *strides, int subsamp, int flags);
2248
2249
DLLEXPORT int tjPlaneHeight(int componentID, int height, int subsamp);
2250
2251
DLLEXPORT unsigned long tjPlaneSizeYUV(int componentID, int width, int stride,
2252
                                       int height, int subsamp);
2253
2254
DLLEXPORT int tjPlaneWidth(int componentID, int width, int subsamp);
2255
2256
/* TurboJPEG 2.0+ */
2257
2258
0
#define TJFLAG_STOPONWARNING  8192
2259
0
#define TJFLAG_PROGRESSIVE  16384
2260
2261
DLLEXPORT int tjGetErrorCode(tjhandle handle);
2262
2263
DLLEXPORT char *tjGetErrorStr2(tjhandle handle);
2264
2265
DLLEXPORT unsigned char *tjLoadImage(const char *filename, int *width,
2266
                                     int align, int *height, int *pixelFormat,
2267
                                     int flags);
2268
2269
DLLEXPORT int tjSaveImage(const char *filename, unsigned char *buffer,
2270
                          int width, int pitch, int height, int pixelFormat,
2271
                          int flags);
2272
2273
/* TurboJPEG 2.1+ */
2274
2275
0
#define TJFLAG_LIMITSCANS  32768
2276
2277
/**
2278
 * @}
2279
 */
2280
2281
#ifdef __cplusplus
2282
}
2283
#endif
2284
2285
#endif