/src/mbedtls/library/bignum.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Multi-precision integer library |
3 | | * |
4 | | * Copyright The Mbed TLS Contributors |
5 | | * SPDX-License-Identifier: Apache-2.0 |
6 | | * |
7 | | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
8 | | * not use this file except in compliance with the License. |
9 | | * You may obtain a copy of the License at |
10 | | * |
11 | | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | | * |
13 | | * Unless required by applicable law or agreed to in writing, software |
14 | | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
15 | | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | | * See the License for the specific language governing permissions and |
17 | | * limitations under the License. |
18 | | */ |
19 | | |
20 | | /* |
21 | | * The following sources were referenced in the design of this Multi-precision |
22 | | * Integer library: |
23 | | * |
24 | | * [1] Handbook of Applied Cryptography - 1997 |
25 | | * Menezes, van Oorschot and Vanstone |
26 | | * |
27 | | * [2] Multi-Precision Math |
28 | | * Tom St Denis |
29 | | * https://github.com/libtom/libtommath/blob/develop/tommath.pdf |
30 | | * |
31 | | * [3] GNU Multi-Precision Arithmetic Library |
32 | | * https://gmplib.org/manual/index.html |
33 | | * |
34 | | */ |
35 | | |
36 | | #include "common.h" |
37 | | |
38 | | #if defined(MBEDTLS_BIGNUM_C) |
39 | | |
40 | | #include "mbedtls/bignum.h" |
41 | | #include "bignum_core.h" |
42 | | #include "bn_mul.h" |
43 | | #include "mbedtls/platform_util.h" |
44 | | #include "mbedtls/error.h" |
45 | | #include "constant_time_internal.h" |
46 | | |
47 | | #include <limits.h> |
48 | | #include <string.h> |
49 | | |
50 | | #include "mbedtls/platform.h" |
51 | | |
52 | | #define MPI_VALIDATE_RET(cond) \ |
53 | 9.18M | MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA) |
54 | | #define MPI_VALIDATE(cond) \ |
55 | 371k | MBEDTLS_INTERNAL_VALIDATE(cond) |
56 | | |
57 | 0 | #define MPI_SIZE_T_MAX ((size_t) -1) /* SIZE_T_MAX is not standard */ |
58 | | |
59 | | /* Implementation that should never be optimized out by the compiler */ |
60 | | static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n) |
61 | 160k | { |
62 | 160k | mbedtls_platform_zeroize(v, ciL * n); |
63 | 160k | } |
64 | | |
65 | | /* |
66 | | * Initialize one MPI |
67 | | */ |
68 | | void mbedtls_mpi_init(mbedtls_mpi *X) |
69 | 371k | { |
70 | 371k | MPI_VALIDATE(X != NULL); |
71 | | |
72 | 371k | X->s = 1; |
73 | 371k | X->n = 0; |
74 | 371k | X->p = NULL; |
75 | 371k | } |
76 | | |
77 | | /* |
78 | | * Unallocate one MPI |
79 | | */ |
80 | | void mbedtls_mpi_free(mbedtls_mpi *X) |
81 | 855k | { |
82 | 855k | if (X == NULL) { |
83 | 0 | return; |
84 | 0 | } |
85 | | |
86 | 855k | if (X->p != NULL) { |
87 | 134k | mbedtls_mpi_zeroize(X->p, X->n); |
88 | 134k | mbedtls_free(X->p); |
89 | 134k | } |
90 | | |
91 | 855k | X->s = 1; |
92 | 855k | X->n = 0; |
93 | 855k | X->p = NULL; |
94 | 855k | } |
95 | | |
96 | | /* |
97 | | * Enlarge to the specified number of limbs |
98 | | */ |
99 | | int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs) |
100 | 3.19M | { |
101 | 3.19M | mbedtls_mpi_uint *p; |
102 | 3.19M | MPI_VALIDATE_RET(X != NULL); |
103 | | |
104 | 3.19M | if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) { |
105 | 0 | return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
106 | 0 | } |
107 | | |
108 | 3.19M | if (X->n < nblimbs) { |
109 | 169k | if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) { |
110 | 0 | return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
111 | 0 | } |
112 | | |
113 | 169k | if (X->p != NULL) { |
114 | 25.5k | memcpy(p, X->p, X->n * ciL); |
115 | 25.5k | mbedtls_mpi_zeroize(X->p, X->n); |
116 | 25.5k | mbedtls_free(X->p); |
117 | 25.5k | } |
118 | | |
119 | 169k | X->n = nblimbs; |
120 | 169k | X->p = p; |
121 | 169k | } |
122 | | |
123 | 3.19M | return 0; |
124 | 3.19M | } |
125 | | |
126 | | /* |
127 | | * Resize down as much as possible, |
128 | | * while keeping at least the specified number of limbs |
129 | | */ |
130 | | int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs) |
131 | 140 | { |
132 | 140 | mbedtls_mpi_uint *p; |
133 | 140 | size_t i; |
134 | 140 | MPI_VALIDATE_RET(X != NULL); |
135 | | |
136 | 140 | if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) { |
137 | 0 | return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
138 | 0 | } |
139 | | |
140 | | /* Actually resize up if there are currently fewer than nblimbs limbs. */ |
141 | 140 | if (X->n <= nblimbs) { |
142 | 0 | return mbedtls_mpi_grow(X, nblimbs); |
143 | 0 | } |
144 | | /* After this point, then X->n > nblimbs and in particular X->n > 0. */ |
145 | | |
146 | 1.12k | for (i = X->n - 1; i > 0; i--) { |
147 | 1.12k | if (X->p[i] != 0) { |
148 | 140 | break; |
149 | 140 | } |
150 | 1.12k | } |
151 | 140 | i++; |
152 | | |
153 | 140 | if (i < nblimbs) { |
154 | 0 | i = nblimbs; |
155 | 0 | } |
156 | | |
157 | 140 | if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) { |
158 | 0 | return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
159 | 0 | } |
160 | | |
161 | 140 | if (X->p != NULL) { |
162 | 140 | memcpy(p, X->p, i * ciL); |
163 | 140 | mbedtls_mpi_zeroize(X->p, X->n); |
164 | 140 | mbedtls_free(X->p); |
165 | 140 | } |
166 | | |
167 | 140 | X->n = i; |
168 | 140 | X->p = p; |
169 | | |
170 | 140 | return 0; |
171 | 140 | } |
172 | | |
173 | | /* Resize X to have exactly n limbs and set it to 0. */ |
174 | | static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs) |
175 | 63.7k | { |
176 | 63.7k | if (limbs == 0) { |
177 | 363 | mbedtls_mpi_free(X); |
178 | 363 | return 0; |
179 | 63.3k | } else if (X->n == limbs) { |
180 | 0 | memset(X->p, 0, limbs * ciL); |
181 | 0 | X->s = 1; |
182 | 0 | return 0; |
183 | 63.3k | } else { |
184 | 63.3k | mbedtls_mpi_free(X); |
185 | 63.3k | return mbedtls_mpi_grow(X, limbs); |
186 | 63.3k | } |
187 | 63.7k | } |
188 | | |
189 | | /* |
190 | | * Copy the contents of Y into X. |
191 | | * |
192 | | * This function is not constant-time. Leading zeros in Y may be removed. |
193 | | * |
194 | | * Ensure that X does not shrink. This is not guaranteed by the public API, |
195 | | * but some code in the bignum module relies on this property, for example |
196 | | * in mbedtls_mpi_exp_mod(). |
197 | | */ |
198 | | int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y) |
199 | 322k | { |
200 | 322k | int ret = 0; |
201 | 322k | size_t i; |
202 | 322k | MPI_VALIDATE_RET(X != NULL); |
203 | 322k | MPI_VALIDATE_RET(Y != NULL); |
204 | | |
205 | 322k | if (X == Y) { |
206 | 155k | return 0; |
207 | 155k | } |
208 | | |
209 | 166k | if (Y->n == 0) { |
210 | 17 | if (X->n != 0) { |
211 | 0 | X->s = 1; |
212 | 0 | memset(X->p, 0, X->n * ciL); |
213 | 0 | } |
214 | 17 | return 0; |
215 | 17 | } |
216 | | |
217 | 4.55M | for (i = Y->n - 1; i > 0; i--) { |
218 | 4.55M | if (Y->p[i] != 0) { |
219 | 164k | break; |
220 | 164k | } |
221 | 4.55M | } |
222 | 166k | i++; |
223 | | |
224 | 166k | X->s = Y->s; |
225 | | |
226 | 166k | if (X->n < i) { |
227 | 29.8k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i)); |
228 | 136k | } else { |
229 | 136k | memset(X->p + i, 0, (X->n - i) * ciL); |
230 | 136k | } |
231 | | |
232 | 166k | memcpy(X->p, Y->p, i * ciL); |
233 | | |
234 | 166k | cleanup: |
235 | | |
236 | 166k | return ret; |
237 | 166k | } |
238 | | |
239 | | /* |
240 | | * Swap the contents of X and Y |
241 | | */ |
242 | | void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y) |
243 | 0 | { |
244 | 0 | mbedtls_mpi T; |
245 | 0 | MPI_VALIDATE(X != NULL); |
246 | 0 | MPI_VALIDATE(Y != NULL); |
247 | |
|
248 | 0 | memcpy(&T, X, sizeof(mbedtls_mpi)); |
249 | 0 | memcpy(X, Y, sizeof(mbedtls_mpi)); |
250 | 0 | memcpy(Y, &T, sizeof(mbedtls_mpi)); |
251 | 0 | } |
252 | | |
253 | | static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z) |
254 | 705k | { |
255 | 705k | if (z >= 0) { |
256 | 705k | return z; |
257 | 705k | } |
258 | | /* Take care to handle the most negative value (-2^(biL-1)) correctly. |
259 | | * A naive -z would have undefined behavior. |
260 | | * Write this in a way that makes popular compilers happy (GCC, Clang, |
261 | | * MSVC). */ |
262 | 0 | return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z; |
263 | 705k | } |
264 | | |
265 | | /* |
266 | | * Set value from integer |
267 | | */ |
268 | | int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z) |
269 | 263k | { |
270 | 263k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
271 | 263k | MPI_VALIDATE_RET(X != NULL); |
272 | | |
273 | 263k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1)); |
274 | 263k | memset(X->p, 0, X->n * ciL); |
275 | | |
276 | 263k | X->p[0] = mpi_sint_abs(z); |
277 | 263k | X->s = (z < 0) ? -1 : 1; |
278 | | |
279 | 263k | cleanup: |
280 | | |
281 | 263k | return ret; |
282 | 263k | } |
283 | | |
284 | | /* |
285 | | * Get a specific bit |
286 | | */ |
287 | | int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos) |
288 | 70.0k | { |
289 | 70.0k | MPI_VALIDATE_RET(X != NULL); |
290 | | |
291 | 70.0k | if (X->n * biL <= pos) { |
292 | 0 | return 0; |
293 | 0 | } |
294 | | |
295 | 70.0k | return (X->p[pos / biL] >> (pos % biL)) & 0x01; |
296 | 70.0k | } |
297 | | |
298 | | /* |
299 | | * Set a bit to a specific value of 0 or 1 |
300 | | */ |
301 | | int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val) |
302 | 16 | { |
303 | 16 | int ret = 0; |
304 | 16 | size_t off = pos / biL; |
305 | 16 | size_t idx = pos % biL; |
306 | 16 | MPI_VALIDATE_RET(X != NULL); |
307 | | |
308 | 16 | if (val != 0 && val != 1) { |
309 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
310 | 0 | } |
311 | | |
312 | 16 | if (X->n * biL <= pos) { |
313 | 0 | if (val == 0) { |
314 | 0 | return 0; |
315 | 0 | } |
316 | | |
317 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1)); |
318 | 0 | } |
319 | | |
320 | 16 | X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx); |
321 | 16 | X->p[off] |= (mbedtls_mpi_uint) val << idx; |
322 | | |
323 | 16 | cleanup: |
324 | | |
325 | 16 | return ret; |
326 | 16 | } |
327 | | |
328 | | /* |
329 | | * Return the number of less significant zero-bits |
330 | | */ |
331 | | size_t mbedtls_mpi_lsb(const mbedtls_mpi *X) |
332 | 15.2k | { |
333 | 15.2k | size_t i, j, count = 0; |
334 | 15.2k | MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0); |
335 | | |
336 | 15.2k | for (i = 0; i < X->n; i++) { |
337 | 22.8k | for (j = 0; j < biL; j++, count++) { |
338 | 22.8k | if (((X->p[i] >> j) & 1) != 0) { |
339 | 15.2k | return count; |
340 | 15.2k | } |
341 | 22.8k | } |
342 | 15.2k | } |
343 | | |
344 | 0 | return 0; |
345 | 15.2k | } |
346 | | |
347 | | /* |
348 | | * Return the number of bits |
349 | | */ |
350 | | size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X) |
351 | 343k | { |
352 | 343k | return mbedtls_mpi_core_bitlen(X->p, X->n); |
353 | 343k | } |
354 | | |
355 | | /* |
356 | | * Return the total size in bytes |
357 | | */ |
358 | | size_t mbedtls_mpi_size(const mbedtls_mpi *X) |
359 | 73.9k | { |
360 | 73.9k | return (mbedtls_mpi_bitlen(X) + 7) >> 3; |
361 | 73.9k | } |
362 | | |
363 | | /* |
364 | | * Convert an ASCII character to digit value |
365 | | */ |
366 | | static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c) |
367 | 0 | { |
368 | 0 | *d = 255; |
369 | |
|
370 | 0 | if (c >= 0x30 && c <= 0x39) { |
371 | 0 | *d = c - 0x30; |
372 | 0 | } |
373 | 0 | if (c >= 0x41 && c <= 0x46) { |
374 | 0 | *d = c - 0x37; |
375 | 0 | } |
376 | 0 | if (c >= 0x61 && c <= 0x66) { |
377 | 0 | *d = c - 0x57; |
378 | 0 | } |
379 | |
|
380 | 0 | if (*d >= (mbedtls_mpi_uint) radix) { |
381 | 0 | return MBEDTLS_ERR_MPI_INVALID_CHARACTER; |
382 | 0 | } |
383 | | |
384 | 0 | return 0; |
385 | 0 | } |
386 | | |
387 | | /* |
388 | | * Import from an ASCII string |
389 | | */ |
390 | | int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s) |
391 | 0 | { |
392 | 0 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
393 | 0 | size_t i, j, slen, n; |
394 | 0 | int sign = 1; |
395 | 0 | mbedtls_mpi_uint d; |
396 | 0 | mbedtls_mpi T; |
397 | 0 | MPI_VALIDATE_RET(X != NULL); |
398 | 0 | MPI_VALIDATE_RET(s != NULL); |
399 | |
|
400 | 0 | if (radix < 2 || radix > 16) { |
401 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
402 | 0 | } |
403 | | |
404 | 0 | mbedtls_mpi_init(&T); |
405 | |
|
406 | 0 | if (s[0] == 0) { |
407 | 0 | mbedtls_mpi_free(X); |
408 | 0 | return 0; |
409 | 0 | } |
410 | | |
411 | 0 | if (s[0] == '-') { |
412 | 0 | ++s; |
413 | 0 | sign = -1; |
414 | 0 | } |
415 | |
|
416 | 0 | slen = strlen(s); |
417 | |
|
418 | 0 | if (radix == 16) { |
419 | 0 | if (slen > MPI_SIZE_T_MAX >> 2) { |
420 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
421 | 0 | } |
422 | | |
423 | 0 | n = BITS_TO_LIMBS(slen << 2); |
424 | |
|
425 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n)); |
426 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); |
427 | | |
428 | 0 | for (i = slen, j = 0; i > 0; i--, j++) { |
429 | 0 | MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1])); |
430 | 0 | X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2); |
431 | 0 | } |
432 | 0 | } else { |
433 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); |
434 | | |
435 | 0 | for (i = 0; i < slen; i++) { |
436 | 0 | MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i])); |
437 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix)); |
438 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d)); |
439 | 0 | } |
440 | 0 | } |
441 | | |
442 | 0 | if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) { |
443 | 0 | X->s = -1; |
444 | 0 | } |
445 | |
|
446 | 0 | cleanup: |
447 | |
|
448 | 0 | mbedtls_mpi_free(&T); |
449 | |
|
450 | 0 | return ret; |
451 | 0 | } |
452 | | |
453 | | /* |
454 | | * Helper to write the digits high-order first. |
455 | | */ |
456 | | static int mpi_write_hlp(mbedtls_mpi *X, int radix, |
457 | | char **p, const size_t buflen) |
458 | 0 | { |
459 | 0 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
460 | 0 | mbedtls_mpi_uint r; |
461 | 0 | size_t length = 0; |
462 | 0 | char *p_end = *p + buflen; |
463 | |
|
464 | 0 | do { |
465 | 0 | if (length >= buflen) { |
466 | 0 | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
467 | 0 | } |
468 | | |
469 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix)); |
470 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix)); |
471 | | /* |
472 | | * Write the residue in the current position, as an ASCII character. |
473 | | */ |
474 | 0 | if (r < 0xA) { |
475 | 0 | *(--p_end) = (char) ('0' + r); |
476 | 0 | } else { |
477 | 0 | *(--p_end) = (char) ('A' + (r - 0xA)); |
478 | 0 | } |
479 | |
|
480 | 0 | length++; |
481 | 0 | } while (mbedtls_mpi_cmp_int(X, 0) != 0); |
482 | | |
483 | 0 | memmove(*p, p_end, length); |
484 | 0 | *p += length; |
485 | |
|
486 | 0 | cleanup: |
487 | |
|
488 | 0 | return ret; |
489 | 0 | } |
490 | | |
491 | | /* |
492 | | * Export into an ASCII string |
493 | | */ |
494 | | int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix, |
495 | | char *buf, size_t buflen, size_t *olen) |
496 | 0 | { |
497 | 0 | int ret = 0; |
498 | 0 | size_t n; |
499 | 0 | char *p; |
500 | 0 | mbedtls_mpi T; |
501 | 0 | MPI_VALIDATE_RET(X != NULL); |
502 | 0 | MPI_VALIDATE_RET(olen != NULL); |
503 | 0 | MPI_VALIDATE_RET(buflen == 0 || buf != NULL); |
504 | |
|
505 | 0 | if (radix < 2 || radix > 16) { |
506 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
507 | 0 | } |
508 | | |
509 | 0 | n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */ |
510 | 0 | if (radix >= 4) { |
511 | 0 | n >>= 1; /* Number of 4-adic digits necessary to present |
512 | | * `n`. If radix > 4, this might be a strict |
513 | | * overapproximation of the number of |
514 | | * radix-adic digits needed to present `n`. */ |
515 | 0 | } |
516 | 0 | if (radix >= 16) { |
517 | 0 | n >>= 1; /* Number of hexadecimal digits necessary to |
518 | | * present `n`. */ |
519 | |
|
520 | 0 | } |
521 | 0 | n += 1; /* Terminating null byte */ |
522 | 0 | n += 1; /* Compensate for the divisions above, which round down `n` |
523 | | * in case it's not even. */ |
524 | 0 | n += 1; /* Potential '-'-sign. */ |
525 | 0 | n += (n & 1); /* Make n even to have enough space for hexadecimal writing, |
526 | | * which always uses an even number of hex-digits. */ |
527 | |
|
528 | 0 | if (buflen < n) { |
529 | 0 | *olen = n; |
530 | 0 | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
531 | 0 | } |
532 | | |
533 | 0 | p = buf; |
534 | 0 | mbedtls_mpi_init(&T); |
535 | |
|
536 | 0 | if (X->s == -1) { |
537 | 0 | *p++ = '-'; |
538 | 0 | buflen--; |
539 | 0 | } |
540 | |
|
541 | 0 | if (radix == 16) { |
542 | 0 | int c; |
543 | 0 | size_t i, j, k; |
544 | |
|
545 | 0 | for (i = X->n, k = 0; i > 0; i--) { |
546 | 0 | for (j = ciL; j > 0; j--) { |
547 | 0 | c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF; |
548 | |
|
549 | 0 | if (c == 0 && k == 0 && (i + j) != 2) { |
550 | 0 | continue; |
551 | 0 | } |
552 | | |
553 | 0 | *(p++) = "0123456789ABCDEF" [c / 16]; |
554 | 0 | *(p++) = "0123456789ABCDEF" [c % 16]; |
555 | 0 | k = 1; |
556 | 0 | } |
557 | 0 | } |
558 | 0 | } else { |
559 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X)); |
560 | | |
561 | 0 | if (T.s == -1) { |
562 | 0 | T.s = 1; |
563 | 0 | } |
564 | |
|
565 | 0 | MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen)); |
566 | 0 | } |
567 | | |
568 | 0 | *p++ = '\0'; |
569 | 0 | *olen = p - buf; |
570 | |
|
571 | 0 | cleanup: |
572 | |
|
573 | 0 | mbedtls_mpi_free(&T); |
574 | |
|
575 | 0 | return ret; |
576 | 0 | } |
577 | | |
578 | | #if defined(MBEDTLS_FS_IO) |
579 | | /* |
580 | | * Read X from an opened file |
581 | | */ |
582 | | int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin) |
583 | 0 | { |
584 | 0 | mbedtls_mpi_uint d; |
585 | 0 | size_t slen; |
586 | 0 | char *p; |
587 | | /* |
588 | | * Buffer should have space for (short) label and decimal formatted MPI, |
589 | | * newline characters and '\0' |
590 | | */ |
591 | 0 | char s[MBEDTLS_MPI_RW_BUFFER_SIZE]; |
592 | |
|
593 | 0 | MPI_VALIDATE_RET(X != NULL); |
594 | 0 | MPI_VALIDATE_RET(fin != NULL); |
595 | |
|
596 | 0 | if (radix < 2 || radix > 16) { |
597 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
598 | 0 | } |
599 | | |
600 | 0 | memset(s, 0, sizeof(s)); |
601 | 0 | if (fgets(s, sizeof(s) - 1, fin) == NULL) { |
602 | 0 | return MBEDTLS_ERR_MPI_FILE_IO_ERROR; |
603 | 0 | } |
604 | | |
605 | 0 | slen = strlen(s); |
606 | 0 | if (slen == sizeof(s) - 2) { |
607 | 0 | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
608 | 0 | } |
609 | | |
610 | 0 | if (slen > 0 && s[slen - 1] == '\n') { |
611 | 0 | slen--; s[slen] = '\0'; |
612 | 0 | } |
613 | 0 | if (slen > 0 && s[slen - 1] == '\r') { |
614 | 0 | slen--; s[slen] = '\0'; |
615 | 0 | } |
616 | |
|
617 | 0 | p = s + slen; |
618 | 0 | while (p-- > s) { |
619 | 0 | if (mpi_get_digit(&d, radix, *p) != 0) { |
620 | 0 | break; |
621 | 0 | } |
622 | 0 | } |
623 | |
|
624 | 0 | return mbedtls_mpi_read_string(X, radix, p + 1); |
625 | 0 | } |
626 | | |
627 | | /* |
628 | | * Write X into an opened file (or stdout if fout == NULL) |
629 | | */ |
630 | | int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout) |
631 | 0 | { |
632 | 0 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
633 | 0 | size_t n, slen, plen; |
634 | | /* |
635 | | * Buffer should have space for (short) label and decimal formatted MPI, |
636 | | * newline characters and '\0' |
637 | | */ |
638 | 0 | char s[MBEDTLS_MPI_RW_BUFFER_SIZE]; |
639 | 0 | MPI_VALIDATE_RET(X != NULL); |
640 | |
|
641 | 0 | if (radix < 2 || radix > 16) { |
642 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
643 | 0 | } |
644 | | |
645 | 0 | memset(s, 0, sizeof(s)); |
646 | |
|
647 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n)); |
648 | | |
649 | 0 | if (p == NULL) { |
650 | 0 | p = ""; |
651 | 0 | } |
652 | |
|
653 | 0 | plen = strlen(p); |
654 | 0 | slen = strlen(s); |
655 | 0 | s[slen++] = '\r'; |
656 | 0 | s[slen++] = '\n'; |
657 | |
|
658 | 0 | if (fout != NULL) { |
659 | 0 | if (fwrite(p, 1, plen, fout) != plen || |
660 | 0 | fwrite(s, 1, slen, fout) != slen) { |
661 | 0 | return MBEDTLS_ERR_MPI_FILE_IO_ERROR; |
662 | 0 | } |
663 | 0 | } else { |
664 | 0 | mbedtls_printf("%s%s", p, s); |
665 | 0 | } |
666 | | |
667 | 0 | cleanup: |
668 | |
|
669 | 0 | return ret; |
670 | 0 | } |
671 | | #endif /* MBEDTLS_FS_IO */ |
672 | | |
673 | | /* |
674 | | * Import X from unsigned binary data, little endian |
675 | | * |
676 | | * This function is guaranteed to return an MPI with exactly the necessary |
677 | | * number of limbs (in particular, it does not skip 0s in the input). |
678 | | */ |
679 | | int mbedtls_mpi_read_binary_le(mbedtls_mpi *X, |
680 | | const unsigned char *buf, size_t buflen) |
681 | 31 | { |
682 | 31 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
683 | 31 | const size_t limbs = CHARS_TO_LIMBS(buflen); |
684 | | |
685 | | /* Ensure that target MPI has exactly the necessary number of limbs */ |
686 | 31 | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); |
687 | | |
688 | 31 | MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen)); |
689 | | |
690 | 31 | cleanup: |
691 | | |
692 | | /* |
693 | | * This function is also used to import keys. However, wiping the buffers |
694 | | * upon failure is not necessary because failure only can happen before any |
695 | | * input is copied. |
696 | | */ |
697 | 31 | return ret; |
698 | 31 | } |
699 | | |
700 | | /* |
701 | | * Import X from unsigned binary data, big endian |
702 | | * |
703 | | * This function is guaranteed to return an MPI with exactly the necessary |
704 | | * number of limbs (in particular, it does not skip 0s in the input). |
705 | | */ |
706 | | int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen) |
707 | 63.6k | { |
708 | 63.6k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
709 | 63.6k | const size_t limbs = CHARS_TO_LIMBS(buflen); |
710 | | |
711 | 63.6k | MPI_VALIDATE_RET(X != NULL); |
712 | 63.6k | MPI_VALIDATE_RET(buflen == 0 || buf != NULL); |
713 | | |
714 | | /* Ensure that target MPI has exactly the necessary number of limbs */ |
715 | 63.6k | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); |
716 | | |
717 | 63.6k | MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen)); |
718 | | |
719 | 63.6k | cleanup: |
720 | | |
721 | | /* |
722 | | * This function is also used to import keys. However, wiping the buffers |
723 | | * upon failure is not necessary because failure only can happen before any |
724 | | * input is copied. |
725 | | */ |
726 | 63.6k | return ret; |
727 | 63.6k | } |
728 | | |
729 | | /* |
730 | | * Export X into unsigned binary data, little endian |
731 | | */ |
732 | | int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X, |
733 | | unsigned char *buf, size_t buflen) |
734 | 0 | { |
735 | 0 | return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen); |
736 | 0 | } |
737 | | |
738 | | /* |
739 | | * Export X into unsigned binary data, big endian |
740 | | */ |
741 | | int mbedtls_mpi_write_binary(const mbedtls_mpi *X, |
742 | | unsigned char *buf, size_t buflen) |
743 | 2.90k | { |
744 | 2.90k | return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen); |
745 | 2.90k | } |
746 | | |
747 | | /* |
748 | | * Left-shift: X <<= count |
749 | | */ |
750 | | int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count) |
751 | 137k | { |
752 | 137k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
753 | 137k | size_t i, v0, t1; |
754 | 137k | mbedtls_mpi_uint r0 = 0, r1; |
755 | 137k | MPI_VALIDATE_RET(X != NULL); |
756 | | |
757 | 137k | v0 = count / (biL); |
758 | 137k | t1 = count & (biL - 1); |
759 | | |
760 | 137k | i = mbedtls_mpi_bitlen(X) + count; |
761 | | |
762 | 137k | if (X->n * biL < i) { |
763 | 8.10k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i))); |
764 | 8.10k | } |
765 | | |
766 | 137k | ret = 0; |
767 | | |
768 | | /* |
769 | | * shift by count / limb_size |
770 | | */ |
771 | 137k | if (v0 > 0) { |
772 | 5.48M | for (i = X->n; i > v0; i--) { |
773 | 5.37M | X->p[i - 1] = X->p[i - v0 - 1]; |
774 | 5.37M | } |
775 | | |
776 | 2.48M | for (; i > 0; i--) { |
777 | 2.37M | X->p[i - 1] = 0; |
778 | 2.37M | } |
779 | 114k | } |
780 | | |
781 | | /* |
782 | | * shift by count % limb_size |
783 | | */ |
784 | 137k | if (t1 > 0) { |
785 | 454k | for (i = v0; i < X->n; i++) { |
786 | 434k | r1 = X->p[i] >> (biL - t1); |
787 | 434k | X->p[i] <<= t1; |
788 | 434k | X->p[i] |= r0; |
789 | 434k | r0 = r1; |
790 | 434k | } |
791 | 19.8k | } |
792 | | |
793 | 137k | cleanup: |
794 | | |
795 | 137k | return ret; |
796 | 137k | } |
797 | | |
798 | | /* |
799 | | * Right-shift: X >>= count |
800 | | */ |
801 | | int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count) |
802 | 75.4k | { |
803 | 75.4k | MPI_VALIDATE_RET(X != NULL); |
804 | 75.4k | if (X->n != 0) { |
805 | 75.4k | mbedtls_mpi_core_shift_r(X->p, X->n, count); |
806 | 75.4k | } |
807 | 75.4k | return 0; |
808 | 75.4k | } |
809 | | |
810 | | /* |
811 | | * Compare unsigned values |
812 | | */ |
813 | | int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y) |
814 | 187k | { |
815 | 187k | size_t i, j; |
816 | 187k | MPI_VALIDATE_RET(X != NULL); |
817 | 187k | MPI_VALIDATE_RET(Y != NULL); |
818 | | |
819 | 2.69M | for (i = X->n; i > 0; i--) { |
820 | 2.69M | if (X->p[i - 1] != 0) { |
821 | 187k | break; |
822 | 187k | } |
823 | 2.69M | } |
824 | | |
825 | 3.15M | for (j = Y->n; j > 0; j--) { |
826 | 3.14M | if (Y->p[j - 1] != 0) { |
827 | 177k | break; |
828 | 177k | } |
829 | 3.14M | } |
830 | | |
831 | 187k | if (i == 0 && j == 0) { |
832 | 0 | return 0; |
833 | 0 | } |
834 | | |
835 | 187k | if (i > j) { |
836 | 20.5k | return 1; |
837 | 20.5k | } |
838 | 166k | if (j > i) { |
839 | 2.08k | return -1; |
840 | 2.08k | } |
841 | | |
842 | 257k | for (; i > 0; i--) { |
843 | 257k | if (X->p[i - 1] > Y->p[i - 1]) { |
844 | 123k | return 1; |
845 | 123k | } |
846 | 133k | if (X->p[i - 1] < Y->p[i - 1]) { |
847 | 40.8k | return -1; |
848 | 40.8k | } |
849 | 133k | } |
850 | | |
851 | 70 | return 0; |
852 | 164k | } |
853 | | |
854 | | /* |
855 | | * Compare signed values |
856 | | */ |
857 | | int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y) |
858 | 815k | { |
859 | 815k | size_t i, j; |
860 | 815k | MPI_VALIDATE_RET(X != NULL); |
861 | 815k | MPI_VALIDATE_RET(Y != NULL); |
862 | | |
863 | 15.6M | for (i = X->n; i > 0; i--) { |
864 | 15.4M | if (X->p[i - 1] != 0) { |
865 | 681k | break; |
866 | 681k | } |
867 | 15.4M | } |
868 | | |
869 | 1.41M | for (j = Y->n; j > 0; j--) { |
870 | 977k | if (Y->p[j - 1] != 0) { |
871 | 381k | break; |
872 | 381k | } |
873 | 977k | } |
874 | | |
875 | 815k | if (i == 0 && j == 0) { |
876 | 128k | return 0; |
877 | 128k | } |
878 | | |
879 | 687k | if (i > j) { |
880 | 367k | return X->s; |
881 | 367k | } |
882 | 319k | if (j > i) { |
883 | 29.5k | return -Y->s; |
884 | 29.5k | } |
885 | | |
886 | 290k | if (X->s > 0 && Y->s < 0) { |
887 | 23 | return 1; |
888 | 23 | } |
889 | 290k | if (Y->s > 0 && X->s < 0) { |
890 | 0 | return -1; |
891 | 0 | } |
892 | | |
893 | 451k | for (; i > 0; i--) { |
894 | 438k | if (X->p[i - 1] > Y->p[i - 1]) { |
895 | 65.7k | return X->s; |
896 | 65.7k | } |
897 | 372k | if (X->p[i - 1] < Y->p[i - 1]) { |
898 | 211k | return -X->s; |
899 | 211k | } |
900 | 372k | } |
901 | | |
902 | 13.0k | return 0; |
903 | 290k | } |
904 | | |
905 | | /* |
906 | | * Compare signed values |
907 | | */ |
908 | | int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z) |
909 | 435k | { |
910 | 435k | mbedtls_mpi Y; |
911 | 435k | mbedtls_mpi_uint p[1]; |
912 | 435k | MPI_VALIDATE_RET(X != NULL); |
913 | | |
914 | 435k | *p = mpi_sint_abs(z); |
915 | 435k | Y.s = (z < 0) ? -1 : 1; |
916 | 435k | Y.n = 1; |
917 | 435k | Y.p = p; |
918 | | |
919 | 435k | return mbedtls_mpi_cmp_mpi(X, &Y); |
920 | 435k | } |
921 | | |
922 | | /* |
923 | | * Unsigned addition: X = |A| + |B| (HAC 14.7) |
924 | | */ |
925 | | int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
926 | 25.3k | { |
927 | 25.3k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
928 | 25.3k | size_t j; |
929 | 25.3k | MPI_VALIDATE_RET(X != NULL); |
930 | 25.3k | MPI_VALIDATE_RET(A != NULL); |
931 | 25.3k | MPI_VALIDATE_RET(B != NULL); |
932 | | |
933 | 25.3k | if (X == B) { |
934 | 0 | const mbedtls_mpi *T = A; A = X; B = T; |
935 | 0 | } |
936 | | |
937 | 25.3k | if (X != A) { |
938 | 3.55k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A)); |
939 | 3.55k | } |
940 | | |
941 | | /* |
942 | | * X must always be positive as a result of unsigned additions. |
943 | | */ |
944 | 25.3k | X->s = 1; |
945 | | |
946 | 52.2k | for (j = B->n; j > 0; j--) { |
947 | 51.6k | if (B->p[j - 1] != 0) { |
948 | 24.7k | break; |
949 | 24.7k | } |
950 | 51.6k | } |
951 | | |
952 | | /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0 |
953 | | * and B is 0 (of any size). */ |
954 | 25.3k | if (j == 0) { |
955 | 556 | return 0; |
956 | 556 | } |
957 | | |
958 | 24.7k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j)); |
959 | | |
960 | | /* j is the number of non-zero limbs of B. Add those to X. */ |
961 | | |
962 | 24.7k | mbedtls_mpi_uint *p = X->p; |
963 | | |
964 | 24.7k | mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j); |
965 | | |
966 | 24.7k | p += j; |
967 | | |
968 | | /* Now propagate any carry */ |
969 | | |
970 | 38.1k | while (c != 0) { |
971 | 13.4k | if (j >= X->n) { |
972 | 51 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1)); |
973 | 51 | p = X->p + j; |
974 | 51 | } |
975 | | |
976 | 13.4k | *p += c; c = (*p < c); j++; p++; |
977 | 13.4k | } |
978 | | |
979 | 24.7k | cleanup: |
980 | | |
981 | 24.7k | return ret; |
982 | 24.7k | } |
983 | | |
984 | | /* |
985 | | * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10) |
986 | | */ |
987 | | int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
988 | 252k | { |
989 | 252k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
990 | 252k | size_t n; |
991 | 252k | mbedtls_mpi_uint carry; |
992 | 252k | MPI_VALIDATE_RET(X != NULL); |
993 | 252k | MPI_VALIDATE_RET(A != NULL); |
994 | 252k | MPI_VALIDATE_RET(B != NULL); |
995 | | |
996 | 3.35M | for (n = B->n; n > 0; n--) { |
997 | 3.34M | if (B->p[n - 1] != 0) { |
998 | 241k | break; |
999 | 241k | } |
1000 | 3.34M | } |
1001 | 252k | if (n > A->n) { |
1002 | | /* B >= (2^ciL)^n > A */ |
1003 | 0 | ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
1004 | 0 | goto cleanup; |
1005 | 0 | } |
1006 | | |
1007 | 252k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n)); |
1008 | | |
1009 | | /* Set the high limbs of X to match A. Don't touch the lower limbs |
1010 | | * because X might be aliased to B, and we must not overwrite the |
1011 | | * significant digits of B. */ |
1012 | 252k | if (A->n > n) { |
1013 | 218k | memcpy(X->p + n, A->p + n, (A->n - n) * ciL); |
1014 | 218k | } |
1015 | 252k | if (X->n > A->n) { |
1016 | 22.4k | memset(X->p + A->n, 0, (X->n - A->n) * ciL); |
1017 | 22.4k | } |
1018 | | |
1019 | 252k | carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n); |
1020 | 252k | if (carry != 0) { |
1021 | | /* Propagate the carry through the rest of X. */ |
1022 | 62.3k | carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n); |
1023 | | |
1024 | | /* If we have further carry/borrow, the result is negative. */ |
1025 | 62.3k | if (carry != 0) { |
1026 | 0 | ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
1027 | 0 | goto cleanup; |
1028 | 0 | } |
1029 | 62.3k | } |
1030 | | |
1031 | | /* X should always be positive as a result of unsigned subtractions. */ |
1032 | 252k | X->s = 1; |
1033 | | |
1034 | 252k | cleanup: |
1035 | 252k | return ret; |
1036 | 252k | } |
1037 | | |
1038 | | /* Common function for signed addition and subtraction. |
1039 | | * Calculate A + B * flip_B where flip_B is 1 or -1. |
1040 | | */ |
1041 | | static int add_sub_mpi(mbedtls_mpi *X, |
1042 | | const mbedtls_mpi *A, const mbedtls_mpi *B, |
1043 | | int flip_B) |
1044 | 208k | { |
1045 | 208k | int ret, s; |
1046 | 208k | MPI_VALIDATE_RET(X != NULL); |
1047 | 208k | MPI_VALIDATE_RET(A != NULL); |
1048 | 208k | MPI_VALIDATE_RET(B != NULL); |
1049 | | |
1050 | 208k | s = A->s; |
1051 | 208k | if (A->s * B->s * flip_B < 0) { |
1052 | 184k | int cmp = mbedtls_mpi_cmp_abs(A, B); |
1053 | 184k | if (cmp >= 0) { |
1054 | 141k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B)); |
1055 | | /* If |A| = |B|, the result is 0 and we must set the sign bit |
1056 | | * to +1 regardless of which of A or B was negative. Otherwise, |
1057 | | * since |A| > |B|, the sign is the sign of A. */ |
1058 | 141k | X->s = cmp == 0 ? 1 : s; |
1059 | 141k | } else { |
1060 | 42.8k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A)); |
1061 | | /* Since |A| < |B|, the sign is the opposite of A. */ |
1062 | 42.8k | X->s = -s; |
1063 | 42.8k | } |
1064 | 184k | } else { |
1065 | 24.3k | MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B)); |
1066 | 24.3k | X->s = s; |
1067 | 24.3k | } |
1068 | | |
1069 | 208k | cleanup: |
1070 | | |
1071 | 208k | return ret; |
1072 | 208k | } |
1073 | | |
1074 | | /* |
1075 | | * Signed addition: X = A + B |
1076 | | */ |
1077 | | int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1078 | 36.8k | { |
1079 | 36.8k | return add_sub_mpi(X, A, B, 1); |
1080 | 36.8k | } |
1081 | | |
1082 | | /* |
1083 | | * Signed subtraction: X = A - B |
1084 | | */ |
1085 | | int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1086 | 171k | { |
1087 | 171k | return add_sub_mpi(X, A, B, -1); |
1088 | 171k | } |
1089 | | |
1090 | | /* |
1091 | | * Signed addition: X = A + b |
1092 | | */ |
1093 | | int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b) |
1094 | 422 | { |
1095 | 422 | mbedtls_mpi B; |
1096 | 422 | mbedtls_mpi_uint p[1]; |
1097 | 422 | MPI_VALIDATE_RET(X != NULL); |
1098 | 422 | MPI_VALIDATE_RET(A != NULL); |
1099 | | |
1100 | 422 | p[0] = mpi_sint_abs(b); |
1101 | 422 | B.s = (b < 0) ? -1 : 1; |
1102 | 422 | B.n = 1; |
1103 | 422 | B.p = p; |
1104 | | |
1105 | 422 | return mbedtls_mpi_add_mpi(X, A, &B); |
1106 | 422 | } |
1107 | | |
1108 | | /* |
1109 | | * Signed subtraction: X = A - b |
1110 | | */ |
1111 | | int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b) |
1112 | 6.51k | { |
1113 | 6.51k | mbedtls_mpi B; |
1114 | 6.51k | mbedtls_mpi_uint p[1]; |
1115 | 6.51k | MPI_VALIDATE_RET(X != NULL); |
1116 | 6.51k | MPI_VALIDATE_RET(A != NULL); |
1117 | | |
1118 | 6.51k | p[0] = mpi_sint_abs(b); |
1119 | 6.51k | B.s = (b < 0) ? -1 : 1; |
1120 | 6.51k | B.n = 1; |
1121 | 6.51k | B.p = p; |
1122 | | |
1123 | 6.51k | return mbedtls_mpi_sub_mpi(X, A, &B); |
1124 | 6.51k | } |
1125 | | |
1126 | | /* |
1127 | | * Baseline multiplication: X = A * B (HAC 14.12) |
1128 | | */ |
1129 | | int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1130 | 59.0k | { |
1131 | 59.0k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1132 | 59.0k | size_t i, j; |
1133 | 59.0k | mbedtls_mpi TA, TB; |
1134 | 59.0k | int result_is_zero = 0; |
1135 | 59.0k | MPI_VALIDATE_RET(X != NULL); |
1136 | 59.0k | MPI_VALIDATE_RET(A != NULL); |
1137 | 59.0k | MPI_VALIDATE_RET(B != NULL); |
1138 | | |
1139 | 59.0k | mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB); |
1140 | | |
1141 | 59.0k | if (X == A) { |
1142 | 18.1k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA; |
1143 | 18.1k | } |
1144 | 59.0k | if (X == B) { |
1145 | 112 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB; |
1146 | 112 | } |
1147 | | |
1148 | 189k | for (i = A->n; i > 0; i--) { |
1149 | 189k | if (A->p[i - 1] != 0) { |
1150 | 58.4k | break; |
1151 | 58.4k | } |
1152 | 189k | } |
1153 | 59.0k | if (i == 0) { |
1154 | 603 | result_is_zero = 1; |
1155 | 603 | } |
1156 | | |
1157 | 249k | for (j = B->n; j > 0; j--) { |
1158 | 248k | if (B->p[j - 1] != 0) { |
1159 | 58.5k | break; |
1160 | 58.5k | } |
1161 | 248k | } |
1162 | 59.0k | if (j == 0) { |
1163 | 511 | result_is_zero = 1; |
1164 | 511 | } |
1165 | | |
1166 | 59.0k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j)); |
1167 | 59.0k | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); |
1168 | | |
1169 | 400k | for (size_t k = 0; k < j; k++) { |
1170 | | /* We know that there cannot be any carry-out since we're |
1171 | | * iterating from bottom to top. */ |
1172 | 341k | (void) mbedtls_mpi_core_mla(X->p + k, i + 1, |
1173 | 341k | A->p, i, |
1174 | 341k | B->p[k]); |
1175 | 341k | } |
1176 | | |
1177 | | /* If the result is 0, we don't shortcut the operation, which reduces |
1178 | | * but does not eliminate side channels leaking the zero-ness. We do |
1179 | | * need to take care to set the sign bit properly since the library does |
1180 | | * not fully support an MPI object with a value of 0 and s == -1. */ |
1181 | 59.0k | if (result_is_zero) { |
1182 | 771 | X->s = 1; |
1183 | 58.2k | } else { |
1184 | 58.2k | X->s = A->s * B->s; |
1185 | 58.2k | } |
1186 | | |
1187 | 59.0k | cleanup: |
1188 | | |
1189 | 59.0k | mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA); |
1190 | | |
1191 | 59.0k | return ret; |
1192 | 59.0k | } |
1193 | | |
1194 | | /* |
1195 | | * Baseline multiplication: X = A * b |
1196 | | */ |
1197 | | int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b) |
1198 | 278k | { |
1199 | 278k | MPI_VALIDATE_RET(X != NULL); |
1200 | 278k | MPI_VALIDATE_RET(A != NULL); |
1201 | | |
1202 | 278k | size_t n = A->n; |
1203 | 15.4M | while (n > 0 && A->p[n - 1] == 0) { |
1204 | 15.1M | --n; |
1205 | 15.1M | } |
1206 | | |
1207 | | /* The general method below doesn't work if b==0. */ |
1208 | 278k | if (b == 0 || n == 0) { |
1209 | 20.4k | return mbedtls_mpi_lset(X, 0); |
1210 | 20.4k | } |
1211 | | |
1212 | | /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */ |
1213 | 257k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1214 | | /* In general, A * b requires 1 limb more than b. If |
1215 | | * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same |
1216 | | * number of limbs as A and the call to grow() is not required since |
1217 | | * copy() will take care of the growth if needed. However, experimentally, |
1218 | | * making the call to grow() unconditional causes slightly fewer |
1219 | | * calls to calloc() in ECP code, presumably because it reuses the |
1220 | | * same mpi for a while and this way the mpi is more likely to directly |
1221 | | * grow to its final size. |
1222 | | * |
1223 | | * Note that calculating A*b as 0 + A*b doesn't work as-is because |
1224 | | * A,X can be the same. */ |
1225 | 257k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1)); |
1226 | 257k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A)); |
1227 | 257k | mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1); |
1228 | | |
1229 | 257k | cleanup: |
1230 | 257k | return ret; |
1231 | 257k | } |
1232 | | |
1233 | | /* |
1234 | | * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and |
1235 | | * mbedtls_mpi_uint divisor, d |
1236 | | */ |
1237 | | static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1, |
1238 | | mbedtls_mpi_uint u0, |
1239 | | mbedtls_mpi_uint d, |
1240 | | mbedtls_mpi_uint *r) |
1241 | 105k | { |
1242 | 105k | #if defined(MBEDTLS_HAVE_UDBL) |
1243 | 105k | mbedtls_t_udbl dividend, quotient; |
1244 | | #else |
1245 | | const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH; |
1246 | | const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1; |
1247 | | mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient; |
1248 | | mbedtls_mpi_uint u0_msw, u0_lsw; |
1249 | | size_t s; |
1250 | | #endif |
1251 | | |
1252 | | /* |
1253 | | * Check for overflow |
1254 | | */ |
1255 | 105k | if (0 == d || u1 >= d) { |
1256 | 0 | if (r != NULL) { |
1257 | 0 | *r = ~(mbedtls_mpi_uint) 0u; |
1258 | 0 | } |
1259 | |
|
1260 | 0 | return ~(mbedtls_mpi_uint) 0u; |
1261 | 0 | } |
1262 | | |
1263 | 105k | #if defined(MBEDTLS_HAVE_UDBL) |
1264 | 105k | dividend = (mbedtls_t_udbl) u1 << biL; |
1265 | 105k | dividend |= (mbedtls_t_udbl) u0; |
1266 | 105k | quotient = dividend / d; |
1267 | 105k | if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) { |
1268 | 0 | quotient = ((mbedtls_t_udbl) 1 << biL) - 1; |
1269 | 0 | } |
1270 | | |
1271 | 105k | if (r != NULL) { |
1272 | 0 | *r = (mbedtls_mpi_uint) (dividend - (quotient * d)); |
1273 | 0 | } |
1274 | | |
1275 | 105k | return (mbedtls_mpi_uint) quotient; |
1276 | | #else |
1277 | | |
1278 | | /* |
1279 | | * Algorithm D, Section 4.3.1 - The Art of Computer Programming |
1280 | | * Vol. 2 - Seminumerical Algorithms, Knuth |
1281 | | */ |
1282 | | |
1283 | | /* |
1284 | | * Normalize the divisor, d, and dividend, u0, u1 |
1285 | | */ |
1286 | | s = mbedtls_mpi_core_clz(d); |
1287 | | d = d << s; |
1288 | | |
1289 | | u1 = u1 << s; |
1290 | | u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1)); |
1291 | | u0 = u0 << s; |
1292 | | |
1293 | | d1 = d >> biH; |
1294 | | d0 = d & uint_halfword_mask; |
1295 | | |
1296 | | u0_msw = u0 >> biH; |
1297 | | u0_lsw = u0 & uint_halfword_mask; |
1298 | | |
1299 | | /* |
1300 | | * Find the first quotient and remainder |
1301 | | */ |
1302 | | q1 = u1 / d1; |
1303 | | r0 = u1 - d1 * q1; |
1304 | | |
1305 | | while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) { |
1306 | | q1 -= 1; |
1307 | | r0 += d1; |
1308 | | |
1309 | | if (r0 >= radix) { |
1310 | | break; |
1311 | | } |
1312 | | } |
1313 | | |
1314 | | rAX = (u1 * radix) + (u0_msw - q1 * d); |
1315 | | q0 = rAX / d1; |
1316 | | r0 = rAX - q0 * d1; |
1317 | | |
1318 | | while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) { |
1319 | | q0 -= 1; |
1320 | | r0 += d1; |
1321 | | |
1322 | | if (r0 >= radix) { |
1323 | | break; |
1324 | | } |
1325 | | } |
1326 | | |
1327 | | if (r != NULL) { |
1328 | | *r = (rAX * radix + u0_lsw - q0 * d) >> s; |
1329 | | } |
1330 | | |
1331 | | quotient = q1 * radix + q0; |
1332 | | |
1333 | | return quotient; |
1334 | | #endif |
1335 | 105k | } |
1336 | | |
1337 | | /* |
1338 | | * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20) |
1339 | | */ |
1340 | | int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, |
1341 | | const mbedtls_mpi *B) |
1342 | 3.38k | { |
1343 | 3.38k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1344 | 3.38k | size_t i, n, t, k; |
1345 | 3.38k | mbedtls_mpi X, Y, Z, T1, T2; |
1346 | 3.38k | mbedtls_mpi_uint TP2[3]; |
1347 | 3.38k | MPI_VALIDATE_RET(A != NULL); |
1348 | 3.38k | MPI_VALIDATE_RET(B != NULL); |
1349 | | |
1350 | 3.38k | if (mbedtls_mpi_cmp_int(B, 0) == 0) { |
1351 | 0 | return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO; |
1352 | 0 | } |
1353 | | |
1354 | 3.38k | mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z); |
1355 | 3.38k | mbedtls_mpi_init(&T1); |
1356 | | /* |
1357 | | * Avoid dynamic memory allocations for constant-size T2. |
1358 | | * |
1359 | | * T2 is used for comparison only and the 3 limbs are assigned explicitly, |
1360 | | * so nobody increase the size of the MPI and we're safe to use an on-stack |
1361 | | * buffer. |
1362 | | */ |
1363 | 3.38k | T2.s = 1; |
1364 | 3.38k | T2.n = sizeof(TP2) / sizeof(*TP2); |
1365 | 3.38k | T2.p = TP2; |
1366 | | |
1367 | 3.38k | if (mbedtls_mpi_cmp_abs(A, B) < 0) { |
1368 | 39 | if (Q != NULL) { |
1369 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0)); |
1370 | 0 | } |
1371 | 39 | if (R != NULL) { |
1372 | 39 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A)); |
1373 | 39 | } |
1374 | 39 | return 0; |
1375 | 39 | } |
1376 | | |
1377 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A)); |
1378 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B)); |
1379 | 3.35k | X.s = Y.s = 1; |
1380 | | |
1381 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2)); |
1382 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0)); |
1383 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2)); |
1384 | | |
1385 | 3.35k | k = mbedtls_mpi_bitlen(&Y) % biL; |
1386 | 3.35k | if (k < biL - 1) { |
1387 | 3.06k | k = biL - 1 - k; |
1388 | 3.06k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k)); |
1389 | 3.06k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k)); |
1390 | 3.06k | } else { |
1391 | 287 | k = 0; |
1392 | 287 | } |
1393 | | |
1394 | 3.35k | n = X.n - 1; |
1395 | 3.35k | t = Y.n - 1; |
1396 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t))); |
1397 | | |
1398 | 4.72k | while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) { |
1399 | 1.37k | Z.p[n - t]++; |
1400 | 1.37k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y)); |
1401 | 1.37k | } |
1402 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t))); |
1403 | | |
1404 | 112k | for (i = n; i > t; i--) { |
1405 | 109k | if (X.p[i] >= Y.p[t]) { |
1406 | 3.72k | Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u; |
1407 | 105k | } else { |
1408 | 105k | Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1], |
1409 | 105k | Y.p[t], NULL); |
1410 | 105k | } |
1411 | | |
1412 | 109k | T2.p[0] = (i < 2) ? 0 : X.p[i - 2]; |
1413 | 109k | T2.p[1] = (i < 1) ? 0 : X.p[i - 1]; |
1414 | 109k | T2.p[2] = X.p[i]; |
1415 | | |
1416 | 109k | Z.p[i - t - 1]++; |
1417 | 165k | do { |
1418 | 165k | Z.p[i - t - 1]--; |
1419 | | |
1420 | 165k | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0)); |
1421 | 165k | T1.p[0] = (t < 1) ? 0 : Y.p[t - 1]; |
1422 | 165k | T1.p[1] = Y.p[t]; |
1423 | 165k | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1])); |
1424 | 165k | } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0); |
1425 | | |
1426 | 109k | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1])); |
1427 | 109k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1))); |
1428 | 109k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1)); |
1429 | | |
1430 | 109k | if (mbedtls_mpi_cmp_int(&X, 0) < 0) { |
1431 | 1.51k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y)); |
1432 | 1.51k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1))); |
1433 | 1.51k | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1)); |
1434 | 1.51k | Z.p[i - t - 1]--; |
1435 | 1.51k | } |
1436 | 109k | } |
1437 | | |
1438 | 3.35k | if (Q != NULL) { |
1439 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z)); |
1440 | 0 | Q->s = A->s * B->s; |
1441 | 0 | } |
1442 | | |
1443 | 3.35k | if (R != NULL) { |
1444 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k)); |
1445 | 3.35k | X.s = A->s; |
1446 | 3.35k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X)); |
1447 | | |
1448 | 3.35k | if (mbedtls_mpi_cmp_int(R, 0) == 0) { |
1449 | 0 | R->s = 1; |
1450 | 0 | } |
1451 | 3.35k | } |
1452 | | |
1453 | 3.35k | cleanup: |
1454 | | |
1455 | 3.35k | mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z); |
1456 | 3.35k | mbedtls_mpi_free(&T1); |
1457 | 3.35k | mbedtls_platform_zeroize(TP2, sizeof(TP2)); |
1458 | | |
1459 | 3.35k | return ret; |
1460 | 3.35k | } |
1461 | | |
1462 | | /* |
1463 | | * Division by int: A = Q * b + R |
1464 | | */ |
1465 | | int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R, |
1466 | | const mbedtls_mpi *A, |
1467 | | mbedtls_mpi_sint b) |
1468 | 0 | { |
1469 | 0 | mbedtls_mpi B; |
1470 | 0 | mbedtls_mpi_uint p[1]; |
1471 | 0 | MPI_VALIDATE_RET(A != NULL); |
1472 | |
|
1473 | 0 | p[0] = mpi_sint_abs(b); |
1474 | 0 | B.s = (b < 0) ? -1 : 1; |
1475 | 0 | B.n = 1; |
1476 | 0 | B.p = p; |
1477 | |
|
1478 | 0 | return mbedtls_mpi_div_mpi(Q, R, A, &B); |
1479 | 0 | } |
1480 | | |
1481 | | /* |
1482 | | * Modulo: R = A mod B |
1483 | | */ |
1484 | | int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1485 | 3.38k | { |
1486 | 3.38k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1487 | 3.38k | MPI_VALIDATE_RET(R != NULL); |
1488 | 3.38k | MPI_VALIDATE_RET(A != NULL); |
1489 | 3.38k | MPI_VALIDATE_RET(B != NULL); |
1490 | | |
1491 | 3.38k | if (mbedtls_mpi_cmp_int(B, 0) < 0) { |
1492 | 0 | return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
1493 | 0 | } |
1494 | | |
1495 | 3.38k | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B)); |
1496 | | |
1497 | 3.38k | while (mbedtls_mpi_cmp_int(R, 0) < 0) { |
1498 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B)); |
1499 | 0 | } |
1500 | | |
1501 | 3.38k | while (mbedtls_mpi_cmp_mpi(R, B) >= 0) { |
1502 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B)); |
1503 | 0 | } |
1504 | | |
1505 | 3.38k | cleanup: |
1506 | | |
1507 | 3.38k | return ret; |
1508 | 3.38k | } |
1509 | | |
1510 | | /* |
1511 | | * Modulo: r = A mod b |
1512 | | */ |
1513 | | int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b) |
1514 | 0 | { |
1515 | 0 | size_t i; |
1516 | 0 | mbedtls_mpi_uint x, y, z; |
1517 | 0 | MPI_VALIDATE_RET(r != NULL); |
1518 | 0 | MPI_VALIDATE_RET(A != NULL); |
1519 | |
|
1520 | 0 | if (b == 0) { |
1521 | 0 | return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO; |
1522 | 0 | } |
1523 | | |
1524 | 0 | if (b < 0) { |
1525 | 0 | return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
1526 | 0 | } |
1527 | | |
1528 | | /* |
1529 | | * handle trivial cases |
1530 | | */ |
1531 | 0 | if (b == 1 || A->n == 0) { |
1532 | 0 | *r = 0; |
1533 | 0 | return 0; |
1534 | 0 | } |
1535 | | |
1536 | 0 | if (b == 2) { |
1537 | 0 | *r = A->p[0] & 1; |
1538 | 0 | return 0; |
1539 | 0 | } |
1540 | | |
1541 | | /* |
1542 | | * general case |
1543 | | */ |
1544 | 0 | for (i = A->n, y = 0; i > 0; i--) { |
1545 | 0 | x = A->p[i - 1]; |
1546 | 0 | y = (y << biH) | (x >> biH); |
1547 | 0 | z = y / b; |
1548 | 0 | y -= z * b; |
1549 | |
|
1550 | 0 | x <<= biH; |
1551 | 0 | y = (y << biH) | (x >> biH); |
1552 | 0 | z = y / b; |
1553 | 0 | y -= z * b; |
1554 | 0 | } |
1555 | | |
1556 | | /* |
1557 | | * If A is negative, then the current y represents a negative value. |
1558 | | * Flipping it to the positive side. |
1559 | | */ |
1560 | 0 | if (A->s < 0 && y != 0) { |
1561 | 0 | y = b - y; |
1562 | 0 | } |
1563 | |
|
1564 | 0 | *r = y; |
1565 | |
|
1566 | 0 | return 0; |
1567 | 0 | } |
1568 | | |
1569 | | static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N) |
1570 | 3.30k | { |
1571 | 3.30k | *mm = mbedtls_mpi_core_montmul_init(N->p); |
1572 | 3.30k | } |
1573 | | |
1574 | | /** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36) |
1575 | | * |
1576 | | * \param[in,out] A One of the numbers to multiply. |
1577 | | * It must have at least as many limbs as N |
1578 | | * (A->n >= N->n), and any limbs beyond n are ignored. |
1579 | | * On successful completion, A contains the result of |
1580 | | * the multiplication A * B * R^-1 mod N where |
1581 | | * R = (2^ciL)^n. |
1582 | | * \param[in] B One of the numbers to multiply. |
1583 | | * It must be nonzero and must not have more limbs than N |
1584 | | * (B->n <= N->n). |
1585 | | * \param[in] N The modulus. \p N must be odd. |
1586 | | * \param mm The value calculated by `mpi_montg_init(&mm, N)`. |
1587 | | * This is -N^-1 mod 2^ciL. |
1588 | | * \param[in,out] T A bignum for temporary storage. |
1589 | | * It must be at least twice the limb size of N plus 1 |
1590 | | * (T->n >= 2 * N->n + 1). |
1591 | | * Its initial content is unused and |
1592 | | * its final content is indeterminate. |
1593 | | * It does not get reallocated. |
1594 | | */ |
1595 | | static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B, |
1596 | | const mbedtls_mpi *N, mbedtls_mpi_uint mm, |
1597 | | mbedtls_mpi *T) |
1598 | 186k | { |
1599 | 186k | mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p); |
1600 | 186k | } |
1601 | | |
1602 | | /* |
1603 | | * Montgomery reduction: A = A * R^-1 mod N |
1604 | | * |
1605 | | * See mpi_montmul() regarding constraints and guarantees on the parameters. |
1606 | | */ |
1607 | | static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N, |
1608 | | mbedtls_mpi_uint mm, mbedtls_mpi *T) |
1609 | 6.60k | { |
1610 | 6.60k | mbedtls_mpi_uint z = 1; |
1611 | 6.60k | mbedtls_mpi U; |
1612 | | |
1613 | 6.60k | U.n = U.s = (int) z; |
1614 | 6.60k | U.p = &z; |
1615 | | |
1616 | 6.60k | mpi_montmul(A, &U, N, mm, T); |
1617 | 6.60k | } |
1618 | | |
1619 | | /** |
1620 | | * Select an MPI from a table without leaking the index. |
1621 | | * |
1622 | | * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it |
1623 | | * reads the entire table in order to avoid leaking the value of idx to an |
1624 | | * attacker able to observe memory access patterns. |
1625 | | * |
1626 | | * \param[out] R Where to write the selected MPI. |
1627 | | * \param[in] T The table to read from. |
1628 | | * \param[in] T_size The number of elements in the table. |
1629 | | * \param[in] idx The index of the element to select; |
1630 | | * this must satisfy 0 <= idx < T_size. |
1631 | | * |
1632 | | * \return \c 0 on success, or a negative error code. |
1633 | | */ |
1634 | | static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx) |
1635 | 169k | { |
1636 | 169k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1637 | | |
1638 | 2.28M | for (size_t i = 0; i < T_size; i++) { |
1639 | 2.11M | MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i], |
1640 | 2.11M | (unsigned char) mbedtls_ct_size_bool_eq(i, |
1641 | 2.11M | idx))); |
1642 | 2.11M | } |
1643 | | |
1644 | 169k | cleanup: |
1645 | 169k | return ret; |
1646 | 169k | } |
1647 | | |
1648 | | /* |
1649 | | * Sliding-window exponentiation: X = A^E mod N (HAC 14.85) |
1650 | | */ |
1651 | | int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A, |
1652 | | const mbedtls_mpi *E, const mbedtls_mpi *N, |
1653 | | mbedtls_mpi *prec_RR) |
1654 | 3.30k | { |
1655 | 3.30k | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1656 | 3.30k | size_t window_bitsize; |
1657 | 3.30k | size_t i, j, nblimbs; |
1658 | 3.30k | size_t bufsize, nbits; |
1659 | 3.30k | mbedtls_mpi_uint ei, mm, state; |
1660 | 3.30k | mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos; |
1661 | 3.30k | int neg; |
1662 | | |
1663 | 3.30k | MPI_VALIDATE_RET(X != NULL); |
1664 | 3.30k | MPI_VALIDATE_RET(A != NULL); |
1665 | 3.30k | MPI_VALIDATE_RET(E != NULL); |
1666 | 3.30k | MPI_VALIDATE_RET(N != NULL); |
1667 | | |
1668 | 3.30k | if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) { |
1669 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
1670 | 0 | } |
1671 | | |
1672 | 3.30k | if (mbedtls_mpi_cmp_int(E, 0) < 0) { |
1673 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
1674 | 0 | } |
1675 | | |
1676 | 3.30k | if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS || |
1677 | 3.30k | mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) { |
1678 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
1679 | 0 | } |
1680 | | |
1681 | | /* |
1682 | | * Init temps and window size |
1683 | | */ |
1684 | 3.30k | mpi_montg_init(&mm, N); |
1685 | 3.30k | mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T); |
1686 | 3.30k | mbedtls_mpi_init(&Apos); |
1687 | 3.30k | mbedtls_mpi_init(&WW); |
1688 | 3.30k | memset(W, 0, sizeof(W)); |
1689 | | |
1690 | 3.30k | i = mbedtls_mpi_bitlen(E); |
1691 | | |
1692 | 3.30k | window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 : |
1693 | 3.30k | (i > 79) ? 4 : (i > 23) ? 3 : 1; |
1694 | | |
1695 | | #if (MBEDTLS_MPI_WINDOW_SIZE < 6) |
1696 | | if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) { |
1697 | | window_bitsize = MBEDTLS_MPI_WINDOW_SIZE; |
1698 | | } |
1699 | | #endif |
1700 | | |
1701 | 3.30k | const size_t w_table_used_size = (size_t) 1 << window_bitsize; |
1702 | | |
1703 | | /* |
1704 | | * This function is not constant-trace: its memory accesses depend on the |
1705 | | * exponent value. To defend against timing attacks, callers (such as RSA |
1706 | | * and DHM) should use exponent blinding. However this is not enough if the |
1707 | | * adversary can find the exponent in a single trace, so this function |
1708 | | * takes extra precautions against adversaries who can observe memory |
1709 | | * access patterns. |
1710 | | * |
1711 | | * This function performs a series of multiplications by table elements and |
1712 | | * squarings, and we want the prevent the adversary from finding out which |
1713 | | * table element was used, and from distinguishing between multiplications |
1714 | | * and squarings. Firstly, when multiplying by an element of the window |
1715 | | * W[i], we do a constant-trace table lookup to obfuscate i. This leaves |
1716 | | * squarings as having a different memory access patterns from other |
1717 | | * multiplications. So secondly, we put the accumulator X in the table as |
1718 | | * well, and also do a constant-trace table lookup to multiply by X. |
1719 | | * |
1720 | | * This way, all multiplications take the form of a lookup-and-multiply. |
1721 | | * The number of lookup-and-multiply operations inside each iteration of |
1722 | | * the main loop still depends on the bits of the exponent, but since the |
1723 | | * other operations in the loop don't have an easily recognizable memory |
1724 | | * trace, an adversary is unlikely to be able to observe the exact |
1725 | | * patterns. |
1726 | | * |
1727 | | * An adversary may still be able to recover the exponent if they can |
1728 | | * observe both memory accesses and branches. However, branch prediction |
1729 | | * exploitation typically requires many traces of execution over the same |
1730 | | * data, which is defeated by randomized blinding. |
1731 | | * |
1732 | | * To achieve this, we make a copy of X and we use the table entry in each |
1733 | | * calculation from this point on. |
1734 | | */ |
1735 | 3.30k | const size_t x_index = 0; |
1736 | 3.30k | mbedtls_mpi_init(&W[x_index]); |
1737 | 3.30k | mbedtls_mpi_copy(&W[x_index], X); |
1738 | | |
1739 | 3.30k | j = N->n + 1; |
1740 | | /* All W[i] and X must have at least N->n limbs for the mpi_montmul() |
1741 | | * and mpi_montred() calls later. Here we ensure that W[1] and X are |
1742 | | * large enough, and later we'll grow other W[i] to the same length. |
1743 | | * They must not be shrunk midway through this function! |
1744 | | */ |
1745 | 3.30k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j)); |
1746 | 3.30k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j)); |
1747 | 3.30k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2)); |
1748 | | |
1749 | | /* |
1750 | | * Compensate for negative A (and correct at the end) |
1751 | | */ |
1752 | 3.30k | neg = (A->s == -1); |
1753 | 3.30k | if (neg) { |
1754 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A)); |
1755 | 0 | Apos.s = 1; |
1756 | 0 | A = &Apos; |
1757 | 0 | } |
1758 | | |
1759 | | /* |
1760 | | * If 1st call, pre-compute R^2 mod N |
1761 | | */ |
1762 | 3.30k | if (prec_RR == NULL || prec_RR->p == NULL) { |
1763 | 3.30k | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1)); |
1764 | 3.30k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL)); |
1765 | 3.30k | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N)); |
1766 | | |
1767 | 3.30k | if (prec_RR != NULL) { |
1768 | 2.88k | memcpy(prec_RR, &RR, sizeof(mbedtls_mpi)); |
1769 | 2.88k | } |
1770 | 3.30k | } else { |
1771 | 0 | memcpy(&RR, prec_RR, sizeof(mbedtls_mpi)); |
1772 | 0 | } |
1773 | | |
1774 | | /* |
1775 | | * W[1] = A * R^2 * R^-1 mod N = A * R mod N |
1776 | | */ |
1777 | 3.30k | if (mbedtls_mpi_cmp_mpi(A, N) >= 0) { |
1778 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N)); |
1779 | | /* This should be a no-op because W[1] is already that large before |
1780 | | * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow |
1781 | | * in mpi_montmul() below, so let's make sure. */ |
1782 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1)); |
1783 | 3.30k | } else { |
1784 | 3.30k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A)); |
1785 | 3.30k | } |
1786 | | |
1787 | | /* Note that this is safe because W[1] always has at least N->n limbs |
1788 | | * (it grew above and was preserved by mbedtls_mpi_copy()). */ |
1789 | 3.30k | mpi_montmul(&W[1], &RR, N, mm, &T); |
1790 | | |
1791 | | /* |
1792 | | * W[x_index] = R^2 * R^-1 mod N = R mod N |
1793 | | */ |
1794 | 3.30k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR)); |
1795 | 3.30k | mpi_montred(&W[x_index], N, mm, &T); |
1796 | | |
1797 | | |
1798 | 3.30k | if (window_bitsize > 1) { |
1799 | | /* |
1800 | | * W[i] = W[1] ^ i |
1801 | | * |
1802 | | * The first bit of the sliding window is always 1 and therefore we |
1803 | | * only need to store the second half of the table. |
1804 | | * |
1805 | | * (There are two special elements in the table: W[0] for the |
1806 | | * accumulator/result and W[1] for A in Montgomery form. Both of these |
1807 | | * are already set at this point.) |
1808 | | */ |
1809 | 1.07k | j = w_table_used_size / 2; |
1810 | | |
1811 | 1.07k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1)); |
1812 | 1.07k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1])); |
1813 | | |
1814 | 3.67k | for (i = 0; i < window_bitsize - 1; i++) { |
1815 | 2.59k | mpi_montmul(&W[j], &W[j], N, mm, &T); |
1816 | 2.59k | } |
1817 | | |
1818 | | /* |
1819 | | * W[i] = W[i - 1] * W[1] |
1820 | | */ |
1821 | 6.21k | for (i = j + 1; i < w_table_used_size; i++) { |
1822 | 5.14k | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1)); |
1823 | 5.14k | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1])); |
1824 | | |
1825 | 5.14k | mpi_montmul(&W[i], &W[1], N, mm, &T); |
1826 | 5.14k | } |
1827 | 1.07k | } |
1828 | | |
1829 | 3.30k | nblimbs = E->n; |
1830 | 3.30k | bufsize = 0; |
1831 | 3.30k | nbits = 0; |
1832 | 3.30k | size_t exponent_bits_in_window = 0; |
1833 | 3.30k | state = 0; |
1834 | | |
1835 | 274k | while (1) { |
1836 | 274k | if (bufsize == 0) { |
1837 | 7.53k | if (nblimbs == 0) { |
1838 | 3.30k | break; |
1839 | 3.30k | } |
1840 | | |
1841 | 4.23k | nblimbs--; |
1842 | | |
1843 | 4.23k | bufsize = sizeof(mbedtls_mpi_uint) << 3; |
1844 | 4.23k | } |
1845 | | |
1846 | 270k | bufsize--; |
1847 | | |
1848 | 270k | ei = (E->p[nblimbs] >> bufsize) & 1; |
1849 | | |
1850 | | /* |
1851 | | * skip leading 0s |
1852 | | */ |
1853 | 270k | if (ei == 0 && state == 0) { |
1854 | 130k | continue; |
1855 | 130k | } |
1856 | | |
1857 | 140k | if (ei == 0 && state == 1) { |
1858 | | /* |
1859 | | * out of window, square W[x_index] |
1860 | | */ |
1861 | 50.2k | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index)); |
1862 | 50.2k | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
1863 | 50.2k | continue; |
1864 | 50.2k | } |
1865 | | |
1866 | | /* |
1867 | | * add ei to current window |
1868 | | */ |
1869 | 90.2k | state = 2; |
1870 | | |
1871 | 90.2k | nbits++; |
1872 | 90.2k | exponent_bits_in_window |= (ei << (window_bitsize - nbits)); |
1873 | | |
1874 | 90.2k | if (nbits == window_bitsize) { |
1875 | | /* |
1876 | | * W[x_index] = W[x_index]^window_bitsize R^-1 mod N |
1877 | | */ |
1878 | 117k | for (i = 0; i < window_bitsize; i++) { |
1879 | 89.4k | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, |
1880 | 89.4k | x_index)); |
1881 | 89.4k | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
1882 | 89.4k | } |
1883 | | |
1884 | | /* |
1885 | | * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N |
1886 | | */ |
1887 | 27.8k | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, |
1888 | 27.8k | exponent_bits_in_window)); |
1889 | 27.8k | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
1890 | | |
1891 | 27.8k | state--; |
1892 | 27.8k | nbits = 0; |
1893 | 27.8k | exponent_bits_in_window = 0; |
1894 | 27.8k | } |
1895 | 90.2k | } |
1896 | | |
1897 | | /* |
1898 | | * process the remaining bits |
1899 | | */ |
1900 | 4.01k | for (i = 0; i < nbits; i++) { |
1901 | 716 | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index)); |
1902 | 716 | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
1903 | | |
1904 | 716 | exponent_bits_in_window <<= 1; |
1905 | | |
1906 | 716 | if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) { |
1907 | 716 | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1)); |
1908 | 716 | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
1909 | 716 | } |
1910 | 716 | } |
1911 | | |
1912 | | /* |
1913 | | * W[x_index] = A^E * R * R^-1 mod N = A^E mod N |
1914 | | */ |
1915 | 3.30k | mpi_montred(&W[x_index], N, mm, &T); |
1916 | | |
1917 | 3.30k | if (neg && E->n != 0 && (E->p[0] & 1) != 0) { |
1918 | 0 | W[x_index].s = -1; |
1919 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index])); |
1920 | 0 | } |
1921 | | |
1922 | | /* |
1923 | | * Load the result in the output variable. |
1924 | | */ |
1925 | 3.30k | mbedtls_mpi_copy(X, &W[x_index]); |
1926 | | |
1927 | 3.30k | cleanup: |
1928 | | |
1929 | | /* The first bit of the sliding window is always 1 and therefore the first |
1930 | | * half of the table was unused. */ |
1931 | 11.7k | for (i = w_table_used_size/2; i < w_table_used_size; i++) { |
1932 | 8.44k | mbedtls_mpi_free(&W[i]); |
1933 | 8.44k | } |
1934 | | |
1935 | 3.30k | mbedtls_mpi_free(&W[x_index]); |
1936 | 3.30k | mbedtls_mpi_free(&W[1]); |
1937 | 3.30k | mbedtls_mpi_free(&T); |
1938 | 3.30k | mbedtls_mpi_free(&Apos); |
1939 | 3.30k | mbedtls_mpi_free(&WW); |
1940 | | |
1941 | 3.30k | if (prec_RR == NULL || prec_RR->p == NULL) { |
1942 | 422 | mbedtls_mpi_free(&RR); |
1943 | 422 | } |
1944 | | |
1945 | 3.30k | return ret; |
1946 | 3.30k | } |
1947 | | |
1948 | | /* |
1949 | | * Greatest common divisor: G = gcd(A, B) (HAC 14.54) |
1950 | | */ |
1951 | | int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1952 | 28 | { |
1953 | 28 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1954 | 28 | size_t lz, lzt; |
1955 | 28 | mbedtls_mpi TA, TB; |
1956 | | |
1957 | 28 | MPI_VALIDATE_RET(G != NULL); |
1958 | 28 | MPI_VALIDATE_RET(A != NULL); |
1959 | 28 | MPI_VALIDATE_RET(B != NULL); |
1960 | | |
1961 | 28 | mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB); |
1962 | | |
1963 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); |
1964 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); |
1965 | | |
1966 | 28 | lz = mbedtls_mpi_lsb(&TA); |
1967 | 28 | lzt = mbedtls_mpi_lsb(&TB); |
1968 | | |
1969 | | /* The loop below gives the correct result when A==0 but not when B==0. |
1970 | | * So have a special case for B==0. Leverage the fact that we just |
1971 | | * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test |
1972 | | * slightly more efficient than cmp_int(). */ |
1973 | 28 | if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) { |
1974 | 0 | ret = mbedtls_mpi_copy(G, A); |
1975 | 0 | goto cleanup; |
1976 | 0 | } |
1977 | | |
1978 | 28 | if (lzt < lz) { |
1979 | 7 | lz = lzt; |
1980 | 7 | } |
1981 | | |
1982 | 28 | TA.s = TB.s = 1; |
1983 | | |
1984 | | /* We mostly follow the procedure described in HAC 14.54, but with some |
1985 | | * minor differences: |
1986 | | * - Sequences of multiplications or divisions by 2 are grouped into a |
1987 | | * single shift operation. |
1988 | | * - The procedure in HAC assumes that 0 < TB <= TA. |
1989 | | * - The condition TB <= TA is not actually necessary for correctness. |
1990 | | * TA and TB have symmetric roles except for the loop termination |
1991 | | * condition, and the shifts at the beginning of the loop body |
1992 | | * remove any significance from the ordering of TA vs TB before |
1993 | | * the shifts. |
1994 | | * - If TA = 0, the loop goes through 0 iterations and the result is |
1995 | | * correctly TB. |
1996 | | * - The case TB = 0 was short-circuited above. |
1997 | | * |
1998 | | * For the correctness proof below, decompose the original values of |
1999 | | * A and B as |
2000 | | * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1 |
2001 | | * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1 |
2002 | | * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'), |
2003 | | * and gcd(A',B') is odd or 0. |
2004 | | * |
2005 | | * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB). |
2006 | | * The code maintains the following invariant: |
2007 | | * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I) |
2008 | | */ |
2009 | | |
2010 | | /* Proof that the loop terminates: |
2011 | | * At each iteration, either the right-shift by 1 is made on a nonzero |
2012 | | * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases |
2013 | | * by at least 1, or the right-shift by 1 is made on zero and then |
2014 | | * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted |
2015 | | * since in that case TB is calculated from TB-TA with the condition TB>TA). |
2016 | | */ |
2017 | 7.60k | while (mbedtls_mpi_cmp_int(&TA, 0) != 0) { |
2018 | | /* Divisions by 2 preserve the invariant (I). */ |
2019 | 7.57k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA))); |
2020 | 7.57k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB))); |
2021 | | |
2022 | | /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd, |
2023 | | * TA-TB is even so the division by 2 has an integer result. |
2024 | | * Invariant (I) is preserved since any odd divisor of both TA and TB |
2025 | | * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2 |
2026 | | * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also |
2027 | | * divides TA. |
2028 | | */ |
2029 | 7.57k | if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) { |
2030 | 3.94k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB)); |
2031 | 3.94k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1)); |
2032 | 3.94k | } else { |
2033 | 3.62k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA)); |
2034 | 3.62k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1)); |
2035 | 3.62k | } |
2036 | | /* Note that one of TA or TB is still odd. */ |
2037 | 7.57k | } |
2038 | | |
2039 | | /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k. |
2040 | | * At the loop exit, TA = 0, so gcd(TA,TB) = TB. |
2041 | | * - If there was at least one loop iteration, then one of TA or TB is odd, |
2042 | | * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case, |
2043 | | * lz = min(a,b) so gcd(A,B) = 2^lz * TB. |
2044 | | * - If there was no loop iteration, then A was 0, and gcd(A,B) = B. |
2045 | | * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well. |
2046 | | */ |
2047 | | |
2048 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz)); |
2049 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB)); |
2050 | | |
2051 | 28 | cleanup: |
2052 | | |
2053 | 28 | mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB); |
2054 | | |
2055 | 28 | return ret; |
2056 | 28 | } |
2057 | | |
2058 | | /* |
2059 | | * Fill X with size bytes of random. |
2060 | | * The bytes returned from the RNG are used in a specific order which |
2061 | | * is suitable for deterministic ECDSA (see the specification of |
2062 | | * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()). |
2063 | | */ |
2064 | | int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size, |
2065 | | int (*f_rng)(void *, unsigned char *, size_t), |
2066 | | void *p_rng) |
2067 | 0 | { |
2068 | 0 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2069 | 0 | const size_t limbs = CHARS_TO_LIMBS(size); |
2070 | |
|
2071 | 0 | MPI_VALIDATE_RET(X != NULL); |
2072 | 0 | MPI_VALIDATE_RET(f_rng != NULL); |
2073 | | |
2074 | | /* Ensure that target MPI has exactly the necessary number of limbs */ |
2075 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); |
2076 | 0 | if (size == 0) { |
2077 | 0 | return 0; |
2078 | 0 | } |
2079 | | |
2080 | 0 | ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng); |
2081 | |
|
2082 | 0 | cleanup: |
2083 | 0 | return ret; |
2084 | 0 | } |
2085 | | |
2086 | | int mbedtls_mpi_random(mbedtls_mpi *X, |
2087 | | mbedtls_mpi_sint min, |
2088 | | const mbedtls_mpi *N, |
2089 | | int (*f_rng)(void *, unsigned char *, size_t), |
2090 | | void *p_rng) |
2091 | 35 | { |
2092 | 35 | if (min < 0) { |
2093 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2094 | 0 | } |
2095 | 35 | if (mbedtls_mpi_cmp_int(N, min) <= 0) { |
2096 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2097 | 0 | } |
2098 | | |
2099 | | /* Ensure that target MPI has exactly the same number of limbs |
2100 | | * as the upper bound, even if the upper bound has leading zeros. |
2101 | | * This is necessary for mbedtls_mpi_core_random. */ |
2102 | 35 | int ret = mbedtls_mpi_resize_clear(X, N->n); |
2103 | 35 | if (ret != 0) { |
2104 | 0 | return ret; |
2105 | 0 | } |
2106 | | |
2107 | 35 | return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng); |
2108 | 35 | } |
2109 | | |
2110 | | /* |
2111 | | * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64) |
2112 | | */ |
2113 | | int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N) |
2114 | 28 | { |
2115 | 28 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2116 | 28 | mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2; |
2117 | 28 | MPI_VALIDATE_RET(X != NULL); |
2118 | 28 | MPI_VALIDATE_RET(A != NULL); |
2119 | 28 | MPI_VALIDATE_RET(N != NULL); |
2120 | | |
2121 | 28 | if (mbedtls_mpi_cmp_int(N, 1) <= 0) { |
2122 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2123 | 0 | } |
2124 | | |
2125 | 28 | mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2); |
2126 | 28 | mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV); |
2127 | 28 | mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2); |
2128 | | |
2129 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N)); |
2130 | | |
2131 | 28 | if (mbedtls_mpi_cmp_int(&G, 1) != 0) { |
2132 | 0 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2133 | 0 | goto cleanup; |
2134 | 0 | } |
2135 | | |
2136 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N)); |
2137 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA)); |
2138 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N)); |
2139 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N)); |
2140 | | |
2141 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1)); |
2142 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0)); |
2143 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0)); |
2144 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1)); |
2145 | | |
2146 | 7.57k | do { |
2147 | 15.3k | while ((TU.p[0] & 1) == 0) { |
2148 | 7.78k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1)); |
2149 | | |
2150 | 7.78k | if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) { |
2151 | 3.71k | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB)); |
2152 | 3.71k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA)); |
2153 | 3.71k | } |
2154 | | |
2155 | 7.78k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1)); |
2156 | 7.78k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1)); |
2157 | 7.78k | } |
2158 | | |
2159 | 14.9k | while ((TV.p[0] & 1) == 0) { |
2160 | 7.40k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1)); |
2161 | | |
2162 | 7.40k | if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) { |
2163 | 3.73k | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB)); |
2164 | 3.73k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA)); |
2165 | 3.73k | } |
2166 | | |
2167 | 7.40k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1)); |
2168 | 7.40k | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1)); |
2169 | 7.40k | } |
2170 | | |
2171 | 7.57k | if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) { |
2172 | 3.94k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV)); |
2173 | 3.94k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1)); |
2174 | 3.94k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2)); |
2175 | 3.94k | } else { |
2176 | 3.62k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU)); |
2177 | 3.62k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1)); |
2178 | 3.62k | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2)); |
2179 | 3.62k | } |
2180 | 7.57k | } while (mbedtls_mpi_cmp_int(&TU, 0) != 0); |
2181 | | |
2182 | 35 | while (mbedtls_mpi_cmp_int(&V1, 0) < 0) { |
2183 | 7 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N)); |
2184 | 7 | } |
2185 | | |
2186 | 28 | while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) { |
2187 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N)); |
2188 | 0 | } |
2189 | | |
2190 | 28 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1)); |
2191 | | |
2192 | 28 | cleanup: |
2193 | | |
2194 | 28 | mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2); |
2195 | 28 | mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV); |
2196 | 28 | mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2); |
2197 | | |
2198 | 28 | return ret; |
2199 | 28 | } |
2200 | | |
2201 | | #if defined(MBEDTLS_GENPRIME) |
2202 | | |
2203 | | static const int small_prime[] = |
2204 | | { |
2205 | | 3, 5, 7, 11, 13, 17, 19, 23, |
2206 | | 29, 31, 37, 41, 43, 47, 53, 59, |
2207 | | 61, 67, 71, 73, 79, 83, 89, 97, |
2208 | | 101, 103, 107, 109, 113, 127, 131, 137, |
2209 | | 139, 149, 151, 157, 163, 167, 173, 179, |
2210 | | 181, 191, 193, 197, 199, 211, 223, 227, |
2211 | | 229, 233, 239, 241, 251, 257, 263, 269, |
2212 | | 271, 277, 281, 283, 293, 307, 311, 313, |
2213 | | 317, 331, 337, 347, 349, 353, 359, 367, |
2214 | | 373, 379, 383, 389, 397, 401, 409, 419, |
2215 | | 421, 431, 433, 439, 443, 449, 457, 461, |
2216 | | 463, 467, 479, 487, 491, 499, 503, 509, |
2217 | | 521, 523, 541, 547, 557, 563, 569, 571, |
2218 | | 577, 587, 593, 599, 601, 607, 613, 617, |
2219 | | 619, 631, 641, 643, 647, 653, 659, 661, |
2220 | | 673, 677, 683, 691, 701, 709, 719, 727, |
2221 | | 733, 739, 743, 751, 757, 761, 769, 773, |
2222 | | 787, 797, 809, 811, 821, 823, 827, 829, |
2223 | | 839, 853, 857, 859, 863, 877, 881, 883, |
2224 | | 887, 907, 911, 919, 929, 937, 941, 947, |
2225 | | 953, 967, 971, 977, 983, 991, 997, -103 |
2226 | | }; |
2227 | | |
2228 | | /* |
2229 | | * Small divisors test (X must be positive) |
2230 | | * |
2231 | | * Return values: |
2232 | | * 0: no small factor (possible prime, more tests needed) |
2233 | | * 1: certain prime |
2234 | | * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime |
2235 | | * other negative: error |
2236 | | */ |
2237 | | static int mpi_check_small_factors(const mbedtls_mpi *X) |
2238 | 0 | { |
2239 | 0 | int ret = 0; |
2240 | 0 | size_t i; |
2241 | 0 | mbedtls_mpi_uint r; |
2242 | |
|
2243 | 0 | if ((X->p[0] & 1) == 0) { |
2244 | 0 | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2245 | 0 | } |
2246 | | |
2247 | 0 | for (i = 0; small_prime[i] > 0; i++) { |
2248 | 0 | if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) { |
2249 | 0 | return 1; |
2250 | 0 | } |
2251 | | |
2252 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i])); |
2253 | | |
2254 | 0 | if (r == 0) { |
2255 | 0 | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2256 | 0 | } |
2257 | 0 | } |
2258 | | |
2259 | 0 | cleanup: |
2260 | 0 | return ret; |
2261 | 0 | } |
2262 | | |
2263 | | /* |
2264 | | * Miller-Rabin pseudo-primality test (HAC 4.24) |
2265 | | */ |
2266 | | static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds, |
2267 | | int (*f_rng)(void *, unsigned char *, size_t), |
2268 | | void *p_rng) |
2269 | 0 | { |
2270 | 0 | int ret, count; |
2271 | 0 | size_t i, j, k, s; |
2272 | 0 | mbedtls_mpi W, R, T, A, RR; |
2273 | |
|
2274 | 0 | MPI_VALIDATE_RET(X != NULL); |
2275 | 0 | MPI_VALIDATE_RET(f_rng != NULL); |
2276 | |
|
2277 | 0 | mbedtls_mpi_init(&W); mbedtls_mpi_init(&R); |
2278 | 0 | mbedtls_mpi_init(&T); mbedtls_mpi_init(&A); |
2279 | 0 | mbedtls_mpi_init(&RR); |
2280 | | |
2281 | | /* |
2282 | | * W = |X| - 1 |
2283 | | * R = W >> lsb( W ) |
2284 | | */ |
2285 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1)); |
2286 | 0 | s = mbedtls_mpi_lsb(&W); |
2287 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W)); |
2288 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s)); |
2289 | | |
2290 | 0 | for (i = 0; i < rounds; i++) { |
2291 | | /* |
2292 | | * pick a random A, 1 < A < |X| - 1 |
2293 | | */ |
2294 | 0 | count = 0; |
2295 | 0 | do { |
2296 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng)); |
2297 | | |
2298 | 0 | j = mbedtls_mpi_bitlen(&A); |
2299 | 0 | k = mbedtls_mpi_bitlen(&W); |
2300 | 0 | if (j > k) { |
2301 | 0 | A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1; |
2302 | 0 | } |
2303 | |
|
2304 | 0 | if (count++ > 30) { |
2305 | 0 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2306 | 0 | goto cleanup; |
2307 | 0 | } |
2308 | |
|
2309 | 0 | } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 || |
2310 | 0 | mbedtls_mpi_cmp_int(&A, 1) <= 0); |
2311 | | |
2312 | | /* |
2313 | | * A = A^R mod |X| |
2314 | | */ |
2315 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR)); |
2316 | | |
2317 | 0 | if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 || |
2318 | 0 | mbedtls_mpi_cmp_int(&A, 1) == 0) { |
2319 | 0 | continue; |
2320 | 0 | } |
2321 | | |
2322 | 0 | j = 1; |
2323 | 0 | while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) { |
2324 | | /* |
2325 | | * A = A * A mod |X| |
2326 | | */ |
2327 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A)); |
2328 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X)); |
2329 | | |
2330 | 0 | if (mbedtls_mpi_cmp_int(&A, 1) == 0) { |
2331 | 0 | break; |
2332 | 0 | } |
2333 | | |
2334 | 0 | j++; |
2335 | 0 | } |
2336 | | |
2337 | | /* |
2338 | | * not prime if A != |X| - 1 or A == 1 |
2339 | | */ |
2340 | 0 | if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 || |
2341 | 0 | mbedtls_mpi_cmp_int(&A, 1) == 0) { |
2342 | 0 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2343 | 0 | break; |
2344 | 0 | } |
2345 | 0 | } |
2346 | | |
2347 | 0 | cleanup: |
2348 | 0 | mbedtls_mpi_free(&W); mbedtls_mpi_free(&R); |
2349 | 0 | mbedtls_mpi_free(&T); mbedtls_mpi_free(&A); |
2350 | 0 | mbedtls_mpi_free(&RR); |
2351 | |
|
2352 | 0 | return ret; |
2353 | 0 | } |
2354 | | |
2355 | | /* |
2356 | | * Pseudo-primality test: small factors, then Miller-Rabin |
2357 | | */ |
2358 | | int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds, |
2359 | | int (*f_rng)(void *, unsigned char *, size_t), |
2360 | | void *p_rng) |
2361 | 0 | { |
2362 | 0 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2363 | 0 | mbedtls_mpi XX; |
2364 | 0 | MPI_VALIDATE_RET(X != NULL); |
2365 | 0 | MPI_VALIDATE_RET(f_rng != NULL); |
2366 | |
|
2367 | 0 | XX.s = 1; |
2368 | 0 | XX.n = X->n; |
2369 | 0 | XX.p = X->p; |
2370 | |
|
2371 | 0 | if (mbedtls_mpi_cmp_int(&XX, 0) == 0 || |
2372 | 0 | mbedtls_mpi_cmp_int(&XX, 1) == 0) { |
2373 | 0 | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2374 | 0 | } |
2375 | | |
2376 | 0 | if (mbedtls_mpi_cmp_int(&XX, 2) == 0) { |
2377 | 0 | return 0; |
2378 | 0 | } |
2379 | | |
2380 | 0 | if ((ret = mpi_check_small_factors(&XX)) != 0) { |
2381 | 0 | if (ret == 1) { |
2382 | 0 | return 0; |
2383 | 0 | } |
2384 | | |
2385 | 0 | return ret; |
2386 | 0 | } |
2387 | | |
2388 | 0 | return mpi_miller_rabin(&XX, rounds, f_rng, p_rng); |
2389 | 0 | } |
2390 | | |
2391 | | /* |
2392 | | * Prime number generation |
2393 | | * |
2394 | | * To generate an RSA key in a way recommended by FIPS 186-4, both primes must |
2395 | | * be either 1024 bits or 1536 bits long, and flags must contain |
2396 | | * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR. |
2397 | | */ |
2398 | | int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags, |
2399 | | int (*f_rng)(void *, unsigned char *, size_t), |
2400 | | void *p_rng) |
2401 | 0 | { |
2402 | 0 | #ifdef MBEDTLS_HAVE_INT64 |
2403 | | // ceil(2^63.5) |
2404 | 0 | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL |
2405 | | #else |
2406 | | // ceil(2^31.5) |
2407 | | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U |
2408 | | #endif |
2409 | 0 | int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2410 | 0 | size_t k, n; |
2411 | 0 | int rounds; |
2412 | 0 | mbedtls_mpi_uint r; |
2413 | 0 | mbedtls_mpi Y; |
2414 | |
|
2415 | 0 | MPI_VALIDATE_RET(X != NULL); |
2416 | 0 | MPI_VALIDATE_RET(f_rng != NULL); |
2417 | |
|
2418 | 0 | if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) { |
2419 | 0 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2420 | 0 | } |
2421 | | |
2422 | 0 | mbedtls_mpi_init(&Y); |
2423 | |
|
2424 | 0 | n = BITS_TO_LIMBS(nbits); |
2425 | |
|
2426 | 0 | if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) { |
2427 | | /* |
2428 | | * 2^-80 error probability, number of rounds chosen per HAC, table 4.4 |
2429 | | */ |
2430 | 0 | rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 : |
2431 | 0 | (nbits >= 650) ? 4 : (nbits >= 350) ? 8 : |
2432 | 0 | (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27); |
2433 | 0 | } else { |
2434 | | /* |
2435 | | * 2^-100 error probability, number of rounds computed based on HAC, |
2436 | | * fact 4.48 |
2437 | | */ |
2438 | 0 | rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 : |
2439 | 0 | (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 : |
2440 | 0 | (nbits >= 750) ? 8 : (nbits >= 500) ? 13 : |
2441 | 0 | (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51); |
2442 | 0 | } |
2443 | |
|
2444 | 0 | while (1) { |
2445 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng)); |
2446 | | /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */ |
2447 | 0 | if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) { |
2448 | 0 | continue; |
2449 | 0 | } |
2450 | | |
2451 | 0 | k = n * biL; |
2452 | 0 | if (k > nbits) { |
2453 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits)); |
2454 | 0 | } |
2455 | 0 | X->p[0] |= 1; |
2456 | |
|
2457 | 0 | if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) { |
2458 | 0 | ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng); |
2459 | |
|
2460 | 0 | if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { |
2461 | 0 | goto cleanup; |
2462 | 0 | } |
2463 | 0 | } else { |
2464 | | /* |
2465 | | * A necessary condition for Y and X = 2Y + 1 to be prime |
2466 | | * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3). |
2467 | | * Make sure it is satisfied, while keeping X = 3 mod 4 |
2468 | | */ |
2469 | |
|
2470 | 0 | X->p[0] |= 2; |
2471 | |
|
2472 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3)); |
2473 | 0 | if (r == 0) { |
2474 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8)); |
2475 | 0 | } else if (r == 1) { |
2476 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4)); |
2477 | 0 | } |
2478 | | |
2479 | | /* Set Y = (X-1) / 2, which is X / 2 because X is odd */ |
2480 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X)); |
2481 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1)); |
2482 | | |
2483 | 0 | while (1) { |
2484 | | /* |
2485 | | * First, check small factors for X and Y |
2486 | | * before doing Miller-Rabin on any of them |
2487 | | */ |
2488 | 0 | if ((ret = mpi_check_small_factors(X)) == 0 && |
2489 | 0 | (ret = mpi_check_small_factors(&Y)) == 0 && |
2490 | 0 | (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng)) |
2491 | 0 | == 0 && |
2492 | 0 | (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng)) |
2493 | 0 | == 0) { |
2494 | 0 | goto cleanup; |
2495 | 0 | } |
2496 | | |
2497 | 0 | if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { |
2498 | 0 | goto cleanup; |
2499 | 0 | } |
2500 | | |
2501 | | /* |
2502 | | * Next candidates. We want to preserve Y = (X-1) / 2 and |
2503 | | * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3) |
2504 | | * so up Y by 6 and X by 12. |
2505 | | */ |
2506 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12)); |
2507 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6)); |
2508 | 0 | } |
2509 | 0 | } |
2510 | 0 | } |
2511 | | |
2512 | 0 | cleanup: |
2513 | |
|
2514 | 0 | mbedtls_mpi_free(&Y); |
2515 | |
|
2516 | 0 | return ret; |
2517 | 0 | } |
2518 | | |
2519 | | #endif /* MBEDTLS_GENPRIME */ |
2520 | | |
2521 | | #if defined(MBEDTLS_SELF_TEST) |
2522 | | |
2523 | 0 | #define GCD_PAIR_COUNT 3 |
2524 | | |
2525 | | static const int gcd_pairs[GCD_PAIR_COUNT][3] = |
2526 | | { |
2527 | | { 693, 609, 21 }, |
2528 | | { 1764, 868, 28 }, |
2529 | | { 768454923, 542167814, 1 } |
2530 | | }; |
2531 | | |
2532 | | /* |
2533 | | * Checkup routine |
2534 | | */ |
2535 | | int mbedtls_mpi_self_test(int verbose) |
2536 | 0 | { |
2537 | 0 | int ret, i; |
2538 | 0 | mbedtls_mpi A, E, N, X, Y, U, V; |
2539 | |
|
2540 | 0 | mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X); |
2541 | 0 | mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V); |
2542 | |
|
2543 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16, |
2544 | 0 | "EFE021C2645FD1DC586E69184AF4A31E" \ |
2545 | 0 | "D5F53E93B5F123FA41680867BA110131" \ |
2546 | 0 | "944FE7952E2517337780CB0DB80E61AA" \ |
2547 | 0 | "E7C8DDC6C5C6AADEB34EB38A2F40D5E6")); |
2548 | | |
2549 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16, |
2550 | 0 | "B2E7EFD37075B9F03FF989C7C5051C20" \ |
2551 | 0 | "34D2A323810251127E7BF8625A4F49A5" \ |
2552 | 0 | "F3E27F4DA8BD59C47D6DAABA4C8127BD" \ |
2553 | 0 | "5B5C25763222FEFCCFC38B832366C29E")); |
2554 | | |
2555 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16, |
2556 | 0 | "0066A198186C18C10B2F5ED9B522752A" \ |
2557 | 0 | "9830B69916E535C8F047518A889A43A5" \ |
2558 | 0 | "94B6BED27A168D31D4A52F88925AA8F5")); |
2559 | | |
2560 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N)); |
2561 | | |
2562 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, |
2563 | 0 | "602AB7ECA597A3D6B56FF9829A5E8B85" \ |
2564 | 0 | "9E857EA95A03512E2BAE7391688D264A" \ |
2565 | 0 | "A5663B0341DB9CCFD2C4C5F421FEC814" \ |
2566 | 0 | "8001B72E848A38CAE1C65F78E56ABDEF" \ |
2567 | 0 | "E12D3C039B8A02D6BE593F0BBBDA56F1" \ |
2568 | 0 | "ECF677152EF804370C1A305CAF3B5BF1" \ |
2569 | 0 | "30879B56C61DE584A0F53A2447A51E")); |
2570 | | |
2571 | 0 | if (verbose != 0) { |
2572 | 0 | mbedtls_printf(" MPI test #1 (mul_mpi): "); |
2573 | 0 | } |
2574 | |
|
2575 | 0 | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { |
2576 | 0 | if (verbose != 0) { |
2577 | 0 | mbedtls_printf("failed\n"); |
2578 | 0 | } |
2579 | |
|
2580 | 0 | ret = 1; |
2581 | 0 | goto cleanup; |
2582 | 0 | } |
2583 | | |
2584 | 0 | if (verbose != 0) { |
2585 | 0 | mbedtls_printf("passed\n"); |
2586 | 0 | } |
2587 | |
|
2588 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N)); |
2589 | | |
2590 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, |
2591 | 0 | "256567336059E52CAE22925474705F39A94")); |
2592 | | |
2593 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16, |
2594 | 0 | "6613F26162223DF488E9CD48CC132C7A" \ |
2595 | 0 | "0AC93C701B001B092E4E5B9F73BCD27B" \ |
2596 | 0 | "9EE50D0657C77F374E903CDFA4C642")); |
2597 | | |
2598 | 0 | if (verbose != 0) { |
2599 | 0 | mbedtls_printf(" MPI test #2 (div_mpi): "); |
2600 | 0 | } |
2601 | |
|
2602 | 0 | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 || |
2603 | 0 | mbedtls_mpi_cmp_mpi(&Y, &V) != 0) { |
2604 | 0 | if (verbose != 0) { |
2605 | 0 | mbedtls_printf("failed\n"); |
2606 | 0 | } |
2607 | |
|
2608 | 0 | ret = 1; |
2609 | 0 | goto cleanup; |
2610 | 0 | } |
2611 | | |
2612 | 0 | if (verbose != 0) { |
2613 | 0 | mbedtls_printf("passed\n"); |
2614 | 0 | } |
2615 | |
|
2616 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL)); |
2617 | | |
2618 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, |
2619 | 0 | "36E139AEA55215609D2816998ED020BB" \ |
2620 | 0 | "BD96C37890F65171D948E9BC7CBAA4D9" \ |
2621 | 0 | "325D24D6A3C12710F10A09FA08AB87")); |
2622 | | |
2623 | 0 | if (verbose != 0) { |
2624 | 0 | mbedtls_printf(" MPI test #3 (exp_mod): "); |
2625 | 0 | } |
2626 | |
|
2627 | 0 | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { |
2628 | 0 | if (verbose != 0) { |
2629 | 0 | mbedtls_printf("failed\n"); |
2630 | 0 | } |
2631 | |
|
2632 | 0 | ret = 1; |
2633 | 0 | goto cleanup; |
2634 | 0 | } |
2635 | | |
2636 | 0 | if (verbose != 0) { |
2637 | 0 | mbedtls_printf("passed\n"); |
2638 | 0 | } |
2639 | |
|
2640 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N)); |
2641 | | |
2642 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, |
2643 | 0 | "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \ |
2644 | 0 | "C3DBA76456363A10869622EAC2DD84EC" \ |
2645 | 0 | "C5B8A74DAC4D09E03B5E0BE779F2DF61")); |
2646 | | |
2647 | 0 | if (verbose != 0) { |
2648 | 0 | mbedtls_printf(" MPI test #4 (inv_mod): "); |
2649 | 0 | } |
2650 | |
|
2651 | 0 | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { |
2652 | 0 | if (verbose != 0) { |
2653 | 0 | mbedtls_printf("failed\n"); |
2654 | 0 | } |
2655 | |
|
2656 | 0 | ret = 1; |
2657 | 0 | goto cleanup; |
2658 | 0 | } |
2659 | | |
2660 | 0 | if (verbose != 0) { |
2661 | 0 | mbedtls_printf("passed\n"); |
2662 | 0 | } |
2663 | |
|
2664 | 0 | if (verbose != 0) { |
2665 | 0 | mbedtls_printf(" MPI test #5 (simple gcd): "); |
2666 | 0 | } |
2667 | |
|
2668 | 0 | for (i = 0; i < GCD_PAIR_COUNT; i++) { |
2669 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0])); |
2670 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1])); |
2671 | | |
2672 | 0 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y)); |
2673 | | |
2674 | 0 | if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) { |
2675 | 0 | if (verbose != 0) { |
2676 | 0 | mbedtls_printf("failed at %d\n", i); |
2677 | 0 | } |
2678 | |
|
2679 | 0 | ret = 1; |
2680 | 0 | goto cleanup; |
2681 | 0 | } |
2682 | 0 | } |
2683 | | |
2684 | 0 | if (verbose != 0) { |
2685 | 0 | mbedtls_printf("passed\n"); |
2686 | 0 | } |
2687 | |
|
2688 | 0 | cleanup: |
2689 | |
|
2690 | 0 | if (ret != 0 && verbose != 0) { |
2691 | 0 | mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret); |
2692 | 0 | } |
2693 | |
|
2694 | 0 | mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X); |
2695 | 0 | mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V); |
2696 | |
|
2697 | 0 | if (verbose != 0) { |
2698 | 0 | mbedtls_printf("\n"); |
2699 | 0 | } |
2700 | |
|
2701 | 0 | return ret; |
2702 | 0 | } |
2703 | | |
2704 | | #endif /* MBEDTLS_SELF_TEST */ |
2705 | | |
2706 | | #endif /* MBEDTLS_BIGNUM_C */ |