Coverage Report

Created: 2023-03-26 14:49

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
1.35M
{
79
1.35M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
1.35M
  int ci, blkn, dctbl, actbl;
81
1.35M
  d_derived_tbl **pdtbl;
82
1.35M
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
1.35M
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
1.35M
      cinfo->Ah != 0 || cinfo->Al != 0)
90
1.33M
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
2.84M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
1.48M
    compptr = cinfo->cur_comp_info[ci];
94
1.48M
    dctbl = compptr->dc_tbl_no;
95
1.48M
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
1.48M
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
1.48M
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
1.48M
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
1.48M
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
1.48M
    entropy->saved.last_dc_val[ci] = 0;
104
1.48M
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
3.13M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
1.77M
    ci = cinfo->MCU_membership[blkn];
109
1.77M
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
1.77M
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
1.77M
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
1.77M
    if (compptr->component_needed) {
115
1.28M
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
1.28M
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
1.28M
    } else {
119
491k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
491k
    }
121
1.77M
  }
122
123
  /* Initialize bitread state variables */
124
1.35M
  entropy->bitstate.bits_left = 0;
125
1.35M
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
1.35M
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
1.35M
  entropy->restarts_to_go = cinfo->restart_interval;
130
1.35M
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
3.49M
{
144
3.49M
  JHUFF_TBL *htbl;
145
3.49M
  d_derived_tbl *dtbl;
146
3.49M
  int p, i, l, si, numsymbols;
147
3.49M
  int lookbits, ctr;
148
3.49M
  char huffsize[257];
149
3.49M
  unsigned int huffcode[257];
150
3.49M
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
3.49M
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
3.86k
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
3.49M
  htbl =
160
3.49M
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
3.49M
  if (htbl == NULL)
162
354
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
3.49M
  if (*pdtbl == NULL)
166
250k
    *pdtbl = (d_derived_tbl *)
167
250k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
250k
                                  sizeof(d_derived_tbl));
169
3.49M
  dtbl = *pdtbl;
170
3.49M
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
3.49M
  p = 0;
175
59.3M
  for (l = 1; l <= 16; l++) {
176
55.8M
    i = (int)htbl->bits[l];
177
55.8M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
111M
    while (i--)
180
55.1M
      huffsize[p++] = (char)l;
181
55.8M
  }
182
3.49M
  huffsize[p] = 0;
183
3.49M
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
3.49M
  code = 0;
189
3.49M
  si = huffsize[0];
190
3.49M
  p = 0;
191
24.9M
  while (huffsize[p]) {
192
76.5M
    while (((int)huffsize[p]) == si) {
193
55.1M
      huffcode[p++] = code;
194
55.1M
      code++;
195
55.1M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
21.4M
    if (((JLONG)code) >= (((JLONG)1) << si))
200
590
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
21.4M
    code <<= 1;
202
21.4M
    si++;
203
21.4M
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
3.49M
  p = 0;
208
59.3M
  for (l = 1; l <= 16; l++) {
209
55.8M
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
17.2M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
17.2M
      p += htbl->bits[l];
215
17.2M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
38.6M
    } else {
217
38.6M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
38.6M
    }
219
55.8M
  }
220
3.49M
  dtbl->valoffset[17] = 0;
221
3.49M
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
897M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
894M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
3.49M
  p = 0;
234
31.4M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
70.1M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
42.2M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
756M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
714M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
714M
        lookbits++;
242
714M
      }
243
42.2M
    }
244
27.9M
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
3.49M
  if (isDC) {
253
11.3M
    for (i = 0; i < numsymbols; i++) {
254
9.76M
      int sym = htbl->huffval[i];
255
9.76M
      if (sym < 0 || sym > 15)
256
1.70k
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
9.76M
    }
258
1.61M
  }
259
3.49M
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
100M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
30.9M
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
30.9M
  register const JOCTET *next_input_byte = state->next_input_byte;
292
30.9M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
30.9M
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
30.9M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
84.6M
    while (bits_left < MIN_GET_BITS) {
301
75.5M
      register int c;
302
303
      /* Attempt to read a byte */
304
75.5M
      if (bytes_in_buffer == 0) {
305
25.7k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
0
          return FALSE;
307
25.7k
        next_input_byte = cinfo->src->next_input_byte;
308
25.7k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
25.7k
      }
310
75.5M
      bytes_in_buffer--;
311
75.5M
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
75.5M
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
3.42M
        do {
321
3.42M
          if (bytes_in_buffer == 0) {
322
2.41k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
0
              return FALSE;
324
2.41k
            next_input_byte = cinfo->src->next_input_byte;
325
2.41k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
2.41k
          }
327
3.42M
          bytes_in_buffer--;
328
3.42M
          c = *next_input_byte++;
329
3.42M
        } while (c == 0xFF);
330
331
2.02M
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
177k
          c = 0xFF;
334
1.85M
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
1.85M
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
1.85M
          goto no_more_bytes;
346
1.85M
        }
347
2.02M
      }
348
349
      /* OK, load c into get_buffer */
350
73.7M
      get_buffer = (get_buffer << 8) | c;
351
73.7M
      bits_left += 8;
352
73.7M
    } /* end while */
353
19.9M
  } else {
354
21.7M
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
21.7M
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
7.72M
      if (!cinfo->entropy->insufficient_data) {
366
1.98M
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
1.98M
        cinfo->entropy->insufficient_data = TRUE;
368
1.98M
      }
369
      /* Fill the buffer with zero bits */
370
7.72M
      get_buffer <<= MIN_GET_BITS - bits_left;
371
7.72M
      bits_left = MIN_GET_BITS;
372
7.72M
    }
373
21.7M
  }
374
375
  /* Unload the local registers */
376
30.9M
  state->next_input_byte = next_input_byte;
377
30.9M
  state->bytes_in_buffer = bytes_in_buffer;
378
30.9M
  state->get_buffer = get_buffer;
379
30.9M
  state->bits_left = bits_left;
380
381
30.9M
  return TRUE;
382
30.9M
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
65.7M
#define GET_BYTE { \
390
65.7M
  register int c0, c1; \
391
65.7M
  c0 = *buffer++; \
392
65.7M
  c1 = *buffer; \
393
65.7M
  /* Pre-execute most common case */ \
394
65.7M
  get_buffer = (get_buffer << 8) | c0; \
395
65.7M
  bits_left += 8; \
396
65.7M
  if (c0 == 0xFF) { \
397
10.7M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
10.7M
    buffer++; \
399
10.7M
    if (c1 != 0) { \
400
10.4M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
10.4M
      cinfo->unread_marker = c1; \
402
10.4M
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
10.4M
      buffer -= 2; \
404
10.4M
      get_buffer &= ~0xFF; \
405
10.4M
    } \
406
10.7M
  } \
407
65.7M
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
158M
  if (bits_left <= 16) { \
414
10.9M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
10.9M
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
20.5M
{
438
20.5M
  register int l = min_bits;
439
20.5M
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
20.5M
  CHECK_BIT_BUFFER(*state, l, return -1);
445
20.5M
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
90.4M
  while (code > htbl->maxcode[l]) {
451
69.9M
    code <<= 1;
452
69.9M
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
69.9M
    code |= GET_BITS(1);
454
69.9M
    l++;
455
69.9M
  }
456
457
  /* Unload the local registers */
458
20.5M
  state->get_buffer = get_buffer;
459
20.5M
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
20.5M
  if (l > 16) {
464
5.29M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
5.29M
    return 0;                   /* fake a zero as the safest result */
466
5.29M
  }
467
468
15.2M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
20.5M
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
133M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
133M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
6.51M
{
512
6.51M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
6.51M
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
6.51M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
6.51M
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
6.51M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
0
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
13.2M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
6.75M
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
6.51M
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
6.51M
  if (cinfo->unread_marker == 0)
537
248k
    entropy->pub.insufficient_data = FALSE;
538
539
6.51M
  return TRUE;
540
6.51M
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
5.13M
{
552
5.13M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
5.13M
  BITREAD_STATE_VARS;
554
5.13M
  int blkn;
555
5.13M
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
5.13M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
5.13M
  state = entropy->saved;
561
562
12.3M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
7.21M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
7.21M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
7.21M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
7.21M
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
7.21M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
7.21M
    if (s) {
573
5.28M
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
5.28M
      r = GET_BITS(s);
575
5.28M
      s = HUFF_EXTEND(r, s);
576
5.28M
    }
577
578
7.21M
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
5.33M
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
5.33M
      s += state.last_dc_val[ci];
590
5.33M
      state.last_dc_val[ci] = s;
591
5.33M
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
5.33M
        (*block)[0] = (JCOEF)s;
594
5.33M
      }
595
5.33M
    }
596
597
7.21M
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
81.2M
      for (k = 1; k < DCTSIZE2; k++) {
602
79.9M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
79.9M
        r = s >> 4;
605
79.9M
        s &= 15;
606
607
79.9M
        if (s) {
608
75.5M
          k += r;
609
75.5M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
75.5M
          r = GET_BITS(s);
611
75.5M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
75.5M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
75.5M
        } else {
618
4.42M
          if (r != 15)
619
4.05M
            break;
620
373k
          k += 15;
621
373k
        }
622
79.9M
      }
623
624
5.33M
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
32.2M
      for (k = 1; k < DCTSIZE2; k++) {
629
31.7M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
31.7M
        r = s >> 4;
632
31.7M
        s &= 15;
633
634
31.7M
        if (s) {
635
30.3M
          k += r;
636
30.3M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
30.3M
          DROP_BITS(s);
638
30.3M
        } else {
639
1.39M
          if (r != 15)
640
1.35M
            break;
641
36.0k
          k += 15;
642
36.0k
        }
643
31.7M
      }
644
1.87M
    }
645
7.21M
  }
646
647
  /* Completed MCU, so update state */
648
5.13M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
5.13M
  entropy->saved = state;
650
5.13M
  return TRUE;
651
5.13M
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
11.9M
{
663
11.9M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
11.9M
  BITREAD_STATE_VARS;
665
11.9M
  JOCTET *buffer;
666
11.9M
  int blkn;
667
11.9M
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
11.9M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
11.9M
  buffer = (JOCTET *)br_state.next_input_byte;
673
11.9M
  state = entropy->saved;
674
675
24.6M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
12.7M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
12.7M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
12.7M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
12.7M
    register int s, k, r, l;
680
681
12.7M
    HUFF_DECODE_FAST(s, l, dctbl);
682
12.7M
    if (s) {
683
9.69M
      FILL_BIT_BUFFER_FAST
684
9.69M
      r = GET_BITS(s);
685
9.69M
      s = HUFF_EXTEND(r, s);
686
9.69M
    }
687
688
12.7M
    if (entropy->dc_needed[blkn]) {
689
8.72M
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
8.72M
      s += state.last_dc_val[ci];
694
8.72M
      state.last_dc_val[ci] = s;
695
8.72M
      if (block)
696
8.72M
        (*block)[0] = (JCOEF)s;
697
8.72M
    }
698
699
12.7M
    if (entropy->ac_needed[blkn] && block) {
700
701
51.8M
      for (k = 1; k < DCTSIZE2; k++) {
702
50.9M
        HUFF_DECODE_FAST(s, l, actbl);
703
50.9M
        r = s >> 4;
704
50.9M
        s &= 15;
705
706
50.9M
        if (s) {
707
42.9M
          k += r;
708
42.9M
          FILL_BIT_BUFFER_FAST
709
42.9M
          r = GET_BITS(s);
710
42.9M
          s = HUFF_EXTEND(r, s);
711
42.9M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
42.9M
        } else {
713
8.03M
          if (r != 15) break;
714
211k
          k += 15;
715
211k
        }
716
50.9M
      }
717
718
8.72M
    } else {
719
720
23.4M
      for (k = 1; k < DCTSIZE2; k++) {
721
23.0M
        HUFF_DECODE_FAST(s, l, actbl);
722
23.0M
        r = s >> 4;
723
23.0M
        s &= 15;
724
725
23.0M
        if (s) {
726
19.3M
          k += r;
727
19.3M
          FILL_BIT_BUFFER_FAST
728
19.3M
          DROP_BITS(s);
729
19.3M
        } else {
730
3.68M
          if (r != 15) break;
731
88.5k
          k += 15;
732
88.5k
        }
733
23.0M
      }
734
3.99M
    }
735
12.7M
  }
736
737
11.9M
  if (cinfo->unread_marker != 0) {
738
776k
    cinfo->unread_marker = 0;
739
776k
    return FALSE;
740
776k
  }
741
742
11.2M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
11.2M
  br_state.next_input_byte = buffer;
744
11.2M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
11.2M
  entropy->saved = state;
746
11.2M
  return TRUE;
747
11.9M
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
92.3M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
92.3M
{
770
92.3M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
92.3M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
92.3M
  if (cinfo->restart_interval) {
775
32.2M
    if (entropy->restarts_to_go == 0)
776
6.51M
      if (!process_restart(cinfo))
777
0
        return FALSE;
778
32.2M
    usefast = 0;
779
32.2M
  }
780
781
92.3M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
92.3M
      cinfo->unread_marker != 0)
783
78.0M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
92.3M
  if (!entropy->pub.insufficient_data) {
789
790
16.3M
    if (usefast) {
791
11.9M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
11.9M
    } else {
793
5.13M
use_slow:
794
5.13M
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
5.13M
    }
796
797
16.3M
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
92.3M
  if (cinfo->restart_interval)
801
32.2M
    entropy->restarts_to_go--;
802
803
92.3M
  return TRUE;
804
92.3M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
66.7k
{
814
66.7k
  huff_entropy_ptr entropy;
815
66.7k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
66.7k
  std_huff_tables((j_common_ptr)cinfo);
822
823
66.7k
  entropy = (huff_entropy_ptr)
824
66.7k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
66.7k
                                sizeof(huff_entropy_decoder));
826
66.7k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
66.7k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
66.7k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
333k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
267k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
267k
  }
834
66.7k
}