Coverage Report

Created: 2023-03-26 14:50

/src/libpcap/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
#include <limits.h> /* for SIZE_MAX */
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
#include "diag-control.h"
43
44
#ifdef HAVE_OS_PROTO_H
45
#include "os-proto.h"
46
#endif
47
48
#ifdef BDEBUG
49
/*
50
 * The internal "debug printout" flag for the filter expression optimizer.
51
 * The code to print that stuff is present only if BDEBUG is defined, so
52
 * the flag, and the routine to set it, are defined only if BDEBUG is
53
 * defined.
54
 */
55
static int pcap_optimizer_debug;
56
57
/*
58
 * Routine to set that flag.
59
 *
60
 * This is intended for libpcap developers, not for general use.
61
 * If you want to set these in a program, you'll have to declare this
62
 * routine yourself, with the appropriate DLL import attribute on Windows;
63
 * it's not declared in any header file, and won't be declared in any
64
 * header file provided by libpcap.
65
 */
66
PCAP_API void pcap_set_optimizer_debug(int value);
67
68
PCAP_API_DEF void
69
pcap_set_optimizer_debug(int value)
70
{
71
  pcap_optimizer_debug = value;
72
}
73
74
/*
75
 * The internal "print dot graph" flag for the filter expression optimizer.
76
 * The code to print that stuff is present only if BDEBUG is defined, so
77
 * the flag, and the routine to set it, are defined only if BDEBUG is
78
 * defined.
79
 */
80
static int pcap_print_dot_graph;
81
82
/*
83
 * Routine to set that flag.
84
 *
85
 * This is intended for libpcap developers, not for general use.
86
 * If you want to set these in a program, you'll have to declare this
87
 * routine yourself, with the appropriate DLL import attribute on Windows;
88
 * it's not declared in any header file, and won't be declared in any
89
 * header file provided by libpcap.
90
 */
91
PCAP_API void pcap_set_print_dot_graph(int value);
92
93
PCAP_API_DEF void
94
pcap_set_print_dot_graph(int value)
95
{
96
  pcap_print_dot_graph = value;
97
}
98
99
#endif
100
101
/*
102
 * lowest_set_bit().
103
 *
104
 * Takes a 32-bit integer as an argument.
105
 *
106
 * If handed a non-zero value, returns the index of the lowest set bit,
107
 * counting upwards from zero.
108
 *
109
 * If handed zero, the results are platform- and compiler-dependent.
110
 * Keep it out of the light, don't give it any water, don't feed it
111
 * after midnight, and don't pass zero to it.
112
 *
113
 * This is the same as the count of trailing zeroes in the word.
114
 */
115
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116
  /*
117
   * GCC 3.4 and later; we have __builtin_ctz().
118
   */
119
5.99M
  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120
#elif defined(_MSC_VER)
121
  /*
122
   * Visual Studio; we support only 2005 and later, so use
123
   * _BitScanForward().
124
   */
125
#include <intrin.h>
126
127
#ifndef __clang__
128
#pragma intrinsic(_BitScanForward)
129
#endif
130
131
static __forceinline u_int
132
lowest_set_bit(int mask)
133
{
134
  unsigned long bit;
135
136
  /*
137
   * Don't sign-extend mask if long is longer than int.
138
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139
   */
140
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141
    abort();  /* mask is zero */
142
  return (u_int)bit;
143
}
144
#elif defined(MSDOS) && defined(__DJGPP__)
145
  /*
146
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147
   * we've already included.
148
   */
149
  #define lowest_set_bit(mask)  ((u_int)(ffs((mask)) - 1))
150
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151
  /*
152
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153
   * or some other platform (UN*X conforming to a sufficient recent version
154
   * of the Single UNIX Specification).
155
   */
156
  #include <strings.h>
157
  #define lowest_set_bit(mask)  (u_int)((ffs((mask)) - 1))
158
#else
159
/*
160
 * None of the above.
161
 * Use a perfect-hash-function-based function.
162
 */
163
static u_int
164
lowest_set_bit(int mask)
165
{
166
  unsigned int v = (unsigned int)mask;
167
168
  static const u_int MultiplyDeBruijnBitPosition[32] = {
169
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171
  };
172
173
  /*
174
   * We strip off all but the lowermost set bit (v & ~v),
175
   * and perform a minimal perfect hash on it to look up the
176
   * number of low-order zero bits in a table.
177
   *
178
   * See:
179
   *
180
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181
   *
182
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
183
   */
184
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185
}
186
#endif
187
188
/*
189
 * Represents a deleted instruction.
190
 */
191
108M
#define NOP -1
192
193
/*
194
 * Register numbers for use-def values.
195
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196
 * location.  A_ATOM is the accumulator and X_ATOM is the index
197
 * register.
198
 */
199
43.5M
#define A_ATOM BPF_MEMWORDS
200
7.39M
#define X_ATOM (BPF_MEMWORDS+1)
201
202
/*
203
 * This define is used to represent *both* the accumulator and
204
 * x register in use-def computations.
205
 * Currently, the use-def code assumes only one definition per instruction.
206
 */
207
16.5M
#define AX_ATOM N_ATOMS
208
209
/*
210
 * These data structures are used in a Cocke and Shwarz style
211
 * value numbering scheme.  Since the flowgraph is acyclic,
212
 * exit values can be propagated from a node's predecessors
213
 * provided it is uniquely defined.
214
 */
215
struct valnode {
216
  int code;
217
  bpf_u_int32 v0, v1;
218
  int val;    /* the value number */
219
  struct valnode *next;
220
};
221
222
/* Integer constants mapped with the load immediate opcode. */
223
3.18M
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225
struct vmapinfo {
226
  int is_const;
227
  bpf_u_int32 const_val;
228
};
229
230
typedef struct {
231
  /*
232
   * Place to longjmp to on an error.
233
   */
234
  jmp_buf top_ctx;
235
236
  /*
237
   * The buffer into which to put error message.
238
   */
239
  char *errbuf;
240
241
  /*
242
   * A flag to indicate that further optimization is needed.
243
   * Iterative passes are continued until a given pass yields no
244
   * code simplification or branch movement.
245
   */
246
  int done;
247
248
  /*
249
   * XXX - detect loops that do nothing but repeated AND/OR pullups
250
   * and edge moves.
251
   * If 100 passes in a row do nothing but that, treat that as a
252
   * sign that we're in a loop that just shuffles in a cycle in
253
   * which each pass just shuffles the code and we eventually
254
   * get back to the original configuration.
255
   *
256
   * XXX - we need a non-heuristic way of detecting, or preventing,
257
   * such a cycle.
258
   */
259
  int non_branch_movement_performed;
260
261
  u_int n_blocks;   /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262
  struct block **blocks;
263
  u_int n_edges;    /* twice n_blocks, so guaranteed to be > 0 */
264
  struct edge **edges;
265
266
  /*
267
   * A bit vector set representation of the dominators.
268
   * We round up the set size to the next power of two.
269
   */
270
  u_int nodewords;  /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271
  u_int edgewords;  /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272
  struct block **levels;
273
  bpf_u_int32 *space;
274
275
20.3M
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276
/*
277
 * True if a is in uset {p}
278
 */
279
1.39M
#define SET_MEMBER(p, a) \
280
1.39M
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282
/*
283
 * Add 'a' to uset p.
284
 */
285
5.73M
#define SET_INSERT(p, a) \
286
5.73M
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288
/*
289
 * Delete 'a' from uset p.
290
 */
291
#define SET_DELETE(p, a) \
292
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294
/*
295
 * a := a intersect b
296
 * n must be guaranteed to be > 0
297
 */
298
6.95M
#define SET_INTERSECT(a, b, n)\
299
6.95M
{\
300
6.95M
  register bpf_u_int32 *_x = a, *_y = b;\
301
6.95M
  register u_int _n = n;\
302
26.3M
  do *_x++ &= *_y++; while (--_n != 0);\
303
6.95M
}
304
305
/*
306
 * a := a - b
307
 * n must be guaranteed to be > 0
308
 */
309
#define SET_SUBTRACT(a, b, n)\
310
{\
311
  register bpf_u_int32 *_x = a, *_y = b;\
312
  register u_int _n = n;\
313
  do *_x++ &=~ *_y++; while (--_n != 0);\
314
}
315
316
/*
317
 * a := a union b
318
 * n must be guaranteed to be > 0
319
 */
320
2.31M
#define SET_UNION(a, b, n)\
321
2.31M
{\
322
2.31M
  register bpf_u_int32 *_x = a, *_y = b;\
323
2.31M
  register u_int _n = n;\
324
5.77M
  do *_x++ |= *_y++; while (--_n != 0);\
325
2.31M
}
326
327
  uset all_dom_sets;
328
  uset all_closure_sets;
329
  uset all_edge_sets;
330
331
5.52M
#define MODULUS 213
332
  struct valnode *hashtbl[MODULUS];
333
  bpf_u_int32 curval;
334
  bpf_u_int32 maxval;
335
336
  struct vmapinfo *vmap;
337
  struct valnode *vnode_base;
338
  struct valnode *next_vnode;
339
} opt_state_t;
340
341
typedef struct {
342
  /*
343
   * Place to longjmp to on an error.
344
   */
345
  jmp_buf top_ctx;
346
347
  /*
348
   * The buffer into which to put error message.
349
   */
350
  char *errbuf;
351
352
  /*
353
   * Some pointers used to convert the basic block form of the code,
354
   * into the array form that BPF requires.  'fstart' will point to
355
   * the malloc'd array while 'ftail' is used during the recursive
356
   * traversal.
357
   */
358
  struct bpf_insn *fstart;
359
  struct bpf_insn *ftail;
360
} conv_state_t;
361
362
static void opt_init(opt_state_t *, struct icode *);
363
static void opt_cleanup(opt_state_t *);
364
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365
    PCAP_PRINTFLIKE(2, 3);
366
367
static void intern_blocks(opt_state_t *, struct icode *);
368
369
static void find_inedges(opt_state_t *, struct block *);
370
#ifdef BDEBUG
371
static void opt_dump(opt_state_t *, struct icode *);
372
#endif
373
374
#ifndef MAX
375
1.15M
#define MAX(a,b) ((a)>(b)?(a):(b))
376
#endif
377
378
static void
379
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380
2.48M
{
381
2.48M
  int level;
382
383
2.48M
  if (isMarked(ic, b))
384
1.05M
    return;
385
386
1.43M
  Mark(ic, b);
387
1.43M
  b->link = 0;
388
389
1.43M
  if (JT(b)) {
390
1.15M
    find_levels_r(opt_state, ic, JT(b));
391
1.15M
    find_levels_r(opt_state, ic, JF(b));
392
1.15M
    level = MAX(JT(b)->level, JF(b)->level) + 1;
393
1.15M
  } else
394
273k
    level = 0;
395
1.43M
  b->level = level;
396
1.43M
  b->link = opt_state->levels[level];
397
1.43M
  opt_state->levels[level] = b;
398
1.43M
}
399
400
/*
401
 * Level graph.  The levels go from 0 at the leaves to
402
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403
 * first node of the level list, whose elements are linked
404
 * with the 'link' field of the struct block.
405
 */
406
static void
407
find_levels(opt_state_t *opt_state, struct icode *ic)
408
167k
{
409
167k
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410
167k
  unMarkAll(ic);
411
167k
  find_levels_r(opt_state, ic, ic->root);
412
167k
}
413
414
/*
415
 * Find dominator relationships.
416
 * Assumes graph has been leveled.
417
 */
418
static void
419
find_dom(opt_state_t *opt_state, struct block *root)
420
167k
{
421
167k
  u_int i;
422
167k
  int level;
423
167k
  struct block *b;
424
167k
  bpf_u_int32 *x;
425
426
  /*
427
   * Initialize sets to contain all nodes.
428
   */
429
167k
  x = opt_state->all_dom_sets;
430
  /*
431
   * In opt_init(), we've made sure the product doesn't overflow.
432
   */
433
167k
  i = opt_state->n_blocks * opt_state->nodewords;
434
9.31M
  while (i != 0) {
435
9.14M
    --i;
436
9.14M
    *x++ = 0xFFFFFFFFU;
437
9.14M
  }
438
  /* Root starts off empty. */
439
391k
  for (i = opt_state->nodewords; i != 0;) {
440
224k
    --i;
441
224k
    root->dom[i] = 0;
442
224k
  }
443
444
  /* root->level is the highest level no found. */
445
1.46M
  for (level = root->level; level >= 0; --level) {
446
2.72M
    for (b = opt_state->levels[level]; b; b = b->link) {
447
1.43M
      SET_INSERT(b->dom, b->id);
448
1.43M
      if (JT(b) == 0)
449
273k
        continue;
450
1.15M
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451
1.15M
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452
1.15M
    }
453
1.29M
  }
454
167k
}
455
456
static void
457
propedom(opt_state_t *opt_state, struct edge *ep)
458
2.86M
{
459
2.86M
  SET_INSERT(ep->edom, ep->id);
460
2.86M
  if (ep->succ) {
461
2.31M
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462
2.31M
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463
2.31M
  }
464
2.86M
}
465
466
/*
467
 * Compute edge dominators.
468
 * Assumes graph has been leveled and predecessors established.
469
 */
470
static void
471
find_edom(opt_state_t *opt_state, struct block *root)
472
167k
{
473
167k
  u_int i;
474
167k
  uset x;
475
167k
  int level;
476
167k
  struct block *b;
477
478
167k
  x = opt_state->all_edge_sets;
479
  /*
480
   * In opt_init(), we've made sure the product doesn't overflow.
481
   */
482
33.3M
  for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483
33.1M
    --i;
484
33.1M
    x[i] = 0xFFFFFFFFU;
485
33.1M
  }
486
487
  /* root->level is the highest level no found. */
488
167k
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489
167k
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490
1.46M
  for (level = root->level; level >= 0; --level) {
491
2.72M
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
492
1.43M
      propedom(opt_state, &b->et);
493
1.43M
      propedom(opt_state, &b->ef);
494
1.43M
    }
495
1.29M
  }
496
167k
}
497
498
/*
499
 * Find the backwards transitive closure of the flow graph.  These sets
500
 * are backwards in the sense that we find the set of nodes that reach
501
 * a given node, not the set of nodes that can be reached by a node.
502
 *
503
 * Assumes graph has been leveled.
504
 */
505
static void
506
find_closure(opt_state_t *opt_state, struct block *root)
507
167k
{
508
167k
  int level;
509
167k
  struct block *b;
510
511
  /*
512
   * Initialize sets to contain no nodes.
513
   */
514
167k
  memset((char *)opt_state->all_closure_sets, 0,
515
167k
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517
  /* root->level is the highest level no found. */
518
1.46M
  for (level = root->level; level >= 0; --level) {
519
2.72M
    for (b = opt_state->levels[level]; b; b = b->link) {
520
1.43M
      SET_INSERT(b->closure, b->id);
521
1.43M
      if (JT(b) == 0)
522
273k
        continue;
523
1.15M
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524
1.15M
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525
1.15M
    }
526
1.29M
  }
527
167k
}
528
529
/*
530
 * Return the register number that is used by s.
531
 *
532
 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533
 * are used, the scratch memory location's number if a scratch memory
534
 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535
 *
536
 * The implementation should probably change to an array access.
537
 */
538
static int
539
atomuse(struct stmt *s)
540
24.0M
{
541
24.0M
  register int c = s->code;
542
543
24.0M
  if (c == NOP)
544
4.12M
    return -1;
545
546
19.9M
  switch (BPF_CLASS(c)) {
547
548
161k
  case BPF_RET:
549
161k
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550
161k
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552
7.78M
  case BPF_LD:
553
8.77M
  case BPF_LDX:
554
    /*
555
     * As there are fewer than 2^31 memory locations,
556
     * s->k should be convertible to int without problems.
557
     */
558
8.77M
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559
8.77M
      (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561
4.30M
  case BPF_ST:
562
4.30M
    return A_ATOM;
563
564
0
  case BPF_STX:
565
0
    return X_ATOM;
566
567
2.28M
  case BPF_JMP:
568
5.68M
  case BPF_ALU:
569
5.68M
    if (BPF_SRC(c) == BPF_X)
570
1.41M
      return AX_ATOM;
571
4.26M
    return A_ATOM;
572
573
1.03M
  case BPF_MISC:
574
1.03M
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575
19.9M
  }
576
0
  abort();
577
  /* NOTREACHED */
578
19.9M
}
579
580
/*
581
 * Return the register number that is defined by 's'.  We assume that
582
 * a single stmt cannot define more than one register.  If no register
583
 * is defined, return -1.
584
 *
585
 * The implementation should probably change to an array access.
586
 */
587
static int
588
atomdef(struct stmt *s)
589
22.9M
{
590
22.9M
  if (s->code == NOP)
591
4.12M
    return -1;
592
593
18.8M
  switch (BPF_CLASS(s->code)) {
594
595
7.78M
  case BPF_LD:
596
11.1M
  case BPF_ALU:
597
11.1M
    return A_ATOM;
598
599
988k
  case BPF_LDX:
600
988k
    return X_ATOM;
601
602
4.30M
  case BPF_ST:
603
4.30M
  case BPF_STX:
604
4.30M
    return s->k;
605
606
1.03M
  case BPF_MISC:
607
1.03M
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608
18.8M
  }
609
1.28M
  return -1;
610
18.8M
}
611
612
/*
613
 * Compute the sets of registers used, defined, and killed by 'b'.
614
 *
615
 * "Used" means that a statement in 'b' uses the register before any
616
 * statement in 'b' defines it, i.e. it uses the value left in
617
 * that register by a predecessor block of this block.
618
 * "Defined" means that a statement in 'b' defines it.
619
 * "Killed" means that a statement in 'b' defines it before any
620
 * statement in 'b' uses it, i.e. it kills the value left in that
621
 * register by a predecessor block of this block.
622
 */
623
static void
624
compute_local_ud(struct block *b)
625
1.43M
{
626
1.43M
  struct slist *s;
627
1.43M
  atomset def = 0, use = 0, killed = 0;
628
1.43M
  int atom;
629
630
14.2M
  for (s = b->stmts; s; s = s->next) {
631
12.7M
    if (s->s.code == NOP)
632
3.73M
      continue;
633
9.03M
    atom = atomuse(&s->s);
634
9.03M
    if (atom >= 0) {
635
6.86M
      if (atom == AX_ATOM) {
636
628k
        if (!ATOMELEM(def, X_ATOM))
637
1
          use |= ATOMMASK(X_ATOM);
638
628k
        if (!ATOMELEM(def, A_ATOM))
639
0
          use |= ATOMMASK(A_ATOM);
640
628k
      }
641
6.24M
      else if (atom < N_ATOMS) {
642
6.24M
        if (!ATOMELEM(def, atom))
643
93.7k
          use |= ATOMMASK(atom);
644
6.24M
      }
645
0
      else
646
0
        abort();
647
6.86M
    }
648
9.03M
    atom = atomdef(&s->s);
649
9.03M
    if (atom >= 0) {
650
9.03M
      if (!ATOMELEM(use, atom))
651
9.03M
        killed |= ATOMMASK(atom);
652
9.03M
      def |= ATOMMASK(atom);
653
9.03M
    }
654
9.03M
  }
655
1.43M
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
656
    /*
657
     * XXX - what about RET?
658
     */
659
1.15M
    atom = atomuse(&b->s);
660
1.15M
    if (atom >= 0) {
661
1.15M
      if (atom == AX_ATOM) {
662
167k
        if (!ATOMELEM(def, X_ATOM))
663
1.68k
          use |= ATOMMASK(X_ATOM);
664
167k
        if (!ATOMELEM(def, A_ATOM))
665
1.68k
          use |= ATOMMASK(A_ATOM);
666
167k
      }
667
991k
      else if (atom < N_ATOMS) {
668
991k
        if (!ATOMELEM(def, atom))
669
44.0k
          use |= ATOMMASK(atom);
670
991k
      }
671
0
      else
672
0
        abort();
673
1.15M
    }
674
1.15M
  }
675
676
1.43M
  b->def = def;
677
1.43M
  b->kill = killed;
678
1.43M
  b->in_use = use;
679
1.43M
}
680
681
/*
682
 * Assume graph is already leveled.
683
 */
684
static void
685
find_ud(opt_state_t *opt_state, struct block *root)
686
167k
{
687
167k
  int i, maxlevel;
688
167k
  struct block *p;
689
690
  /*
691
   * root->level is the highest level no found;
692
   * count down from there.
693
   */
694
167k
  maxlevel = root->level;
695
1.46M
  for (i = maxlevel; i >= 0; --i)
696
2.72M
    for (p = opt_state->levels[i]; p; p = p->link) {
697
1.43M
      compute_local_ud(p);
698
1.43M
      p->out_use = 0;
699
1.43M
    }
700
701
1.29M
  for (i = 1; i <= maxlevel; ++i) {
702
2.28M
    for (p = opt_state->levels[i]; p; p = p->link) {
703
1.15M
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
704
1.15M
      p->in_use |= p->out_use &~ p->kill;
705
1.15M
    }
706
1.12M
  }
707
167k
}
708
static void
709
init_val(opt_state_t *opt_state)
710
167k
{
711
167k
  opt_state->curval = 0;
712
167k
  opt_state->next_vnode = opt_state->vnode_base;
713
167k
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714
167k
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715
167k
}
716
717
/*
718
 * Because we really don't have an IR, this stuff is a little messy.
719
 *
720
 * This routine looks in the table of existing value number for a value
721
 * with generated from an operation with the specified opcode and
722
 * the specified values.  If it finds it, it returns its value number,
723
 * otherwise it makes a new entry in the table and returns the
724
 * value number of that entry.
725
 */
726
static bpf_u_int32
727
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728
5.52M
{
729
5.52M
  u_int hash;
730
5.52M
  bpf_u_int32 val;
731
5.52M
  struct valnode *p;
732
733
5.52M
  hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734
5.52M
  hash %= MODULUS;
735
736
5.98M
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
737
2.96M
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
738
2.49M
      return p->val;
739
740
  /*
741
   * Not found.  Allocate a new value, and assign it a new
742
   * value number.
743
   *
744
   * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745
   * increment it before using it as the new value number, which
746
   * means we never assign VAL_UNKNOWN.
747
   *
748
   * XXX - unless we overflow, but we probably won't have 2^32-1
749
   * values; we treat 32 bits as effectively infinite.
750
   */
751
3.02M
  val = ++opt_state->curval;
752
3.02M
  if (BPF_MODE(code) == BPF_IMM &&
753
3.02M
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754
1.50M
    opt_state->vmap[val].const_val = v0;
755
1.50M
    opt_state->vmap[val].is_const = 1;
756
1.50M
  }
757
3.02M
  p = opt_state->next_vnode++;
758
3.02M
  p->val = val;
759
3.02M
  p->code = code;
760
3.02M
  p->v0 = v0;
761
3.02M
  p->v1 = v1;
762
3.02M
  p->next = opt_state->hashtbl[hash];
763
3.02M
  opt_state->hashtbl[hash] = p;
764
765
3.02M
  return val;
766
5.52M
}
767
768
static inline void
769
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770
7.12M
{
771
7.12M
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
772
448k
    s->code = NOP;
773
6.67M
  else
774
6.67M
    *valp = newval;
775
7.12M
}
776
777
/*
778
 * Do constant-folding on binary operators.
779
 * (Unary operators are handled elsewhere.)
780
 */
781
static void
782
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783
120k
{
784
120k
  bpf_u_int32 a, b;
785
786
120k
  a = opt_state->vmap[v0].const_val;
787
120k
  b = opt_state->vmap[v1].const_val;
788
789
120k
  switch (BPF_OP(s->code)) {
790
10.8k
  case BPF_ADD:
791
10.8k
    a += b;
792
10.8k
    break;
793
794
20.1k
  case BPF_SUB:
795
20.1k
    a -= b;
796
20.1k
    break;
797
798
12.0k
  case BPF_MUL:
799
12.0k
    a *= b;
800
12.0k
    break;
801
802
28.5k
  case BPF_DIV:
803
28.5k
    if (b == 0)
804
119
      opt_error(opt_state, "division by zero");
805
28.3k
    a /= b;
806
28.3k
    break;
807
808
8.72k
  case BPF_MOD:
809
8.72k
    if (b == 0)
810
515
      opt_error(opt_state, "modulus by zero");
811
8.21k
    a %= b;
812
8.21k
    break;
813
814
19.5k
  case BPF_AND:
815
19.5k
    a &= b;
816
19.5k
    break;
817
818
10.6k
  case BPF_OR:
819
10.6k
    a |= b;
820
10.6k
    break;
821
822
6.49k
  case BPF_XOR:
823
6.49k
    a ^= b;
824
6.49k
    break;
825
826
3.06k
  case BPF_LSH:
827
    /*
828
     * A left shift of more than the width of the type
829
     * is undefined in C; we'll just treat it as shifting
830
     * all the bits out.
831
     *
832
     * XXX - the BPF interpreter doesn't check for this,
833
     * so its behavior is dependent on the behavior of
834
     * the processor on which it's running.  There are
835
     * processors on which it shifts all the bits out
836
     * and processors on which it does no shift.
837
     */
838
3.06k
    if (b < 32)
839
3.00k
      a <<= b;
840
60
    else
841
60
      a = 0;
842
3.06k
    break;
843
844
795
  case BPF_RSH:
845
    /*
846
     * A right shift of more than the width of the type
847
     * is undefined in C; we'll just treat it as shifting
848
     * all the bits out.
849
     *
850
     * XXX - the BPF interpreter doesn't check for this,
851
     * so its behavior is dependent on the behavior of
852
     * the processor on which it's running.  There are
853
     * processors on which it shifts all the bits out
854
     * and processors on which it does no shift.
855
     */
856
795
    if (b < 32)
857
702
      a >>= b;
858
93
    else
859
93
      a = 0;
860
795
    break;
861
862
0
  default:
863
0
    abort();
864
120k
  }
865
120k
  s->k = a;
866
120k
  s->code = BPF_LD|BPF_IMM;
867
  /*
868
   * XXX - optimizer loop detection.
869
   */
870
120k
  opt_state->non_branch_movement_performed = 1;
871
120k
  opt_state->done = 0;
872
120k
}
873
874
static inline struct slist *
875
this_op(struct slist *s)
876
17.0M
{
877
21.1M
  while (s != 0 && s->s.code == NOP)
878
4.10M
    s = s->next;
879
17.0M
  return s;
880
17.0M
}
881
882
static void
883
opt_not(struct block *b)
884
25
{
885
25
  struct block *tmp = JT(b);
886
887
25
  JT(b) = JF(b);
888
25
  JF(b) = tmp;
889
25
}
890
891
static void
892
opt_peep(opt_state_t *opt_state, struct block *b)
893
1.28M
{
894
1.28M
  struct slist *s;
895
1.28M
  struct slist *next, *last;
896
1.28M
  bpf_u_int32 val;
897
898
1.28M
  s = b->stmts;
899
1.28M
  if (s == 0)
900
184k
    return;
901
902
1.10M
  last = s;
903
8.53M
  for (/*empty*/; /*empty*/; s = next) {
904
    /*
905
     * Skip over nops.
906
     */
907
8.53M
    s = this_op(s);
908
8.53M
    if (s == 0)
909
34.5k
      break;  /* nothing left in the block */
910
911
    /*
912
     * Find the next real instruction after that one
913
     * (skipping nops).
914
     */
915
8.49M
    next = this_op(s->next);
916
8.49M
    if (next == 0)
917
1.06M
      break;  /* no next instruction */
918
7.43M
    last = next;
919
920
    /*
921
     * st  M[k] --> st  M[k]
922
     * ldx M[k]   tax
923
     */
924
7.43M
    if (s->s.code == BPF_ST &&
925
7.43M
        next->s.code == (BPF_LDX|BPF_MEM) &&
926
7.43M
        s->s.k == next->s.k) {
927
      /*
928
       * XXX - optimizer loop detection.
929
       */
930
190k
      opt_state->non_branch_movement_performed = 1;
931
190k
      opt_state->done = 0;
932
190k
      next->s.code = BPF_MISC|BPF_TAX;
933
190k
    }
934
    /*
935
     * ld  #k --> ldx  #k
936
     * tax      txa
937
     */
938
7.43M
    if (s->s.code == (BPF_LD|BPF_IMM) &&
939
7.43M
        next->s.code == (BPF_MISC|BPF_TAX)) {
940
146k
      s->s.code = BPF_LDX|BPF_IMM;
941
146k
      next->s.code = BPF_MISC|BPF_TXA;
942
      /*
943
       * XXX - optimizer loop detection.
944
       */
945
146k
      opt_state->non_branch_movement_performed = 1;
946
146k
      opt_state->done = 0;
947
146k
    }
948
    /*
949
     * This is an ugly special case, but it happens
950
     * when you say tcp[k] or udp[k] where k is a constant.
951
     */
952
7.43M
    if (s->s.code == (BPF_LD|BPF_IMM)) {
953
1.31M
      struct slist *add, *tax, *ild;
954
955
      /*
956
       * Check that X isn't used on exit from this
957
       * block (which the optimizer might cause).
958
       * We know the code generator won't generate
959
       * any local dependencies.
960
       */
961
1.31M
      if (ATOMELEM(b->out_use, X_ATOM))
962
4.53k
        continue;
963
964
      /*
965
       * Check that the instruction following the ldi
966
       * is an addx, or it's an ldxms with an addx
967
       * following it (with 0 or more nops between the
968
       * ldxms and addx).
969
       */
970
1.31M
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971
1.31M
        add = next;
972
0
      else
973
0
        add = this_op(next->next);
974
1.31M
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975
1.31M
        continue;
976
977
      /*
978
       * Check that a tax follows that (with 0 or more
979
       * nops between them).
980
       */
981
989
      tax = this_op(add->next);
982
989
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983
720
        continue;
984
985
      /*
986
       * Check that an ild follows that (with 0 or more
987
       * nops between them).
988
       */
989
269
      ild = this_op(tax->next);
990
269
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991
269
          BPF_MODE(ild->s.code) != BPF_IND)
992
269
        continue;
993
      /*
994
       * We want to turn this sequence:
995
       *
996
       * (004) ldi     #0x2   {s}
997
       * (005) ldxms   [14]   {next}  -- optional
998
       * (006) addx     {add}
999
       * (007) tax      {tax}
1000
       * (008) ild     [x+0]    {ild}
1001
       *
1002
       * into this sequence:
1003
       *
1004
       * (004) nop
1005
       * (005) ldxms   [14]
1006
       * (006) nop
1007
       * (007) nop
1008
       * (008) ild     [x+2]
1009
       *
1010
       * XXX We need to check that X is not
1011
       * subsequently used, because we want to change
1012
       * what'll be in it after this sequence.
1013
       *
1014
       * We know we can eliminate the accumulator
1015
       * modifications earlier in the sequence since
1016
       * it is defined by the last stmt of this sequence
1017
       * (i.e., the last statement of the sequence loads
1018
       * a value into the accumulator, so we can eliminate
1019
       * earlier operations on the accumulator).
1020
       */
1021
0
      ild->s.k += s->s.k;
1022
0
      s->s.code = NOP;
1023
0
      add->s.code = NOP;
1024
0
      tax->s.code = NOP;
1025
      /*
1026
       * XXX - optimizer loop detection.
1027
       */
1028
0
      opt_state->non_branch_movement_performed = 1;
1029
0
      opt_state->done = 0;
1030
0
    }
1031
7.43M
  }
1032
  /*
1033
   * If the comparison at the end of a block is an equality
1034
   * comparison against a constant, and nobody uses the value
1035
   * we leave in the A register at the end of a block, and
1036
   * the operation preceding the comparison is an arithmetic
1037
   * operation, we can sometime optimize it away.
1038
   */
1039
1.10M
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040
1.10M
      !ATOMELEM(b->out_use, A_ATOM)) {
1041
    /*
1042
     * We can optimize away certain subtractions of the
1043
     * X register.
1044
     */
1045
821k
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046
21.2k
      val = b->val[X_ATOM];
1047
21.2k
      if (opt_state->vmap[val].is_const) {
1048
        /*
1049
         * If we have a subtract to do a comparison,
1050
         * and the X register is a known constant,
1051
         * we can merge this value into the
1052
         * comparison:
1053
         *
1054
         * sub x  ->  nop
1055
         * jeq #y jeq #(x+y)
1056
         */
1057
5.13k
        b->s.k += opt_state->vmap[val].const_val;
1058
5.13k
        last->s.code = NOP;
1059
        /*
1060
         * XXX - optimizer loop detection.
1061
         */
1062
5.13k
        opt_state->non_branch_movement_performed = 1;
1063
5.13k
        opt_state->done = 0;
1064
16.1k
      } else if (b->s.k == 0) {
1065
        /*
1066
         * If the X register isn't a constant,
1067
         * and the comparison in the test is
1068
         * against 0, we can compare with the
1069
         * X register, instead:
1070
         *
1071
         * sub x  ->  nop
1072
         * jeq #0 jeq x
1073
         */
1074
16.0k
        last->s.code = NOP;
1075
16.0k
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076
        /*
1077
         * XXX - optimizer loop detection.
1078
         */
1079
16.0k
        opt_state->non_branch_movement_performed = 1;
1080
16.0k
        opt_state->done = 0;
1081
16.0k
      }
1082
21.2k
    }
1083
    /*
1084
     * Likewise, a constant subtract can be simplified:
1085
     *
1086
     * sub #x ->  nop
1087
     * jeq #y ->  jeq #(x+y)
1088
     */
1089
800k
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090
6
      last->s.code = NOP;
1091
6
      b->s.k += last->s.k;
1092
      /*
1093
       * XXX - optimizer loop detection.
1094
       */
1095
6
      opt_state->non_branch_movement_performed = 1;
1096
6
      opt_state->done = 0;
1097
6
    }
1098
    /*
1099
     * And, similarly, a constant AND can be simplified
1100
     * if we're testing against 0, i.e.:
1101
     *
1102
     * and #k nop
1103
     * jeq #0  -> jset #k
1104
     */
1105
800k
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106
800k
        b->s.k == 0) {
1107
25
      b->s.k = last->s.k;
1108
25
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109
25
      last->s.code = NOP;
1110
      /*
1111
       * XXX - optimizer loop detection.
1112
       */
1113
25
      opt_state->non_branch_movement_performed = 1;
1114
25
      opt_state->done = 0;
1115
25
      opt_not(b);
1116
25
    }
1117
821k
  }
1118
  /*
1119
   * jset #0        ->   never
1120
   * jset #ffffffff ->   always
1121
   */
1122
1.10M
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123
2.60k
    if (b->s.k == 0)
1124
0
      JT(b) = JF(b);
1125
2.60k
    if (b->s.k == 0xffffffffU)
1126
5
      JF(b) = JT(b);
1127
2.60k
  }
1128
  /*
1129
   * If we're comparing against the index register, and the index
1130
   * register is a known constant, we can just compare against that
1131
   * constant.
1132
   */
1133
1.10M
  val = b->val[X_ATOM];
1134
1.10M
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135
42.1k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1136
42.1k
    b->s.code &= ~BPF_X;
1137
42.1k
    b->s.k = v;
1138
42.1k
  }
1139
  /*
1140
   * If the accumulator is a known constant, we can compute the
1141
   * comparison result.
1142
   */
1143
1.10M
  val = b->val[A_ATOM];
1144
1.10M
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145
155k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1146
155k
    switch (BPF_OP(b->s.code)) {
1147
1148
85.5k
    case BPF_JEQ:
1149
85.5k
      v = v == b->s.k;
1150
85.5k
      break;
1151
1152
26.0k
    case BPF_JGT:
1153
26.0k
      v = v > b->s.k;
1154
26.0k
      break;
1155
1156
43.9k
    case BPF_JGE:
1157
43.9k
      v = v >= b->s.k;
1158
43.9k
      break;
1159
1160
0
    case BPF_JSET:
1161
0
      v &= b->s.k;
1162
0
      break;
1163
1164
0
    default:
1165
0
      abort();
1166
155k
    }
1167
155k
    if (JF(b) != JT(b)) {
1168
      /*
1169
       * XXX - optimizer loop detection.
1170
       */
1171
81.7k
      opt_state->non_branch_movement_performed = 1;
1172
81.7k
      opt_state->done = 0;
1173
81.7k
    }
1174
155k
    if (v)
1175
35.4k
      JF(b) = JT(b);
1176
120k
    else
1177
120k
      JT(b) = JF(b);
1178
155k
  }
1179
1.10M
}
1180
1181
/*
1182
 * Compute the symbolic value of expression of 's', and update
1183
 * anything it defines in the value table 'val'.  If 'alter' is true,
1184
 * do various optimizations.  This code would be cleaner if symbolic
1185
 * evaluation and code transformations weren't folded together.
1186
 */
1187
static void
1188
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189
12.7M
{
1190
12.7M
  int op;
1191
12.7M
  bpf_u_int32 v;
1192
1193
12.7M
  switch (s->code) {
1194
1195
87.1k
  case BPF_LD|BPF_ABS|BPF_W:
1196
210k
  case BPF_LD|BPF_ABS|BPF_H:
1197
702k
  case BPF_LD|BPF_ABS|BPF_B:
1198
702k
    v = F(opt_state, s->code, s->k, 0L);
1199
702k
    vstore(s, &val[A_ATOM], v, alter);
1200
702k
    break;
1201
1202
109
  case BPF_LD|BPF_IND|BPF_W:
1203
109
  case BPF_LD|BPF_IND|BPF_H:
1204
93.5k
  case BPF_LD|BPF_IND|BPF_B:
1205
93.5k
    v = val[X_ATOM];
1206
93.5k
    if (alter && opt_state->vmap[v].is_const) {
1207
6.24k
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208
6.24k
      s->k += opt_state->vmap[v].const_val;
1209
6.24k
      v = F(opt_state, s->code, s->k, 0L);
1210
      /*
1211
       * XXX - optimizer loop detection.
1212
       */
1213
6.24k
      opt_state->non_branch_movement_performed = 1;
1214
6.24k
      opt_state->done = 0;
1215
6.24k
    }
1216
87.3k
    else
1217
87.3k
      v = F(opt_state, s->code, s->k, v);
1218
93.5k
    vstore(s, &val[A_ATOM], v, alter);
1219
93.5k
    break;
1220
1221
12.4k
  case BPF_LD|BPF_LEN:
1222
12.4k
    v = F(opt_state, s->code, 0L, 0L);
1223
12.4k
    vstore(s, &val[A_ATOM], v, alter);
1224
12.4k
    break;
1225
1226
1.20M
  case BPF_LD|BPF_IMM:
1227
1.20M
    v = K(s->k);
1228
1.20M
    vstore(s, &val[A_ATOM], v, alter);
1229
1.20M
    break;
1230
1231
241k
  case BPF_LDX|BPF_IMM:
1232
241k
    v = K(s->k);
1233
241k
    vstore(s, &val[X_ATOM], v, alter);
1234
241k
    break;
1235
1236
0
  case BPF_LDX|BPF_MSH|BPF_B:
1237
0
    v = F(opt_state, s->code, s->k, 0L);
1238
0
    vstore(s, &val[X_ATOM], v, alter);
1239
0
    break;
1240
1241
1.17M
  case BPF_ALU|BPF_NEG:
1242
1.17M
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243
237k
      s->code = BPF_LD|BPF_IMM;
1244
      /*
1245
       * Do this negation as unsigned arithmetic; that's
1246
       * what modern BPF engines do, and it guarantees
1247
       * that all possible values can be negated.  (Yeah,
1248
       * negating 0x80000000, the minimum signed 32-bit
1249
       * two's-complement value, results in 0x80000000,
1250
       * so it's still negative, but we *should* be doing
1251
       * all unsigned arithmetic here, to match what
1252
       * modern BPF engines do.)
1253
       *
1254
       * Express it as 0U - (unsigned value) so that we
1255
       * don't get compiler warnings about negating an
1256
       * unsigned value and don't get UBSan warnings
1257
       * about the result of negating 0x80000000 being
1258
       * undefined.
1259
       */
1260
237k
      s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261
237k
      val[A_ATOM] = K(s->k);
1262
237k
    }
1263
936k
    else
1264
936k
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265
1.17M
    break;
1266
1267
11.5k
  case BPF_ALU|BPF_ADD|BPF_K:
1268
13.9k
  case BPF_ALU|BPF_SUB|BPF_K:
1269
16.4k
  case BPF_ALU|BPF_MUL|BPF_K:
1270
17.6k
  case BPF_ALU|BPF_DIV|BPF_K:
1271
17.7k
  case BPF_ALU|BPF_MOD|BPF_K:
1272
85.4k
  case BPF_ALU|BPF_AND|BPF_K:
1273
86.1k
  case BPF_ALU|BPF_OR|BPF_K:
1274
86.3k
  case BPF_ALU|BPF_XOR|BPF_K:
1275
86.9k
  case BPF_ALU|BPF_LSH|BPF_K:
1276
86.9k
  case BPF_ALU|BPF_RSH|BPF_K:
1277
86.9k
    op = BPF_OP(s->code);
1278
86.9k
    if (alter) {
1279
19.3k
      if (s->k == 0) {
1280
        /*
1281
         * Optimize operations where the constant
1282
         * is zero.
1283
         *
1284
         * Don't optimize away "sub #0"
1285
         * as it may be needed later to
1286
         * fixup the generated math code.
1287
         *
1288
         * Fail if we're dividing by zero or taking
1289
         * a modulus by zero.
1290
         */
1291
2.16k
        if (op == BPF_ADD ||
1292
2.16k
            op == BPF_LSH || op == BPF_RSH ||
1293
2.16k
            op == BPF_OR || op == BPF_XOR) {
1294
68
          s->code = NOP;
1295
68
          break;
1296
68
        }
1297
2.09k
        if (op == BPF_MUL || op == BPF_AND) {
1298
533
          s->code = BPF_LD|BPF_IMM;
1299
533
          val[A_ATOM] = K(s->k);
1300
533
          break;
1301
533
        }
1302
1.56k
        if (op == BPF_DIV)
1303
3
          opt_error(opt_state,
1304
3
              "division by zero");
1305
1.56k
        if (op == BPF_MOD)
1306
3
          opt_error(opt_state,
1307
3
              "modulus by zero");
1308
1.56k
      }
1309
18.7k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1310
854
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311
854
        val[A_ATOM] = K(s->k);
1312
854
        break;
1313
854
      }
1314
18.7k
    }
1315
85.4k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316
85.4k
    break;
1317
1318
51.5k
  case BPF_ALU|BPF_ADD|BPF_X:
1319
171k
  case BPF_ALU|BPF_SUB|BPF_X:
1320
233k
  case BPF_ALU|BPF_MUL|BPF_X:
1321
375k
  case BPF_ALU|BPF_DIV|BPF_X:
1322
422k
  case BPF_ALU|BPF_MOD|BPF_X:
1323
523k
  case BPF_ALU|BPF_AND|BPF_X:
1324
575k
  case BPF_ALU|BPF_OR|BPF_X:
1325
607k
  case BPF_ALU|BPF_XOR|BPF_X:
1326
621k
  case BPF_ALU|BPF_LSH|BPF_X:
1327
625k
  case BPF_ALU|BPF_RSH|BPF_X:
1328
625k
    op = BPF_OP(s->code);
1329
625k
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330
122k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1331
119k
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332
119k
        val[A_ATOM] = K(s->k);
1333
119k
      }
1334
2.82k
      else {
1335
2.82k
        s->code = BPF_ALU|BPF_K|op;
1336
2.82k
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337
2.82k
        if ((op == BPF_LSH || op == BPF_RSH) &&
1338
2.82k
            s->k > 31)
1339
3
          opt_error(opt_state,
1340
3
              "shift by more than 31 bits");
1341
        /*
1342
         * XXX - optimizer loop detection.
1343
         */
1344
2.82k
        opt_state->non_branch_movement_performed = 1;
1345
2.82k
        opt_state->done = 0;
1346
2.82k
        val[A_ATOM] =
1347
2.82k
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1348
2.82k
      }
1349
122k
      break;
1350
122k
    }
1351
    /*
1352
     * Check if we're doing something to an accumulator
1353
     * that is 0, and simplify.  This may not seem like
1354
     * much of a simplification but it could open up further
1355
     * optimizations.
1356
     * XXX We could also check for mul by 1, etc.
1357
     */
1358
502k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359
502k
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360
679
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361
67
        s->code = BPF_MISC|BPF_TXA;
1362
67
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363
67
        break;
1364
67
      }
1365
612
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366
612
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367
245
        s->code = BPF_LD|BPF_IMM;
1368
245
        s->k = 0;
1369
245
        vstore(s, &val[A_ATOM], K(s->k), alter);
1370
245
        break;
1371
245
      }
1372
367
      else if (op == BPF_NEG) {
1373
0
        s->code = NOP;
1374
0
        break;
1375
0
      }
1376
679
    }
1377
502k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378
502k
    break;
1379
1380
3.71k
  case BPF_MISC|BPF_TXA:
1381
3.71k
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382
3.71k
    break;
1383
1384
1.97M
  case BPF_LD|BPF_MEM:
1385
1.97M
    v = val[s->k];
1386
1.97M
    if (alter && opt_state->vmap[v].is_const) {
1387
401k
      s->code = BPF_LD|BPF_IMM;
1388
401k
      s->k = opt_state->vmap[v].const_val;
1389
      /*
1390
       * XXX - optimizer loop detection.
1391
       */
1392
401k
      opt_state->non_branch_movement_performed = 1;
1393
401k
      opt_state->done = 0;
1394
401k
    }
1395
1.97M
    vstore(s, &val[A_ATOM], v, alter);
1396
1.97M
    break;
1397
1398
423k
  case BPF_MISC|BPF_TAX:
1399
423k
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400
423k
    break;
1401
1402
283k
  case BPF_LDX|BPF_MEM:
1403
283k
    v = val[s->k];
1404
283k
    if (alter && opt_state->vmap[v].is_const) {
1405
6.24k
      s->code = BPF_LDX|BPF_IMM;
1406
6.24k
      s->k = opt_state->vmap[v].const_val;
1407
      /*
1408
       * XXX - optimizer loop detection.
1409
       */
1410
6.24k
      opt_state->non_branch_movement_performed = 1;
1411
6.24k
      opt_state->done = 0;
1412
6.24k
    }
1413
283k
    vstore(s, &val[X_ATOM], v, alter);
1414
283k
    break;
1415
1416
2.17M
  case BPF_ST:
1417
2.17M
    vstore(s, &val[s->k], val[A_ATOM], alter);
1418
2.17M
    break;
1419
1420
0
  case BPF_STX:
1421
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1422
0
    break;
1423
12.7M
  }
1424
12.7M
}
1425
1426
static void
1427
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428
13.8M
{
1429
13.8M
  register int atom;
1430
1431
13.8M
  atom = atomuse(s);
1432
13.8M
  if (atom >= 0) {
1433
7.09M
    if (atom == AX_ATOM) {
1434
618k
      last[X_ATOM] = 0;
1435
618k
      last[A_ATOM] = 0;
1436
618k
    }
1437
6.47M
    else
1438
6.47M
      last[atom] = 0;
1439
7.09M
  }
1440
13.8M
  atom = atomdef(s);
1441
13.8M
  if (atom >= 0) {
1442
8.47M
    if (last[atom]) {
1443
      /*
1444
       * XXX - optimizer loop detection.
1445
       */
1446
923k
      opt_state->non_branch_movement_performed = 1;
1447
923k
      opt_state->done = 0;
1448
923k
      last[atom]->code = NOP;
1449
923k
    }
1450
8.47M
    last[atom] = s;
1451
8.47M
  }
1452
13.8M
}
1453
1454
static void
1455
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456
1.28M
{
1457
1.28M
  register struct slist *s;
1458
1.28M
  register int atom;
1459
1.28M
  struct stmt *last[N_ATOMS];
1460
1461
1.28M
  memset((char *)last, 0, sizeof last);
1462
1463
13.8M
  for (s = b->stmts; s != 0; s = s->next)
1464
12.6M
    deadstmt(opt_state, &s->s, last);
1465
1.28M
  deadstmt(opt_state, &b->s, last);
1466
1467
24.4M
  for (atom = 0; atom < N_ATOMS; ++atom)
1468
23.1M
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469
263k
      last[atom]->code = NOP;
1470
      /*
1471
       * XXX - optimizer loop detection.
1472
       */
1473
263k
      opt_state->non_branch_movement_performed = 1;
1474
263k
      opt_state->done = 0;
1475
263k
    }
1476
1.28M
}
1477
1478
static void
1479
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480
1.43M
{
1481
1.43M
  struct slist *s;
1482
1.43M
  struct edge *p;
1483
1.43M
  int i;
1484
1.43M
  bpf_u_int32 aval, xval;
1485
1486
#if 0
1487
  for (s = b->stmts; s && s->next; s = s->next)
1488
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489
      do_stmts = 0;
1490
      break;
1491
    }
1492
#endif
1493
1494
  /*
1495
   * Initialize the atom values.
1496
   */
1497
1.43M
  p = b->in_edges;
1498
1.43M
  if (p == 0) {
1499
    /*
1500
     * We have no predecessors, so everything is undefined
1501
     * upon entry to this block.
1502
     */
1503
167k
    memset((char *)b->val, 0, sizeof(b->val));
1504
1.26M
  } else {
1505
    /*
1506
     * Inherit values from our predecessors.
1507
     *
1508
     * First, get the values from the predecessor along the
1509
     * first edge leading to this node.
1510
     */
1511
1.26M
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512
    /*
1513
     * Now look at all the other nodes leading to this node.
1514
     * If, for the predecessor along that edge, a register
1515
     * has a different value from the one we have (i.e.,
1516
     * control paths are merging, and the merging paths
1517
     * assign different values to that register), give the
1518
     * register the undefined value of 0.
1519
     */
1520
2.31M
    while ((p = p->next) != NULL) {
1521
19.9M
      for (i = 0; i < N_ATOMS; ++i)
1522
18.9M
        if (b->val[i] != p->pred->val[i])
1523
2.29M
          b->val[i] = 0;
1524
1.05M
    }
1525
1.26M
  }
1526
1.43M
  aval = b->val[A_ATOM];
1527
1.43M
  xval = b->val[X_ATOM];
1528
14.1M
  for (s = b->stmts; s; s = s->next)
1529
12.7M
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531
  /*
1532
   * This is a special case: if we don't use anything from this
1533
   * block, and we load the accumulator or index register with a
1534
   * value that is already there, or if this block is a return,
1535
   * eliminate all the statements.
1536
   *
1537
   * XXX - what if it does a store?  Presumably that falls under
1538
   * the heading of "if we don't use anything from this block",
1539
   * i.e., if we use any memory location set to a different
1540
   * value by this block, then we use something from this block.
1541
   *
1542
   * XXX - why does it matter whether we use anything from this
1543
   * block?  If the accumulator or index register doesn't change
1544
   * its value, isn't that OK even if we use that value?
1545
   *
1546
   * XXX - if we load the accumulator with a different value,
1547
   * and the block ends with a conditional branch, we obviously
1548
   * can't eliminate it, as the branch depends on that value.
1549
   * For the index register, the conditional branch only depends
1550
   * on the index register value if the test is against the index
1551
   * register value rather than a constant; if nothing uses the
1552
   * value we put into the index register, and we're not testing
1553
   * against the index register's value, and there aren't any
1554
   * other problems that would keep us from eliminating this
1555
   * block, can we eliminate it?
1556
   */
1557
1.43M
  if (do_stmts &&
1558
1.43M
      ((b->out_use == 0 &&
1559
414k
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560
414k
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561
414k
       BPF_CLASS(b->s.code) == BPF_RET)) {
1562
143k
    if (b->stmts != 0) {
1563
25.5k
      b->stmts = 0;
1564
      /*
1565
       * XXX - optimizer loop detection.
1566
       */
1567
25.5k
      opt_state->non_branch_movement_performed = 1;
1568
25.5k
      opt_state->done = 0;
1569
25.5k
    }
1570
1.28M
  } else {
1571
1.28M
    opt_peep(opt_state, b);
1572
1.28M
    opt_deadstores(opt_state, b);
1573
1.28M
  }
1574
  /*
1575
   * Set up values for branch optimizer.
1576
   */
1577
1.43M
  if (BPF_SRC(b->s.code) == BPF_K)
1578
1.28M
    b->oval = K(b->s.k);
1579
140k
  else
1580
140k
    b->oval = b->val[X_ATOM];
1581
1.43M
  b->et.code = b->s.code;
1582
1.43M
  b->ef.code = -b->s.code;
1583
1.43M
}
1584
1585
/*
1586
 * Return true if any register that is used on exit from 'succ', has
1587
 * an exit value that is different from the corresponding exit value
1588
 * from 'b'.
1589
 */
1590
static int
1591
use_conflict(struct block *b, struct block *succ)
1592
731k
{
1593
731k
  int atom;
1594
731k
  atomset use = succ->out_use;
1595
1596
731k
  if (use == 0)
1597
674k
    return 0;
1598
1599
953k
  for (atom = 0; atom < N_ATOMS; ++atom)
1600
908k
    if (ATOMELEM(use, atom))
1601
57.6k
      if (b->val[atom] != succ->val[atom])
1602
12.6k
        return 1;
1603
45.0k
  return 0;
1604
57.6k
}
1605
1606
/*
1607
 * Given a block that is the successor of an edge, and an edge that
1608
 * dominates that edge, return either a pointer to a child of that
1609
 * block (a block to which that block jumps) if that block is a
1610
 * candidate to replace the successor of the latter edge or NULL
1611
 * if neither of the children of the first block are candidates.
1612
 */
1613
static struct block *
1614
fold_edge(struct block *child, struct edge *ep)
1615
5.99M
{
1616
5.99M
  int sense;
1617
5.99M
  bpf_u_int32 aval0, aval1, oval0, oval1;
1618
5.99M
  int code = ep->code;
1619
1620
5.99M
  if (code < 0) {
1621
    /*
1622
     * This edge is a "branch if false" edge.
1623
     */
1624
2.62M
    code = -code;
1625
2.62M
    sense = 0;
1626
3.36M
  } else {
1627
    /*
1628
     * This edge is a "branch if true" edge.
1629
     */
1630
3.36M
    sense = 1;
1631
3.36M
  }
1632
1633
  /*
1634
   * If the opcode for the branch at the end of the block we
1635
   * were handed isn't the same as the opcode for the branch
1636
   * to which the edge we were handed corresponds, the tests
1637
   * for those branches aren't testing the same conditions,
1638
   * so the blocks to which the first block branches aren't
1639
   * candidates to replace the successor of the edge.
1640
   */
1641
5.99M
  if (child->s.code != code)
1642
3.10M
    return 0;
1643
1644
2.88M
  aval0 = child->val[A_ATOM];
1645
2.88M
  oval0 = child->oval;
1646
2.88M
  aval1 = ep->pred->val[A_ATOM];
1647
2.88M
  oval1 = ep->pred->oval;
1648
1649
  /*
1650
   * If the A register value on exit from the successor block
1651
   * isn't the same as the A register value on exit from the
1652
   * predecessor of the edge, the blocks to which the first
1653
   * block branches aren't candidates to replace the successor
1654
   * of the edge.
1655
   */
1656
2.88M
  if (aval0 != aval1)
1657
1.78M
    return 0;
1658
1659
1.10M
  if (oval0 == oval1)
1660
    /*
1661
     * The operands of the branch instructions are
1662
     * identical, so the branches are testing the
1663
     * same condition, and the result is true if a true
1664
     * branch was taken to get here, otherwise false.
1665
     */
1666
459k
    return sense ? JT(child) : JF(child);
1667
1668
645k
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669
    /*
1670
     * At this point, we only know the comparison if we
1671
     * came down the true branch, and it was an equality
1672
     * comparison with a constant.
1673
     *
1674
     * I.e., if we came down the true branch, and the branch
1675
     * was an equality comparison with a constant, we know the
1676
     * accumulator contains that constant.  If we came down
1677
     * the false branch, or the comparison wasn't with a
1678
     * constant, we don't know what was in the accumulator.
1679
     *
1680
     * We rely on the fact that distinct constants have distinct
1681
     * value numbers.
1682
     */
1683
67.5k
    return JF(child);
1684
1685
577k
  return 0;
1686
645k
}
1687
1688
/*
1689
 * If we can make this edge go directly to a child of the edge's current
1690
 * successor, do so.
1691
 */
1692
static void
1693
opt_j(opt_state_t *opt_state, struct edge *ep)
1694
1.70M
{
1695
1.70M
  register u_int i, k;
1696
1.70M
  register struct block *target;
1697
1698
  /*
1699
   * Does this edge go to a block where, if the test
1700
   * at the end of it succeeds, it goes to a block
1701
   * that's a leaf node of the DAG, i.e. a return
1702
   * statement?
1703
   * If so, there's nothing to optimize.
1704
   */
1705
1.70M
  if (JT(ep->succ) == 0)
1706
581k
    return;
1707
1708
  /*
1709
   * Does this edge go to a block that goes, in turn, to
1710
   * the same block regardless of whether the test at the
1711
   * end succeeds or fails?
1712
   */
1713
1.12M
  if (JT(ep->succ) == JF(ep->succ)) {
1714
    /*
1715
     * Common branch targets can be eliminated, provided
1716
     * there is no data dependency.
1717
     *
1718
     * Check whether any register used on exit from the
1719
     * block to which the successor of this edge goes
1720
     * has a value at that point that's different from
1721
     * the value it has on exit from the predecessor of
1722
     * this edge.  If not, the predecessor of this edge
1723
     * can just go to the block to which the successor
1724
     * of this edge goes, bypassing the successor of this
1725
     * edge, as the successor of this edge isn't doing
1726
     * any calculations whose results are different
1727
     * from what the blocks before it did and isn't
1728
     * doing any tests the results of which matter.
1729
     */
1730
205k
    if (!use_conflict(ep->pred, JT(ep->succ))) {
1731
      /*
1732
       * No, there isn't.
1733
       * Make this edge go to the block to
1734
       * which the successor of that edge
1735
       * goes.
1736
       *
1737
       * XXX - optimizer loop detection.
1738
       */
1739
199k
      opt_state->non_branch_movement_performed = 1;
1740
199k
      opt_state->done = 0;
1741
199k
      ep->succ = JT(ep->succ);
1742
199k
    }
1743
205k
  }
1744
  /*
1745
   * For each edge dominator that matches the successor of this
1746
   * edge, promote the edge successor to the its grandchild.
1747
   *
1748
   * XXX We violate the set abstraction here in favor a reasonably
1749
   * efficient loop.
1750
   */
1751
1.51M
 top:
1752
7.86M
  for (i = 0; i < opt_state->edgewords; ++i) {
1753
    /* i'th word in the bitset of dominators */
1754
6.86M
    register bpf_u_int32 x = ep->edom[i];
1755
1756
12.3M
    while (x != 0) {
1757
      /* Find the next dominator in that word and mark it as found */
1758
5.99M
      k = lowest_set_bit(x);
1759
5.99M
      x &=~ ((bpf_u_int32)1 << k);
1760
5.99M
      k += i * BITS_PER_WORD;
1761
1762
5.99M
      target = fold_edge(ep->succ, opt_state->edges[k]);
1763
      /*
1764
       * We have a candidate to replace the successor
1765
       * of ep.
1766
       *
1767
       * Check that there is no data dependency between
1768
       * nodes that will be violated if we move the edge;
1769
       * i.e., if any register used on exit from the
1770
       * candidate has a value at that point different
1771
       * from the value it has when we exit the
1772
       * predecessor of that edge, there's a data
1773
       * dependency that will be violated.
1774
       */
1775
5.99M
      if (target != 0 && !use_conflict(ep->pred, target)) {
1776
        /*
1777
         * It's safe to replace the successor of
1778
         * ep; do so, and note that we've made
1779
         * at least one change.
1780
         *
1781
         * XXX - this is one of the operations that
1782
         * happens when the optimizer gets into
1783
         * one of those infinite loops.
1784
         */
1785
519k
        opt_state->done = 0;
1786
519k
        ep->succ = target;
1787
519k
        if (JT(target) != 0)
1788
          /*
1789
           * Start over unless we hit a leaf.
1790
           */
1791
393k
          goto top;
1792
126k
        return;
1793
519k
      }
1794
5.99M
    }
1795
6.86M
  }
1796
1.51M
}
1797
1798
/*
1799
 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800
 * "Predicate Assertion Propagation" in the BPF+ paper?
1801
 *
1802
 * Note that this looks at block dominators, not edge dominators.
1803
 * Don't think so.
1804
 *
1805
 * "A or B" compiles into
1806
 *
1807
 *          A
1808
 *       t / \ f
1809
 *        /   B
1810
 *       / t / \ f
1811
 *      \   /
1812
 *       \ /
1813
 *        X
1814
 *
1815
 *
1816
 */
1817
static void
1818
or_pullup(opt_state_t *opt_state, struct block *b)
1819
853k
{
1820
853k
  bpf_u_int32 val;
1821
853k
  int at_top;
1822
853k
  struct block *pull;
1823
853k
  struct block **diffp, **samep;
1824
853k
  struct edge *ep;
1825
1826
853k
  ep = b->in_edges;
1827
853k
  if (ep == 0)
1828
278k
    return;
1829
1830
  /*
1831
   * Make sure each predecessor loads the same value.
1832
   * XXX why?
1833
   */
1834
574k
  val = ep->pred->val[A_ATOM];
1835
628k
  for (ep = ep->next; ep != 0; ep = ep->next)
1836
144k
    if (val != ep->pred->val[A_ATOM])
1837
90.3k
      return;
1838
1839
  /*
1840
   * For the first edge in the list of edges coming into this block,
1841
   * see whether the predecessor of that edge comes here via a true
1842
   * branch or a false branch.
1843
   */
1844
484k
  if (JT(b->in_edges->pred) == b)
1845
285k
    diffp = &JT(b->in_edges->pred); /* jt */
1846
199k
  else
1847
199k
    diffp = &JF(b->in_edges->pred);  /* jf */
1848
1849
  /*
1850
   * diffp is a pointer to a pointer to the block.
1851
   *
1852
   * Go down the false chain looking as far as you can,
1853
   * making sure that each jump-compare is doing the
1854
   * same as the original block.
1855
   *
1856
   * If you reach the bottom before you reach a
1857
   * different jump-compare, just exit.  There's nothing
1858
   * to do here.  XXX - no, this version is checking for
1859
   * the value leaving the block; that's from the BPF+
1860
   * pullup routine.
1861
   */
1862
484k
  at_top = 1;
1863
748k
  for (;;) {
1864
    /*
1865
     * Done if that's not going anywhere XXX
1866
     */
1867
748k
    if (*diffp == 0)
1868
0
      return;
1869
1870
    /*
1871
     * Done if that predecessor blah blah blah isn't
1872
     * going the same place we're going XXX
1873
     *
1874
     * Does the true edge of this block point to the same
1875
     * location as the true edge of b?
1876
     */
1877
748k
    if (JT(*diffp) != JT(b))
1878
124k
      return;
1879
1880
    /*
1881
     * Done if this node isn't a dominator of that
1882
     * node blah blah blah XXX
1883
     *
1884
     * Does b dominate diffp?
1885
     */
1886
623k
    if (!SET_MEMBER((*diffp)->dom, b->id))
1887
13.8k
      return;
1888
1889
    /*
1890
     * Break out of the loop if that node's value of A
1891
     * isn't the value of A above XXX
1892
     */
1893
610k
    if ((*diffp)->val[A_ATOM] != val)
1894
346k
      break;
1895
1896
    /*
1897
     * Get the JF for that node XXX
1898
     * Go down the false path.
1899
     */
1900
263k
    diffp = &JF(*diffp);
1901
263k
    at_top = 0;
1902
263k
  }
1903
1904
  /*
1905
   * Now that we've found a different jump-compare in a chain
1906
   * below b, search further down until we find another
1907
   * jump-compare that looks at the original value.  This
1908
   * jump-compare should get pulled up.  XXX again we're
1909
   * comparing values not jump-compares.
1910
   */
1911
346k
  samep = &JF(*diffp);
1912
445k
  for (;;) {
1913
    /*
1914
     * Done if that's not going anywhere XXX
1915
     */
1916
445k
    if (*samep == 0)
1917
0
      return;
1918
1919
    /*
1920
     * Done if that predecessor blah blah blah isn't
1921
     * going the same place we're going XXX
1922
     */
1923
445k
    if (JT(*samep) != JT(b))
1924
318k
      return;
1925
1926
    /*
1927
     * Done if this node isn't a dominator of that
1928
     * node blah blah blah XXX
1929
     *
1930
     * Does b dominate samep?
1931
     */
1932
126k
    if (!SET_MEMBER((*samep)->dom, b->id))
1933
23.7k
      return;
1934
1935
    /*
1936
     * Break out of the loop if that node's value of A
1937
     * is the value of A above XXX
1938
     */
1939
102k
    if ((*samep)->val[A_ATOM] == val)
1940
3.95k
      break;
1941
1942
    /* XXX Need to check that there are no data dependencies
1943
       between dp0 and dp1.  Currently, the code generator
1944
       will not produce such dependencies. */
1945
98.8k
    samep = &JF(*samep);
1946
98.8k
  }
1947
#ifdef notdef
1948
  /* XXX This doesn't cover everything. */
1949
  for (i = 0; i < N_ATOMS; ++i)
1950
    if ((*samep)->val[i] != pred->val[i])
1951
      return;
1952
#endif
1953
  /* Pull up the node. */
1954
3.95k
  pull = *samep;
1955
3.95k
  *samep = JF(pull);
1956
3.95k
  JF(pull) = *diffp;
1957
1958
  /*
1959
   * At the top of the chain, each predecessor needs to point at the
1960
   * pulled up node.  Inside the chain, there is only one predecessor
1961
   * to worry about.
1962
   */
1963
3.95k
  if (at_top) {
1964
16.0k
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965
12.2k
      if (JT(ep->pred) == b)
1966
9.14k
        JT(ep->pred) = pull;
1967
3.11k
      else
1968
3.11k
        JF(ep->pred) = pull;
1969
12.2k
    }
1970
3.76k
  }
1971
192
  else
1972
192
    *diffp = pull;
1973
1974
  /*
1975
   * XXX - this is one of the operations that happens when the
1976
   * optimizer gets into one of those infinite loops.
1977
   */
1978
3.95k
  opt_state->done = 0;
1979
3.95k
}
1980
1981
static void
1982
and_pullup(opt_state_t *opt_state, struct block *b)
1983
853k
{
1984
853k
  bpf_u_int32 val;
1985
853k
  int at_top;
1986
853k
  struct block *pull;
1987
853k
  struct block **diffp, **samep;
1988
853k
  struct edge *ep;
1989
1990
853k
  ep = b->in_edges;
1991
853k
  if (ep == 0)
1992
278k
    return;
1993
1994
  /*
1995
   * Make sure each predecessor loads the same value.
1996
   */
1997
574k
  val = ep->pred->val[A_ATOM];
1998
628k
  for (ep = ep->next; ep != 0; ep = ep->next)
1999
144k
    if (val != ep->pred->val[A_ATOM])
2000
90.3k
      return;
2001
2002
484k
  if (JT(b->in_edges->pred) == b)
2003
284k
    diffp = &JT(b->in_edges->pred);
2004
199k
  else
2005
199k
    diffp = &JF(b->in_edges->pred);
2006
2007
484k
  at_top = 1;
2008
638k
  for (;;) {
2009
638k
    if (*diffp == 0)
2010
0
      return;
2011
2012
638k
    if (JF(*diffp) != JF(b))
2013
115k
      return;
2014
2015
523k
    if (!SET_MEMBER((*diffp)->dom, b->id))
2016
3.25k
      return;
2017
2018
520k
    if ((*diffp)->val[A_ATOM] != val)
2019
366k
      break;
2020
2021
154k
    diffp = &JT(*diffp);
2022
154k
    at_top = 0;
2023
154k
  }
2024
366k
  samep = &JT(*diffp);
2025
471k
  for (;;) {
2026
471k
    if (*samep == 0)
2027
0
      return;
2028
2029
471k
    if (JF(*samep) != JF(b))
2030
345k
      return;
2031
2032
125k
    if (!SET_MEMBER((*samep)->dom, b->id))
2033
17.5k
      return;
2034
2035
108k
    if ((*samep)->val[A_ATOM] == val)
2036
2.58k
      break;
2037
2038
    /* XXX Need to check that there are no data dependencies
2039
       between diffp and samep.  Currently, the code generator
2040
       will not produce such dependencies. */
2041
105k
    samep = &JT(*samep);
2042
105k
  }
2043
#ifdef notdef
2044
  /* XXX This doesn't cover everything. */
2045
  for (i = 0; i < N_ATOMS; ++i)
2046
    if ((*samep)->val[i] != pred->val[i])
2047
      return;
2048
#endif
2049
  /* Pull up the node. */
2050
2.58k
  pull = *samep;
2051
2.58k
  *samep = JT(pull);
2052
2.58k
  JT(pull) = *diffp;
2053
2054
  /*
2055
   * At the top of the chain, each predecessor needs to point at the
2056
   * pulled up node.  Inside the chain, there is only one predecessor
2057
   * to worry about.
2058
   */
2059
2.58k
  if (at_top) {
2060
4.24k
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061
2.19k
      if (JT(ep->pred) == b)
2062
1.93k
        JT(ep->pred) = pull;
2063
255
      else
2064
255
        JF(ep->pred) = pull;
2065
2.19k
    }
2066
2.05k
  }
2067
538
  else
2068
538
    *diffp = pull;
2069
2070
  /*
2071
   * XXX - this is one of the operations that happens when the
2072
   * optimizer gets into one of those infinite loops.
2073
   */
2074
2.58k
  opt_state->done = 0;
2075
2.58k
}
2076
2077
static void
2078
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079
167k
{
2080
167k
  int i, maxlevel;
2081
167k
  struct block *p;
2082
2083
167k
  init_val(opt_state);
2084
167k
  maxlevel = ic->root->level;
2085
2086
167k
  find_inedges(opt_state, ic->root);
2087
1.45M
  for (i = maxlevel; i >= 0; --i)
2088
2.72M
    for (p = opt_state->levels[i]; p; p = p->link)
2089
1.43M
      opt_blk(opt_state, p, do_stmts);
2090
2091
167k
  if (do_stmts)
2092
    /*
2093
     * No point trying to move branches; it can't possibly
2094
     * make a difference at this point.
2095
     *
2096
     * XXX - this might be after we detect a loop where
2097
     * we were just looping infinitely moving branches
2098
     * in such a fashion that we went through two or more
2099
     * versions of the machine code, eventually returning
2100
     * to the first version.  (We're really not doing a
2101
     * full loop detection, we're just testing for two
2102
     * passes in a row where we do nothing but
2103
     * move branches.)
2104
     */
2105
77.9k
    return;
2106
2107
  /*
2108
   * Is this what the BPF+ paper describes in sections 6.1.1,
2109
   * 6.1.2, and 6.1.3?
2110
   */
2111
923k
  for (i = 1; i <= maxlevel; ++i) {
2112
1.68M
    for (p = opt_state->levels[i]; p; p = p->link) {
2113
853k
      opt_j(opt_state, &p->et);
2114
853k
      opt_j(opt_state, &p->ef);
2115
853k
    }
2116
834k
  }
2117
2118
89.1k
  find_inedges(opt_state, ic->root);
2119
923k
  for (i = 1; i <= maxlevel; ++i) {
2120
1.68M
    for (p = opt_state->levels[i]; p; p = p->link) {
2121
853k
      or_pullup(opt_state, p);
2122
853k
      and_pullup(opt_state, p);
2123
853k
    }
2124
834k
  }
2125
89.1k
}
2126
2127
static inline void
2128
link_inedge(struct edge *parent, struct block *child)
2129
4.02M
{
2130
4.02M
  parent->next = child->in_edges;
2131
4.02M
  child->in_edges = parent;
2132
4.02M
}
2133
2134
static void
2135
find_inedges(opt_state_t *opt_state, struct block *root)
2136
255k
{
2137
255k
  u_int i;
2138
255k
  int level;
2139
255k
  struct block *b;
2140
2141
5.38M
  for (i = 0; i < opt_state->n_blocks; ++i)
2142
5.12M
    opt_state->blocks[i]->in_edges = 0;
2143
2144
  /*
2145
   * Traverse the graph, adding each edge to the predecessor
2146
   * list of its successors.  Skip the leaves (i.e. level 0).
2147
   */
2148
2.21M
  for (level = root->level; level > 0; --level) {
2149
3.97M
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150
2.01M
      link_inedge(&b->et, JT(b));
2151
2.01M
      link_inedge(&b->ef, JF(b));
2152
2.01M
    }
2153
1.96M
  }
2154
255k
}
2155
2156
static void
2157
opt_root(struct block **b)
2158
34.3k
{
2159
34.3k
  struct slist *tmp, *s;
2160
2161
34.3k
  s = (*b)->stmts;
2162
34.3k
  (*b)->stmts = 0;
2163
56.1k
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164
21.8k
    *b = JT(*b);
2165
2166
34.3k
  tmp = (*b)->stmts;
2167
34.3k
  if (tmp != 0)
2168
3.20k
    sappend(s, tmp);
2169
34.3k
  (*b)->stmts = s;
2170
2171
  /*
2172
   * If the root node is a return, then there is no
2173
   * point executing any statements (since the bpf machine
2174
   * has no side effects).
2175
   */
2176
34.3k
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177
22.9k
    (*b)->stmts = 0;
2178
34.3k
}
2179
2180
static void
2181
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182
69.9k
{
2183
2184
#ifdef BDEBUG
2185
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186
    printf("opt_loop(root, %d) begin\n", do_stmts);
2187
    opt_dump(opt_state, ic);
2188
  }
2189
#endif
2190
2191
  /*
2192
   * XXX - optimizer loop detection.
2193
   */
2194
69.9k
  int loop_count = 0;
2195
167k
  for (;;) {
2196
167k
    opt_state->done = 1;
2197
    /*
2198
     * XXX - optimizer loop detection.
2199
     */
2200
167k
    opt_state->non_branch_movement_performed = 0;
2201
167k
    find_levels(opt_state, ic);
2202
167k
    find_dom(opt_state, ic->root);
2203
167k
    find_closure(opt_state, ic->root);
2204
167k
    find_ud(opt_state, ic->root);
2205
167k
    find_edom(opt_state, ic->root);
2206
167k
    opt_blks(opt_state, ic, do_stmts);
2207
#ifdef BDEBUG
2208
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210
      opt_dump(opt_state, ic);
2211
    }
2212
#endif
2213
2214
    /*
2215
     * Was anything done in this optimizer pass?
2216
     */
2217
167k
    if (opt_state->done) {
2218
      /*
2219
       * No, so we've reached a fixed point.
2220
       * We're done.
2221
       */
2222
69.2k
      break;
2223
69.2k
    }
2224
2225
    /*
2226
     * XXX - was anything done other than branch movement
2227
     * in this pass?
2228
     */
2229
97.8k
    if (opt_state->non_branch_movement_performed) {
2230
      /*
2231
       * Yes.  Clear any loop-detection counter;
2232
       * we're making some form of progress (assuming
2233
       * we can't get into a cycle doing *other*
2234
       * optimizations...).
2235
       */
2236
91.7k
      loop_count = 0;
2237
91.7k
    } else {
2238
      /*
2239
       * No - increment the counter, and quit if
2240
       * it's up to 100.
2241
       */
2242
6.10k
      loop_count++;
2243
6.10k
      if (loop_count >= 100) {
2244
        /*
2245
         * We've done nothing but branch movement
2246
         * for 100 passes; we're probably
2247
         * in a cycle and will never reach a
2248
         * fixed point.
2249
         *
2250
         * XXX - yes, we really need a non-
2251
         * heuristic way of detecting a cycle.
2252
         */
2253
0
        opt_state->done = 1;
2254
0
        break;
2255
0
      }
2256
6.10k
    }
2257
97.8k
  }
2258
69.9k
}
2259
2260
/*
2261
 * Optimize the filter code in its dag representation.
2262
 * Return 0 on success, -1 on error.
2263
 */
2264
int
2265
bpf_optimize(struct icode *ic, char *errbuf)
2266
34.9k
{
2267
34.9k
  opt_state_t opt_state;
2268
2269
34.9k
  memset(&opt_state, 0, sizeof(opt_state));
2270
34.9k
  opt_state.errbuf = errbuf;
2271
34.9k
  opt_state.non_branch_movement_performed = 0;
2272
34.9k
  if (setjmp(opt_state.top_ctx)) {
2273
643
    opt_cleanup(&opt_state);
2274
643
    return -1;
2275
643
  }
2276
34.3k
  opt_init(&opt_state, ic);
2277
34.3k
  opt_loop(&opt_state, ic, 0);
2278
34.3k
  opt_loop(&opt_state, ic, 1);
2279
34.3k
  intern_blocks(&opt_state, ic);
2280
#ifdef BDEBUG
2281
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282
    printf("after intern_blocks()\n");
2283
    opt_dump(&opt_state, ic);
2284
  }
2285
#endif
2286
34.3k
  opt_root(&ic->root);
2287
#ifdef BDEBUG
2288
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289
    printf("after opt_root()\n");
2290
    opt_dump(&opt_state, ic);
2291
  }
2292
#endif
2293
34.3k
  opt_cleanup(&opt_state);
2294
34.3k
  return 0;
2295
34.9k
}
2296
2297
static void
2298
make_marks(struct icode *ic, struct block *p)
2299
244k
{
2300
244k
  if (!isMarked(ic, p)) {
2301
147k
    Mark(ic, p);
2302
147k
    if (BPF_CLASS(p->s.code) != BPF_RET) {
2303
104k
      make_marks(ic, JT(p));
2304
104k
      make_marks(ic, JF(p));
2305
104k
    }
2306
147k
  }
2307
244k
}
2308
2309
/*
2310
 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311
 * only for nodes that are alive.
2312
 */
2313
static void
2314
mark_code(struct icode *ic)
2315
34.8k
{
2316
34.8k
  ic->cur_mark += 1;
2317
34.8k
  make_marks(ic, ic->root);
2318
34.8k
}
2319
2320
/*
2321
 * True iff the two stmt lists load the same value from the packet into
2322
 * the accumulator.
2323
 */
2324
static int
2325
eq_slist(struct slist *x, struct slist *y)
2326
2.81k
{
2327
3.34k
  for (;;) {
2328
5.57k
    while (x && x->s.code == NOP)
2329
2.22k
      x = x->next;
2330
5.54k
    while (y && y->s.code == NOP)
2331
2.19k
      y = y->next;
2332
3.34k
    if (x == 0)
2333
906
      return y == 0;
2334
2.44k
    if (y == 0)
2335
70
      return x == 0;
2336
2.37k
    if (x->s.code != y->s.code || x->s.k != y->s.k)
2337
1.84k
      return 0;
2338
530
    x = x->next;
2339
530
    y = y->next;
2340
530
  }
2341
2.81k
}
2342
2343
static inline int
2344
eq_blk(struct block *b0, struct block *b1)
2345
878k
{
2346
878k
  if (b0->s.code == b1->s.code &&
2347
878k
      b0->s.k == b1->s.k &&
2348
878k
      b0->et.succ == b1->et.succ &&
2349
878k
      b0->ef.succ == b1->ef.succ)
2350
2.81k
    return eq_slist(b0->stmts, b1->stmts);
2351
875k
  return 0;
2352
878k
}
2353
2354
static void
2355
intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356
34.3k
{
2357
34.3k
  struct block *p;
2358
34.3k
  u_int i, j;
2359
34.3k
  int done1; /* don't shadow global */
2360
34.8k
 top:
2361
34.8k
  done1 = 1;
2362
594k
  for (i = 0; i < opt_state->n_blocks; ++i)
2363
559k
    opt_state->blocks[i]->link = 0;
2364
2365
34.8k
  mark_code(ic);
2366
2367
559k
  for (i = opt_state->n_blocks - 1; i != 0; ) {
2368
525k
    --i;
2369
525k
    if (!isMarked(ic, opt_state->blocks[i]))
2370
403k
      continue;
2371
3.05M
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372
2.93M
      if (!isMarked(ic, opt_state->blocks[j]))
2373
2.05M
        continue;
2374
878k
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375
798
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376
687
          opt_state->blocks[j]->link : opt_state->blocks[j];
2377
798
        break;
2378
798
      }
2379
878k
    }
2380
121k
  }
2381
594k
  for (i = 0; i < opt_state->n_blocks; ++i) {
2382
559k
    p = opt_state->blocks[i];
2383
559k
    if (JT(p) == 0)
2384
59.0k
      continue;
2385
500k
    if (JT(p)->link) {
2386
758
      done1 = 0;
2387
758
      JT(p) = JT(p)->link;
2388
758
    }
2389
500k
    if (JF(p)->link) {
2390
580
      done1 = 0;
2391
580
      JF(p) = JF(p)->link;
2392
580
    }
2393
500k
  }
2394
34.8k
  if (!done1)
2395
561
    goto top;
2396
34.8k
}
2397
2398
static void
2399
opt_cleanup(opt_state_t *opt_state)
2400
34.9k
{
2401
34.9k
  free((void *)opt_state->vnode_base);
2402
34.9k
  free((void *)opt_state->vmap);
2403
34.9k
  free((void *)opt_state->edges);
2404
34.9k
  free((void *)opt_state->space);
2405
34.9k
  free((void *)opt_state->levels);
2406
34.9k
  free((void *)opt_state->blocks);
2407
34.9k
}
2408
2409
/*
2410
 * For optimizer errors.
2411
 */
2412
static void PCAP_NORETURN
2413
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414
643
{
2415
643
  va_list ap;
2416
2417
643
  if (opt_state->errbuf != NULL) {
2418
643
    va_start(ap, fmt);
2419
643
    (void)vsnprintf(opt_state->errbuf,
2420
643
        PCAP_ERRBUF_SIZE, fmt, ap);
2421
643
    va_end(ap);
2422
643
  }
2423
643
  longjmp(opt_state->top_ctx, 1);
2424
  /* NOTREACHED */
2425
#ifdef _AIX
2426
  PCAP_UNREACHABLE
2427
#endif /* _AIX */
2428
643
}
2429
2430
/*
2431
 * Return the number of stmts in 's'.
2432
 */
2433
static u_int
2434
slength(struct slist *s)
2435
7.24M
{
2436
7.24M
  u_int n = 0;
2437
2438
27.2M
  for (; s; s = s->next)
2439
19.9M
    if (s->s.code != NOP)
2440
18.9M
      ++n;
2441
7.24M
  return n;
2442
7.24M
}
2443
2444
/*
2445
 * Return the number of nodes reachable by 'p'.
2446
 * All nodes should be initially unmarked.
2447
 */
2448
static int
2449
count_blocks(struct icode *ic, struct block *p)
2450
1.11M
{
2451
1.11M
  if (p == 0 || isMarked(ic, p))
2452
572k
    return 0;
2453
537k
  Mark(ic, p);
2454
537k
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455
1.11M
}
2456
2457
/*
2458
 * Do a depth first search on the flow graph, numbering the
2459
 * the basic blocks, and entering them into the 'blocks' array.`
2460
 */
2461
static void
2462
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463
1.11M
{
2464
1.11M
  u_int n;
2465
2466
1.11M
  if (p == 0 || isMarked(ic, p))
2467
572k
    return;
2468
2469
537k
  Mark(ic, p);
2470
537k
  n = opt_state->n_blocks++;
2471
537k
  if (opt_state->n_blocks == 0) {
2472
    /*
2473
     * Overflow.
2474
     */
2475
0
    opt_error(opt_state, "filter is too complex to optimize");
2476
0
  }
2477
537k
  p->id = n;
2478
537k
  opt_state->blocks[n] = p;
2479
2480
537k
  number_blks_r(opt_state, ic, JT(p));
2481
537k
  number_blks_r(opt_state, ic, JF(p));
2482
537k
}
2483
2484
/*
2485
 * Return the number of stmts in the flowgraph reachable by 'p'.
2486
 * The nodes should be unmarked before calling.
2487
 *
2488
 * Note that "stmts" means "instructions", and that this includes
2489
 *
2490
 *  side-effect statements in 'p' (slength(p->stmts));
2491
 *
2492
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2493
 *
2494
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2495
 *
2496
 *  the conditional jump itself (1);
2497
 *
2498
 *  an extra long jump if the true branch requires it (p->longjt);
2499
 *
2500
 *  an extra long jump if the false branch requires it (p->longjf).
2501
 */
2502
static u_int
2503
count_stmts(struct icode *ic, struct block *p)
2504
8.13M
{
2505
8.13M
  u_int n;
2506
2507
8.13M
  if (p == 0 || isMarked(ic, p))
2508
4.08M
    return 0;
2509
4.04M
  Mark(ic, p);
2510
4.04M
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511
4.04M
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512
8.13M
}
2513
2514
/*
2515
 * Allocate memory.  All allocation is done before optimization
2516
 * is begun.  A linear bound on the size of all data structures is computed
2517
 * from the total number of blocks and/or statements.
2518
 */
2519
static void
2520
opt_init(opt_state_t *opt_state, struct icode *ic)
2521
34.9k
{
2522
34.9k
  bpf_u_int32 *p;
2523
34.9k
  int i, n, max_stmts;
2524
34.9k
  u_int product;
2525
34.9k
  size_t block_memsize, edge_memsize;
2526
2527
  /*
2528
   * First, count the blocks, so we can malloc an array to map
2529
   * block number to block.  Then, put the blocks into the array.
2530
   */
2531
34.9k
  unMarkAll(ic);
2532
34.9k
  n = count_blocks(ic, ic->root);
2533
34.9k
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534
34.9k
  if (opt_state->blocks == NULL)
2535
0
    opt_error(opt_state, "malloc");
2536
34.9k
  unMarkAll(ic);
2537
34.9k
  opt_state->n_blocks = 0;
2538
34.9k
  number_blks_r(opt_state, ic, ic->root);
2539
2540
  /*
2541
   * This "should not happen".
2542
   */
2543
34.9k
  if (opt_state->n_blocks == 0)
2544
0
    opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546
34.9k
  opt_state->n_edges = 2 * opt_state->n_blocks;
2547
34.9k
  if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548
    /*
2549
     * Overflow.
2550
     */
2551
0
    opt_error(opt_state, "filter is too complex to optimize");
2552
0
  }
2553
34.9k
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554
34.9k
  if (opt_state->edges == NULL) {
2555
0
    opt_error(opt_state, "malloc");
2556
0
  }
2557
2558
  /*
2559
   * The number of levels is bounded by the number of nodes.
2560
   */
2561
34.9k
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562
34.9k
  if (opt_state->levels == NULL) {
2563
0
    opt_error(opt_state, "malloc");
2564
0
  }
2565
2566
34.9k
  opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567
34.9k
  opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569
  /*
2570
   * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571
   * in a u_int; we use it as a u_int number-of-iterations
2572
   * value.
2573
   */
2574
34.9k
  product = opt_state->n_blocks * opt_state->nodewords;
2575
34.9k
  if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576
    /*
2577
     * XXX - just punt and don't try to optimize?
2578
     * In practice, this is unlikely to happen with
2579
     * a normal filter.
2580
     */
2581
0
    opt_error(opt_state, "filter is too complex to optimize");
2582
0
  }
2583
2584
  /*
2585
   * Make sure the total memory required for that doesn't
2586
   * overflow.
2587
   */
2588
34.9k
  block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589
34.9k
  if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590
0
    opt_error(opt_state, "filter is too complex to optimize");
2591
0
  }
2592
2593
  /*
2594
   * Make sure opt_state->n_edges * opt_state->edgewords fits
2595
   * in a u_int; we use it as a u_int number-of-iterations
2596
   * value.
2597
   */
2598
34.9k
  product = opt_state->n_edges * opt_state->edgewords;
2599
34.9k
  if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600
0
    opt_error(opt_state, "filter is too complex to optimize");
2601
0
  }
2602
2603
  /*
2604
   * Make sure the total memory required for that doesn't
2605
   * overflow.
2606
   */
2607
34.9k
  edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608
34.9k
  if (edge_memsize / product != sizeof(*opt_state->space)) {
2609
0
    opt_error(opt_state, "filter is too complex to optimize");
2610
0
  }
2611
2612
  /*
2613
   * Make sure the total memory required for both of them doesn't
2614
   * overflow.
2615
   */
2616
34.9k
  if (block_memsize > SIZE_MAX - edge_memsize) {
2617
0
    opt_error(opt_state, "filter is too complex to optimize");
2618
0
  }
2619
2620
  /* XXX */
2621
34.9k
  opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622
34.9k
  if (opt_state->space == NULL) {
2623
0
    opt_error(opt_state, "malloc");
2624
0
  }
2625
34.9k
  p = opt_state->space;
2626
34.9k
  opt_state->all_dom_sets = p;
2627
572k
  for (i = 0; i < n; ++i) {
2628
537k
    opt_state->blocks[i]->dom = p;
2629
537k
    p += opt_state->nodewords;
2630
537k
  }
2631
34.9k
  opt_state->all_closure_sets = p;
2632
572k
  for (i = 0; i < n; ++i) {
2633
537k
    opt_state->blocks[i]->closure = p;
2634
537k
    p += opt_state->nodewords;
2635
537k
  }
2636
34.9k
  opt_state->all_edge_sets = p;
2637
572k
  for (i = 0; i < n; ++i) {
2638
537k
    register struct block *b = opt_state->blocks[i];
2639
2640
537k
    b->et.edom = p;
2641
537k
    p += opt_state->edgewords;
2642
537k
    b->ef.edom = p;
2643
537k
    p += opt_state->edgewords;
2644
537k
    b->et.id = i;
2645
537k
    opt_state->edges[i] = &b->et;
2646
537k
    b->ef.id = opt_state->n_blocks + i;
2647
537k
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648
537k
    b->et.pred = b;
2649
537k
    b->ef.pred = b;
2650
537k
  }
2651
34.9k
  max_stmts = 0;
2652
572k
  for (i = 0; i < n; ++i)
2653
537k
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654
  /*
2655
   * We allocate at most 3 value numbers per statement,
2656
   * so this is an upper bound on the number of valnodes
2657
   * we'll need.
2658
   */
2659
34.9k
  opt_state->maxval = 3 * max_stmts;
2660
34.9k
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661
34.9k
  if (opt_state->vmap == NULL) {
2662
0
    opt_error(opt_state, "malloc");
2663
0
  }
2664
34.9k
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665
34.9k
  if (opt_state->vnode_base == NULL) {
2666
0
    opt_error(opt_state, "malloc");
2667
0
  }
2668
34.9k
}
2669
2670
/*
2671
 * This is only used when supporting optimizer debugging.  It is
2672
 * global state, so do *not* do more than one compile in parallel
2673
 * and expect it to provide meaningful information.
2674
 */
2675
#ifdef BDEBUG
2676
int bids[NBIDS];
2677
#endif
2678
2679
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680
    PCAP_PRINTFLIKE(2, 3);
2681
2682
/*
2683
 * Returns true if successful.  Returns false if a branch has
2684
 * an offset that is too large.  If so, we have marked that
2685
 * branch so that on a subsequent iteration, it will be treated
2686
 * properly.
2687
 */
2688
static int
2689
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690
6.14M
{
2691
6.14M
  struct bpf_insn *dst;
2692
6.14M
  struct slist *src;
2693
6.14M
  u_int slen;
2694
6.14M
  u_int off;
2695
6.14M
  struct slist **offset = NULL;
2696
2697
6.14M
  if (p == 0 || isMarked(ic, p))
2698
2.82M
    return (1);
2699
3.31M
  Mark(ic, p);
2700
2701
3.31M
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702
527k
    return (0);
2703
2.78M
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704
121k
    return (0);
2705
2706
2.66M
  slen = slength(p->stmts);
2707
2.66M
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708
    /* inflate length by any extra jumps */
2709
2710
2.66M
  p->offset = (int)(dst - conv_state->fstart);
2711
2712
  /* generate offset[] for convenience  */
2713
2.66M
  if (slen) {
2714
2.56M
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715
2.56M
    if (!offset) {
2716
0
      conv_error(conv_state, "not enough core");
2717
      /*NOTREACHED*/
2718
0
    }
2719
2.56M
  }
2720
2.66M
  src = p->stmts;
2721
9.10M
  for (off = 0; off < slen && src; off++) {
2722
#if 0
2723
    printf("off=%d src=%x\n", off, src);
2724
#endif
2725
6.43M
    offset[off] = src;
2726
6.43M
    src = src->next;
2727
6.43M
  }
2728
2729
2.66M
  off = 0;
2730
9.60M
  for (src = p->stmts; src; src = src->next) {
2731
6.94M
    if (src->s.code == NOP)
2732
507k
      continue;
2733
6.43M
    dst->code = (u_short)src->s.code;
2734
6.43M
    dst->k = src->s.k;
2735
2736
    /* fill block-local relative jump */
2737
6.43M
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738
#if 0
2739
      if (src->s.jt || src->s.jf) {
2740
        free(offset);
2741
        conv_error(conv_state, "illegal jmp destination");
2742
        /*NOTREACHED*/
2743
      }
2744
#endif
2745
6.41M
      goto filled;
2746
6.41M
    }
2747
25.6k
    if (off == slen - 2)  /*???*/
2748
0
      goto filled;
2749
2750
25.6k
      {
2751
25.6k
    u_int i;
2752
25.6k
    int jt, jf;
2753
25.6k
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755
#if 0
2756
    printf("code=%x off=%d %x %x\n", src->s.code,
2757
      off, src->s.jt, src->s.jf);
2758
#endif
2759
2760
25.6k
    if (!src->s.jt || !src->s.jf) {
2761
0
      free(offset);
2762
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2763
      /*NOTREACHED*/
2764
0
    }
2765
2766
25.6k
    jt = jf = 0;
2767
1.51M
    for (i = 0; i < slen; i++) {
2768
1.49M
      if (offset[i] == src->s.jt) {
2769
25.6k
        if (jt) {
2770
0
          free(offset);
2771
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2772
          /*NOTREACHED*/
2773
0
        }
2774
2775
25.6k
        if (i - off - 1 >= 256) {
2776
0
          free(offset);
2777
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2778
          /*NOTREACHED*/
2779
0
        }
2780
25.6k
        dst->jt = (u_char)(i - off - 1);
2781
25.6k
        jt++;
2782
25.6k
      }
2783
1.49M
      if (offset[i] == src->s.jf) {
2784
25.6k
        if (jf) {
2785
0
          free(offset);
2786
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2787
          /*NOTREACHED*/
2788
0
        }
2789
25.6k
        if (i - off - 1 >= 256) {
2790
0
          free(offset);
2791
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2792
          /*NOTREACHED*/
2793
0
        }
2794
25.6k
        dst->jf = (u_char)(i - off - 1);
2795
25.6k
        jf++;
2796
25.6k
      }
2797
1.49M
    }
2798
25.6k
    if (!jt || !jf) {
2799
0
      free(offset);
2800
0
      conv_error(conv_state, ljerr, "no destination found", off);
2801
      /*NOTREACHED*/
2802
0
    }
2803
25.6k
      }
2804
6.43M
filled:
2805
6.43M
    ++dst;
2806
6.43M
    ++off;
2807
6.43M
  }
2808
2.66M
  if (offset)
2809
2.56M
    free(offset);
2810
2811
#ifdef BDEBUG
2812
  if (dst - conv_state->fstart < NBIDS)
2813
    bids[dst - conv_state->fstart] = p->id + 1;
2814
#endif
2815
2.66M
  dst->code = (u_short)p->s.code;
2816
2.66M
  dst->k = p->s.k;
2817
2.66M
  if (JT(p)) {
2818
    /* number of extra jumps inserted */
2819
2.59M
    u_char extrajmps = 0;
2820
2.59M
    off = JT(p)->offset - (p->offset + slen) - 1;
2821
2.59M
    if (off >= 256) {
2822
        /* offset too large for branch, must add a jump */
2823
215k
        if (p->longjt == 0) {
2824
      /* mark this instruction and retry */
2825
8.32k
      p->longjt++;
2826
8.32k
      return(0);
2827
8.32k
        }
2828
207k
        dst->jt = extrajmps;
2829
207k
        extrajmps++;
2830
207k
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2831
207k
        dst[extrajmps].k = off - extrajmps;
2832
207k
    }
2833
2.37M
    else
2834
2.37M
        dst->jt = (u_char)off;
2835
2.58M
    off = JF(p)->offset - (p->offset + slen) - 1;
2836
2.58M
    if (off >= 256) {
2837
        /* offset too large for branch, must add a jump */
2838
109k
        if (p->longjf == 0) {
2839
      /* mark this instruction and retry */
2840
4.53k
      p->longjf++;
2841
4.53k
      return(0);
2842
4.53k
        }
2843
        /* branch if F to following jump */
2844
        /* if two jumps are inserted, F goes to second one */
2845
104k
        dst->jf = extrajmps;
2846
104k
        extrajmps++;
2847
104k
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2848
104k
        dst[extrajmps].k = off - extrajmps;
2849
104k
    }
2850
2.47M
    else
2851
2.47M
        dst->jf = (u_char)off;
2852
2.58M
  }
2853
2.65M
  return (1);
2854
2.66M
}
2855
2856
2857
/*
2858
 * Convert flowgraph intermediate representation to the
2859
 * BPF array representation.  Set *lenp to the number of instructions.
2860
 *
2861
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862
 * not* do free(fp) before returning fp; doing so would make no sense,
2863
 * as the BPF array pointed to by the return value of icode_to_fcode()
2864
 * must be valid - it's being returned for use in a bpf_program structure.
2865
 *
2866
 * If it appears that icode_to_fcode() is leaking, the problem is that
2867
 * the program using pcap_compile() is failing to free the memory in
2868
 * the BPF program when it's done - the leak is in the program, not in
2869
 * the routine that happens to be allocating the memory.  (By analogy, if
2870
 * a program calls fopen() without ever calling fclose() on the FILE *,
2871
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872
 * the program.)  Change the program to use pcap_freecode() when it's
2873
 * done with the filter program.  See the pcap man page.
2874
 */
2875
struct bpf_insn *
2876
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877
    char *errbuf)
2878
31.9k
{
2879
31.9k
  u_int n;
2880
31.9k
  struct bpf_insn *fp;
2881
31.9k
  conv_state_t conv_state;
2882
2883
31.9k
  conv_state.fstart = NULL;
2884
31.9k
  conv_state.errbuf = errbuf;
2885
31.9k
  if (setjmp(conv_state.top_ctx) != 0) {
2886
0
    free(conv_state.fstart);
2887
0
    return NULL;
2888
0
  }
2889
2890
  /*
2891
   * Loop doing convert_code_r() until no branches remain
2892
   * with too-large offsets.
2893
   */
2894
44.8k
  for (;;) {
2895
44.8k
      unMarkAll(ic);
2896
44.8k
      n = *lenp = count_stmts(ic, root);
2897
2898
44.8k
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899
44.8k
      if (fp == NULL) {
2900
0
    (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901
0
        "malloc");
2902
0
    return NULL;
2903
0
      }
2904
44.8k
      memset((char *)fp, 0, sizeof(*fp) * n);
2905
44.8k
      conv_state.fstart = fp;
2906
44.8k
      conv_state.ftail = fp + n;
2907
2908
44.8k
      unMarkAll(ic);
2909
44.8k
      if (convert_code_r(&conv_state, ic, root))
2910
31.9k
    break;
2911
12.8k
      free(fp);
2912
12.8k
  }
2913
2914
31.9k
  return fp;
2915
31.9k
}
2916
2917
/*
2918
 * For iconv_to_fconv() errors.
2919
 */
2920
static void PCAP_NORETURN
2921
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922
0
{
2923
0
  va_list ap;
2924
2925
0
  va_start(ap, fmt);
2926
0
  (void)vsnprintf(conv_state->errbuf,
2927
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2928
0
  va_end(ap);
2929
0
  longjmp(conv_state->top_ctx, 1);
2930
  /* NOTREACHED */
2931
#ifdef _AIX
2932
  PCAP_UNREACHABLE
2933
#endif /* _AIX */
2934
0
}
2935
2936
/*
2937
 * Make a copy of a BPF program and put it in the "fcode" member of
2938
 * a "pcap_t".
2939
 *
2940
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941
 * member of the "pcap_t" with an error message, and return -1;
2942
 * otherwise, return 0.
2943
 */
2944
int
2945
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946
0
{
2947
0
  size_t prog_size;
2948
2949
  /*
2950
   * Validate the program.
2951
   */
2952
0
  if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953
0
    snprintf(p->errbuf, sizeof(p->errbuf),
2954
0
      "BPF program is not valid");
2955
0
    return (-1);
2956
0
  }
2957
2958
  /*
2959
   * Free up any already installed program.
2960
   */
2961
0
  pcap_freecode(&p->fcode);
2962
2963
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964
0
  p->fcode.bf_len = fp->bf_len;
2965
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966
0
  if (p->fcode.bf_insns == NULL) {
2967
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968
0
        errno, "malloc");
2969
0
    return (-1);
2970
0
  }
2971
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972
0
  return (0);
2973
0
}
2974
2975
#ifdef BDEBUG
2976
static void
2977
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978
    FILE *out)
2979
{
2980
  int icount, noffset;
2981
  int i;
2982
2983
  if (block == NULL || isMarked(ic, block))
2984
    return;
2985
  Mark(ic, block);
2986
2987
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988
  noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990
  fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991
  for (i = block->offset; i < noffset; i++) {
2992
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993
  }
2994
  fprintf(out, "\" tooltip=\"");
2995
  for (i = 0; i < BPF_MEMWORDS; i++)
2996
    if (block->val[i] != VAL_UNKNOWN)
2997
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000
  fprintf(out, "\"");
3001
  if (JT(block) == NULL)
3002
    fprintf(out, ", peripheries=2");
3003
  fprintf(out, "];\n");
3004
3005
  dot_dump_node(ic, JT(block), prog, out);
3006
  dot_dump_node(ic, JF(block), prog, out);
3007
}
3008
3009
static void
3010
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011
{
3012
  if (block == NULL || isMarked(ic, block))
3013
    return;
3014
  Mark(ic, block);
3015
3016
  if (JT(block)) {
3017
    fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018
        block->id, JT(block)->id);
3019
    fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020
         block->id, JF(block)->id);
3021
  }
3022
  dot_dump_edge(ic, JT(block), out);
3023
  dot_dump_edge(ic, JF(block), out);
3024
}
3025
3026
/* Output the block CFG using graphviz/DOT language
3027
 * In the CFG, block's code, value index for each registers at EXIT,
3028
 * and the jump relationship is show.
3029
 *
3030
 * example DOT for BPF `ip src host 1.1.1.1' is:
3031
    digraph BPF {
3032
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
3033
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
3034
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036
      "block0":se -> "block1":n [label="T"];
3037
      "block0":sw -> "block3":n [label="F"];
3038
      "block1":se -> "block2":n [label="T"];
3039
      "block1":sw -> "block3":n [label="F"];
3040
    }
3041
 *
3042
 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044
 */
3045
static int
3046
dot_dump(struct icode *ic, char *errbuf)
3047
{
3048
  struct bpf_program f;
3049
  FILE *out = stdout;
3050
3051
  memset(bids, 0, sizeof bids);
3052
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053
  if (f.bf_insns == NULL)
3054
    return -1;
3055
3056
  fprintf(out, "digraph BPF {\n");
3057
  unMarkAll(ic);
3058
  dot_dump_node(ic, ic->root, &f, out);
3059
  unMarkAll(ic);
3060
  dot_dump_edge(ic, ic->root, out);
3061
  fprintf(out, "}\n");
3062
3063
  free((char *)f.bf_insns);
3064
  return 0;
3065
}
3066
3067
static int
3068
plain_dump(struct icode *ic, char *errbuf)
3069
{
3070
  struct bpf_program f;
3071
3072
  memset(bids, 0, sizeof bids);
3073
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074
  if (f.bf_insns == NULL)
3075
    return -1;
3076
  bpf_dump(&f, 1);
3077
  putchar('\n');
3078
  free((char *)f.bf_insns);
3079
  return 0;
3080
}
3081
3082
static void
3083
opt_dump(opt_state_t *opt_state, struct icode *ic)
3084
{
3085
  int status;
3086
  char errbuf[PCAP_ERRBUF_SIZE];
3087
3088
  /*
3089
   * If the CFG, in DOT format, is requested, output it rather than
3090
   * the code that would be generated from that graph.
3091
   */
3092
  if (pcap_print_dot_graph)
3093
    status = dot_dump(ic, errbuf);
3094
  else
3095
    status = plain_dump(ic, errbuf);
3096
  if (status == -1)
3097
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098
}
3099
#endif