/src/openssl/crypto/stack/stack.c
Line  | Count  | Source (jump to first uncovered line)  | 
1  |  | /*  | 
2  |  |  * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.  | 
3  |  |  *  | 
4  |  |  * Licensed under the Apache License 2.0 (the "License").  You may not use  | 
5  |  |  * this file except in compliance with the License.  You can obtain a copy  | 
6  |  |  * in the file LICENSE in the source distribution or at  | 
7  |  |  * https://www.openssl.org/source/license.html  | 
8  |  |  */  | 
9  |  |  | 
10  |  | #include <stdio.h>  | 
11  |  | #include "internal/cryptlib.h"  | 
12  |  | #include "internal/numbers.h"  | 
13  |  | #include <openssl/stack.h>  | 
14  |  | #include <errno.h>  | 
15  |  | #include <openssl/e_os2.h>      /* For ossl_inline */  | 
16  |  |  | 
17  |  | /*  | 
18  |  |  * The initial number of nodes in the array.  | 
19  |  |  */  | 
20  |  | static const int min_nodes = 4;  | 
21  |  | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX  | 
22  |  |                              ? (int)(SIZE_MAX / sizeof(void *))  | 
23  |  |                              : INT_MAX;  | 
24  |  |  | 
25  |  | struct stack_st { | 
26  |  |     int num;  | 
27  |  |     const void **data;  | 
28  |  |     int sorted;  | 
29  |  |     int num_alloc;  | 
30  |  |     OPENSSL_sk_compfunc comp;  | 
31  |  | };  | 
32  |  |  | 
33  |  | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)  | 
34  | 0  | { | 
35  | 0  |     OPENSSL_sk_compfunc old = sk->comp;  | 
36  |  | 
  | 
37  | 0  |     if (sk->comp != c)  | 
38  | 0  |         sk->sorted = 0;  | 
39  | 0  |     sk->comp = c;  | 
40  |  | 
  | 
41  | 0  |     return old;  | 
42  | 0  | }  | 
43  |  |  | 
44  |  | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)  | 
45  | 0  | { | 
46  | 0  |     OPENSSL_STACK *ret;  | 
47  |  | 
  | 
48  | 0  |     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { | 
49  | 0  |         CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);  | 
50  | 0  |         return NULL;  | 
51  | 0  |     }  | 
52  |  |  | 
53  |  |     /* direct structure assignment */  | 
54  | 0  |     *ret = *sk;  | 
55  |  | 
  | 
56  | 0  |     if (sk->num == 0) { | 
57  |  |         /* postpone |ret->data| allocation */  | 
58  | 0  |         ret->data = NULL;  | 
59  | 0  |         ret->num_alloc = 0;  | 
60  | 0  |         return ret;  | 
61  | 0  |     }  | 
62  |  |     /* duplicate |sk->data| content */  | 
63  | 0  |     if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)  | 
64  | 0  |         goto err;  | 
65  | 0  |     memcpy(ret->data, sk->data, sizeof(void *) * sk->num);  | 
66  | 0  |     return ret;  | 
67  | 0  |  err:  | 
68  | 0  |     OPENSSL_sk_free(ret);  | 
69  | 0  |     return NULL;  | 
70  | 0  | }  | 
71  |  |  | 
72  |  | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,  | 
73  |  |                              OPENSSL_sk_copyfunc copy_func,  | 
74  |  |                              OPENSSL_sk_freefunc free_func)  | 
75  | 0  | { | 
76  | 0  |     OPENSSL_STACK *ret;  | 
77  | 0  |     int i;  | 
78  |  | 
  | 
79  | 0  |     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { | 
80  | 0  |         CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);  | 
81  | 0  |         return NULL;  | 
82  | 0  |     }  | 
83  |  |  | 
84  |  |     /* direct structure assignment */  | 
85  | 0  |     *ret = *sk;  | 
86  |  | 
  | 
87  | 0  |     if (sk->num == 0) { | 
88  |  |         /* postpone |ret| data allocation */  | 
89  | 0  |         ret->data = NULL;  | 
90  | 0  |         ret->num_alloc = 0;  | 
91  | 0  |         return ret;  | 
92  | 0  |     }  | 
93  |  |  | 
94  | 0  |     ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;  | 
95  | 0  |     ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);  | 
96  | 0  |     if (ret->data == NULL) { | 
97  | 0  |         OPENSSL_free(ret);  | 
98  | 0  |         return NULL;  | 
99  | 0  |     }  | 
100  |  |  | 
101  | 0  |     for (i = 0; i < ret->num; ++i) { | 
102  | 0  |         if (sk->data[i] == NULL)  | 
103  | 0  |             continue;  | 
104  | 0  |         if ((ret->data[i] = copy_func(sk->data[i])) == NULL) { | 
105  | 0  |             while (--i >= 0)  | 
106  | 0  |                 if (ret->data[i] != NULL)  | 
107  | 0  |                     free_func((void *)ret->data[i]);  | 
108  | 0  |             OPENSSL_sk_free(ret);  | 
109  | 0  |             return NULL;  | 
110  | 0  |         }  | 
111  | 0  |     }  | 
112  | 0  |     return ret;  | 
113  | 0  | }  | 
114  |  |  | 
115  |  | OPENSSL_STACK *OPENSSL_sk_new_null(void)  | 
116  | 84.8k  | { | 
117  | 84.8k  |     return OPENSSL_sk_new_reserve(NULL, 0);  | 
118  | 84.8k  | }  | 
119  |  |  | 
120  |  | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)  | 
121  | 0  | { | 
122  | 0  |     return OPENSSL_sk_new_reserve(c, 0);  | 
123  | 0  | }  | 
124  |  |  | 
125  |  | /*  | 
126  |  |  * Calculate the array growth based on the target size.  | 
127  |  |  *  | 
128  |  |  * The growth fraction is a rational number and is defined by a numerator  | 
129  |  |  * and a denominator.  According to Andrew Koenig in his paper "Why Are  | 
130  |  |  * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less  | 
131  |  |  * than the golden ratio (1.618...).  | 
132  |  |  *  | 
133  |  |  * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.  | 
134  |  |  * Another option 8/5 = 1.6 allows for slightly faster growth, although safe  | 
135  |  |  * computation is more difficult.  | 
136  |  |  *  | 
137  |  |  * The limit to avoid overflow is spot on.  The modulo three correction term  | 
138  |  |  * ensures that the limit is the largest number than can be expanded by the  | 
139  |  |  * growth factor without exceeding the hard limit.  | 
140  |  |  *  | 
141  |  |  * Do not call it with |current| lower than 2, or it will infinitely loop.  | 
142  |  |  */  | 
143  |  | static ossl_inline int compute_growth(int target, int current)  | 
144  | 8.45k  | { | 
145  | 8.45k  |     const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);  | 
146  |  |  | 
147  | 16.9k  |     while (current < target) { | 
148  |  |         /* Check to see if we're at the hard limit */  | 
149  | 8.45k  |         if (current >= max_nodes)  | 
150  | 0  |             return 0;  | 
151  |  |  | 
152  |  |         /* Expand the size by a factor of 3/2 if it is within range */  | 
153  | 8.45k  |         current = current < limit ? current + current / 2 : max_nodes;  | 
154  | 8.45k  |     }  | 
155  | 8.45k  |     return current;  | 
156  | 8.45k  | }  | 
157  |  |  | 
158  |  | /* internal STACK storage allocation */  | 
159  |  | static int sk_reserve(OPENSSL_STACK *st, int n, int exact)  | 
160  | 132k  | { | 
161  | 132k  |     const void **tmpdata;  | 
162  | 132k  |     int num_alloc;  | 
163  |  |  | 
164  |  |     /* Check to see the reservation isn't exceeding the hard limit */  | 
165  | 132k  |     if (n > max_nodes - st->num)  | 
166  | 0  |         return 0;  | 
167  |  |  | 
168  |  |     /* Figure out the new size */  | 
169  | 132k  |     num_alloc = st->num + n;  | 
170  | 132k  |     if (num_alloc < min_nodes)  | 
171  | 53.6k  |         num_alloc = min_nodes;  | 
172  |  |  | 
173  |  |     /* If |st->data| allocation was postponed */  | 
174  | 132k  |     if (st->data == NULL) { | 
175  |  |         /*  | 
176  |  |          * At this point, |st->num_alloc| and |st->num| are 0;  | 
177  |  |          * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.  | 
178  |  |          */  | 
179  | 38.5k  |         if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) { | 
180  | 0  |             CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);  | 
181  | 0  |             return 0;  | 
182  | 0  |         }  | 
183  | 38.5k  |         st->num_alloc = num_alloc;  | 
184  | 38.5k  |         return 1;  | 
185  | 38.5k  |     }  | 
186  |  |  | 
187  | 93.5k  |     if (!exact) { | 
188  | 93.5k  |         if (num_alloc <= st->num_alloc)  | 
189  | 85.1k  |             return 1;  | 
190  | 8.45k  |         num_alloc = compute_growth(num_alloc, st->num_alloc);  | 
191  | 8.45k  |         if (num_alloc == 0)  | 
192  | 0  |             return 0;  | 
193  | 8.45k  |     } else if (num_alloc == st->num_alloc) { | 
194  | 0  |         return 1;  | 
195  | 0  |     }  | 
196  |  |  | 
197  | 8.45k  |     tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);  | 
198  | 8.45k  |     if (tmpdata == NULL)  | 
199  | 0  |         return 0;  | 
200  |  |  | 
201  | 8.45k  |     st->data = tmpdata;  | 
202  | 8.45k  |     st->num_alloc = num_alloc;  | 
203  | 8.45k  |     return 1;  | 
204  | 8.45k  | }  | 
205  |  |  | 
206  |  | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)  | 
207  | 84.8k  | { | 
208  | 84.8k  |     OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));  | 
209  |  |  | 
210  | 84.8k  |     if (st == NULL)  | 
211  | 0  |         return NULL;  | 
212  |  |  | 
213  | 84.8k  |     st->comp = c;  | 
214  |  |  | 
215  | 84.8k  |     if (n <= 0)  | 
216  | 84.8k  |         return st;  | 
217  |  |  | 
218  | 0  |     if (!sk_reserve(st, n, 1)) { | 
219  | 0  |         OPENSSL_sk_free(st);  | 
220  | 0  |         return NULL;  | 
221  | 0  |     }  | 
222  |  |  | 
223  | 0  |     return st;  | 
224  | 0  | }  | 
225  |  |  | 
226  |  | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)  | 
227  | 0  | { | 
228  | 0  |     if (st == NULL)  | 
229  | 0  |         return 0;  | 
230  |  |  | 
231  | 0  |     if (n < 0)  | 
232  | 0  |         return 1;  | 
233  | 0  |     return sk_reserve(st, n, 1);  | 
234  | 0  | }  | 
235  |  |  | 
236  |  | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)  | 
237  | 132k  | { | 
238  | 132k  |     if (st == NULL || st->num == max_nodes)  | 
239  | 0  |         return 0;  | 
240  |  |  | 
241  | 132k  |     if (!sk_reserve(st, 1, 0))  | 
242  | 0  |         return 0;  | 
243  |  |  | 
244  | 132k  |     if ((loc >= st->num) || (loc < 0)) { | 
245  | 132k  |         st->data[st->num] = data;  | 
246  | 132k  |     } else { | 
247  | 0  |         memmove(&st->data[loc + 1], &st->data[loc],  | 
248  | 0  |                 sizeof(st->data[0]) * (st->num - loc));  | 
249  | 0  |         st->data[loc] = data;  | 
250  | 0  |     }  | 
251  | 132k  |     st->num++;  | 
252  | 132k  |     st->sorted = 0;  | 
253  | 132k  |     return st->num;  | 
254  | 132k  | }  | 
255  |  |  | 
256  |  | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)  | 
257  | 16  | { | 
258  | 16  |     const void *ret = st->data[loc];  | 
259  |  |  | 
260  | 16  |     if (loc != st->num - 1)  | 
261  | 0  |          memmove(&st->data[loc], &st->data[loc + 1],  | 
262  | 0  |                  sizeof(st->data[0]) * (st->num - loc - 1));  | 
263  | 16  |     st->num--;  | 
264  |  |  | 
265  | 16  |     return (void *)ret;  | 
266  | 16  | }  | 
267  |  |  | 
268  |  | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)  | 
269  | 0  | { | 
270  | 0  |     int i;  | 
271  |  | 
  | 
272  | 0  |     for (i = 0; i < st->num; i++)  | 
273  | 0  |         if (st->data[i] == p)  | 
274  | 0  |             return internal_delete(st, i);  | 
275  | 0  |     return NULL;  | 
276  | 0  | }  | 
277  |  |  | 
278  |  | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)  | 
279  | 16  | { | 
280  | 16  |     if (st == NULL || loc < 0 || loc >= st->num)  | 
281  | 0  |         return NULL;  | 
282  |  |  | 
283  | 16  |     return internal_delete(st, loc);  | 
284  | 16  | }  | 
285  |  |  | 
286  |  | static int internal_find(OPENSSL_STACK *st, const void *data,  | 
287  |  |                          int ret_val_options)  | 
288  | 0  | { | 
289  | 0  |     const void *r;  | 
290  | 0  |     int i;  | 
291  |  | 
  | 
292  | 0  |     if (st == NULL || st->num == 0)  | 
293  | 0  |         return -1;  | 
294  |  |  | 
295  | 0  |     if (st->comp == NULL) { | 
296  | 0  |         for (i = 0; i < st->num; i++)  | 
297  | 0  |             if (st->data[i] == data)  | 
298  | 0  |                 return i;  | 
299  | 0  |         return -1;  | 
300  | 0  |     }  | 
301  |  |  | 
302  | 0  |     if (!st->sorted) { | 
303  | 0  |         if (st->num > 1)  | 
304  | 0  |             qsort(st->data, st->num, sizeof(void *), st->comp);  | 
305  | 0  |         st->sorted = 1; /* empty or single-element stack is considered sorted */  | 
306  | 0  |     }  | 
307  | 0  |     if (data == NULL)  | 
308  | 0  |         return -1;  | 
309  | 0  |     r = ossl_bsearch(&data, st->data, st->num, sizeof(void *), st->comp,  | 
310  | 0  |                      ret_val_options);  | 
311  |  | 
  | 
312  | 0  |     return r == NULL ? -1 : (int)((const void **)r - st->data);  | 
313  | 0  | }  | 
314  |  |  | 
315  |  | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)  | 
316  | 0  | { | 
317  | 0  |     return internal_find(st, data, OSSL_BSEARCH_FIRST_VALUE_ON_MATCH);  | 
318  | 0  | }  | 
319  |  |  | 
320  |  | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)  | 
321  | 0  | { | 
322  | 0  |     return internal_find(st, data, OSSL_BSEARCH_VALUE_ON_NOMATCH);  | 
323  | 0  | }  | 
324  |  |  | 
325  |  | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)  | 
326  | 132k  | { | 
327  | 132k  |     if (st == NULL)  | 
328  | 0  |         return -1;  | 
329  | 132k  |     return OPENSSL_sk_insert(st, data, st->num);  | 
330  | 132k  | }  | 
331  |  |  | 
332  |  | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)  | 
333  | 0  | { | 
334  | 0  |     return OPENSSL_sk_insert(st, data, 0);  | 
335  | 0  | }  | 
336  |  |  | 
337  |  | void *OPENSSL_sk_shift(OPENSSL_STACK *st)  | 
338  | 0  | { | 
339  | 0  |     if (st == NULL || st->num == 0)  | 
340  | 0  |         return NULL;  | 
341  | 0  |     return internal_delete(st, 0);  | 
342  | 0  | }  | 
343  |  |  | 
344  |  | void *OPENSSL_sk_pop(OPENSSL_STACK *st)  | 
345  | 0  | { | 
346  | 0  |     if (st == NULL || st->num == 0)  | 
347  | 0  |         return NULL;  | 
348  | 0  |     return internal_delete(st, st->num - 1);  | 
349  | 0  | }  | 
350  |  |  | 
351  |  | void OPENSSL_sk_zero(OPENSSL_STACK *st)  | 
352  | 0  | { | 
353  | 0  |     if (st == NULL || st->num == 0)  | 
354  | 0  |         return;  | 
355  | 0  |     memset(st->data, 0, sizeof(*st->data) * st->num);  | 
356  | 0  |     st->num = 0;  | 
357  | 0  | }  | 
358  |  |  | 
359  |  | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)  | 
360  | 119k  | { | 
361  | 119k  |     int i;  | 
362  |  |  | 
363  | 119k  |     if (st == NULL)  | 
364  | 53.2k  |         return;  | 
365  | 123k  |     for (i = 0; i < st->num; i++)  | 
366  | 57.0k  |         if (st->data[i] != NULL)  | 
367  | 56.0k  |             func((char *)st->data[i]);  | 
368  | 66.0k  |     OPENSSL_sk_free(st);  | 
369  | 66.0k  | }  | 
370  |  |  | 
371  |  | void OPENSSL_sk_free(OPENSSL_STACK *st)  | 
372  | 158k  | { | 
373  | 158k  |     if (st == NULL)  | 
374  | 73.5k  |         return;  | 
375  | 84.7k  |     OPENSSL_free(st->data);  | 
376  | 84.7k  |     OPENSSL_free(st);  | 
377  | 84.7k  | }  | 
378  |  |  | 
379  |  | int OPENSSL_sk_num(const OPENSSL_STACK *st)  | 
380  | 448k  | { | 
381  | 448k  |     return st == NULL ? -1 : st->num;  | 
382  | 448k  | }  | 
383  |  |  | 
384  |  | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)  | 
385  | 230k  | { | 
386  | 230k  |     if (st == NULL || i < 0 || i >= st->num)  | 
387  | 0  |         return NULL;  | 
388  | 230k  |     return (void *)st->data[i];  | 
389  | 230k  | }  | 
390  |  |  | 
391  |  | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)  | 
392  | 13.0k  | { | 
393  | 13.0k  |     if (st == NULL || i < 0 || i >= st->num)  | 
394  | 0  |         return NULL;  | 
395  | 13.0k  |     st->data[i] = data;  | 
396  | 13.0k  |     st->sorted = 0;  | 
397  | 13.0k  |     return (void *)st->data[i];  | 
398  | 13.0k  | }  | 
399  |  |  | 
400  |  | void OPENSSL_sk_sort(OPENSSL_STACK *st)  | 
401  | 0  | { | 
402  | 0  |     if (st != NULL && !st->sorted && st->comp != NULL) { | 
403  | 0  |         if (st->num > 1)  | 
404  | 0  |             qsort(st->data, st->num, sizeof(void *), st->comp);  | 
405  | 0  |         st->sorted = 1; /* empty or single-element stack is considered sorted */  | 
406  | 0  |     }  | 
407  | 0  | }  | 
408  |  |  | 
409  |  | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)  | 
410  | 0  | { | 
411  | 0  |     return st == NULL ? 1 : st->sorted;  | 
412  | 0  | }  |