Coverage Report

Created: 2023-05-18 19:08

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
1.37M
{
79
1.37M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
1.37M
  int ci, blkn, dctbl, actbl;
81
1.37M
  d_derived_tbl **pdtbl;
82
1.37M
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
1.37M
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
1.37M
      cinfo->Ah != 0 || cinfo->Al != 0)
90
1.34M
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
2.85M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
1.47M
    compptr = cinfo->cur_comp_info[ci];
94
1.47M
    dctbl = compptr->dc_tbl_no;
95
1.47M
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
1.47M
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
1.47M
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
1.47M
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
1.47M
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
1.47M
    entropy->saved.last_dc_val[ci] = 0;
104
1.47M
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
3.08M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
1.71M
    ci = cinfo->MCU_membership[blkn];
109
1.71M
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
1.71M
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
1.71M
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
1.71M
    if (compptr->component_needed) {
115
1.23M
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
1.23M
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
1.23M
    } else {
119
486k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
486k
    }
121
1.71M
  }
122
123
  /* Initialize bitread state variables */
124
1.37M
  entropy->bitstate.bits_left = 0;
125
1.37M
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
1.37M
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
1.37M
  entropy->restarts_to_go = cinfo->restart_interval;
130
1.37M
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
3.77M
{
144
3.77M
  JHUFF_TBL *htbl;
145
3.77M
  d_derived_tbl *dtbl;
146
3.77M
  int p, i, l, si, numsymbols;
147
3.77M
  int lookbits, ctr;
148
3.77M
  char huffsize[257];
149
3.77M
  unsigned int huffcode[257];
150
3.77M
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
3.77M
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
4.03k
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
3.77M
  htbl =
160
3.77M
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
3.77M
  if (htbl == NULL)
162
506
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
3.77M
  if (*pdtbl == NULL)
166
268k
    *pdtbl = (d_derived_tbl *)
167
268k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
268k
                                  sizeof(d_derived_tbl));
169
3.77M
  dtbl = *pdtbl;
170
3.77M
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
3.77M
  p = 0;
175
64.1M
  for (l = 1; l <= 16; l++) {
176
60.3M
    i = (int)htbl->bits[l];
177
60.3M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
118M
    while (i--)
180
58.5M
      huffsize[p++] = (char)l;
181
60.3M
  }
182
3.77M
  huffsize[p] = 0;
183
3.77M
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
3.77M
  code = 0;
189
3.77M
  si = huffsize[0];
190
3.77M
  p = 0;
191
26.9M
  while (huffsize[p]) {
192
81.7M
    while (((int)huffsize[p]) == si) {
193
58.5M
      huffcode[p++] = code;
194
58.5M
      code++;
195
58.5M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
23.1M
    if (((JLONG)code) >= (((JLONG)1) << si))
200
692
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
23.1M
    code <<= 1;
202
23.1M
    si++;
203
23.1M
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
3.77M
  p = 0;
208
64.1M
  for (l = 1; l <= 16; l++) {
209
60.3M
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
19.1M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
19.1M
      p += htbl->bits[l];
215
19.1M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
41.1M
    } else {
217
41.1M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
41.1M
    }
219
60.3M
  }
220
3.77M
  dtbl->valoffset[17] = 0;
221
3.77M
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
969M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
965M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
3.77M
  p = 0;
234
33.9M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
76.5M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
46.3M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
856M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
809M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
809M
        lookbits++;
242
809M
      }
243
46.3M
    }
244
30.1M
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
3.77M
  if (isDC) {
253
13.1M
    for (i = 0; i < numsymbols; i++) {
254
11.3M
      int sym = htbl->huffval[i];
255
11.3M
      if (sym < 0 || sym > 15)
256
3.68k
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
11.3M
    }
258
1.79M
  }
259
3.77M
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
116M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
37.6M
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
37.6M
  register const JOCTET *next_input_byte = state->next_input_byte;
292
37.6M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
37.6M
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
37.6M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
92.8M
    while (bits_left < MIN_GET_BITS) {
301
82.9M
      register int c;
302
303
      /* Attempt to read a byte */
304
82.9M
      if (bytes_in_buffer == 0) {
305
18.9k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
0
          return FALSE;
307
18.9k
        next_input_byte = cinfo->src->next_input_byte;
308
18.9k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
18.9k
      }
310
82.9M
      bytes_in_buffer--;
311
82.9M
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
82.9M
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
3.04M
        do {
321
3.04M
          if (bytes_in_buffer == 0) {
322
1.72k
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
0
              return FALSE;
324
1.72k
            next_input_byte = cinfo->src->next_input_byte;
325
1.72k
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
1.72k
          }
327
3.04M
          bytes_in_buffer--;
328
3.04M
          c = *next_input_byte++;
329
3.04M
        } while (c == 0xFF);
330
331
2.55M
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
134k
          c = 0xFF;
334
2.42M
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
2.42M
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
2.42M
          goto no_more_bytes;
346
2.42M
        }
347
2.55M
      }
348
349
      /* OK, load c into get_buffer */
350
80.5M
      get_buffer = (get_buffer << 8) | c;
351
80.5M
      bits_left += 8;
352
80.5M
    } /* end while */
353
25.3M
  } else {
354
27.7M
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
27.7M
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
11.6M
      if (!cinfo->entropy->insufficient_data) {
366
2.53M
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
2.53M
        cinfo->entropy->insufficient_data = TRUE;
368
2.53M
      }
369
      /* Fill the buffer with zero bits */
370
11.6M
      get_buffer <<= MIN_GET_BITS - bits_left;
371
11.6M
      bits_left = MIN_GET_BITS;
372
11.6M
    }
373
27.7M
  }
374
375
  /* Unload the local registers */
376
37.6M
  state->next_input_byte = next_input_byte;
377
37.6M
  state->bytes_in_buffer = bytes_in_buffer;
378
37.6M
  state->get_buffer = get_buffer;
379
37.6M
  state->bits_left = bits_left;
380
381
37.6M
  return TRUE;
382
37.6M
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
56.2M
#define GET_BYTE { \
390
56.2M
  register int c0, c1; \
391
56.2M
  c0 = *buffer++; \
392
56.2M
  c1 = *buffer; \
393
56.2M
  /* Pre-execute most common case */ \
394
56.2M
  get_buffer = (get_buffer << 8) | c0; \
395
56.2M
  bits_left += 8; \
396
56.2M
  if (c0 == 0xFF) { \
397
10.6M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
10.6M
    buffer++; \
399
10.6M
    if (c1 != 0) { \
400
10.3M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
10.3M
      cinfo->unread_marker = c1; \
402
10.3M
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
10.3M
      buffer -= 2; \
404
10.3M
      get_buffer &= ~0xFF; \
405
10.3M
    } \
406
10.6M
  } \
407
56.2M
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
152M
  if (bits_left <= 16) { \
414
9.36M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
9.36M
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
18.5M
{
438
18.5M
  register int l = min_bits;
439
18.5M
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
18.5M
  CHECK_BIT_BUFFER(*state, l, return -1);
445
18.5M
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
70.1M
  while (code > htbl->maxcode[l]) {
451
51.5M
    code <<= 1;
452
51.5M
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
51.5M
    code |= GET_BITS(1);
454
51.5M
    l++;
455
51.5M
  }
456
457
  /* Unload the local registers */
458
18.5M
  state->get_buffer = get_buffer;
459
18.5M
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
18.5M
  if (l > 16) {
464
3.50M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
3.50M
    return 0;                   /* fake a zero as the safest result */
466
3.50M
  }
467
468
15.0M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
18.5M
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
134M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
134M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
7.70M
{
512
7.70M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
7.70M
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
7.70M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
7.70M
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
7.70M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
0
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
15.6M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
7.95M
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
7.70M
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
7.70M
  if (cinfo->unread_marker == 0)
537
270k
    entropy->pub.insufficient_data = FALSE;
538
539
7.70M
  return TRUE;
540
7.70M
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
3.78M
{
552
3.78M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
3.78M
  BITREAD_STATE_VARS;
554
3.78M
  int blkn;
555
3.78M
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
3.78M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
3.78M
  state = entropy->saved;
561
562
9.58M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
5.80M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
5.80M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
5.80M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
5.80M
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
5.80M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
5.80M
    if (s) {
573
4.31M
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
4.31M
      r = GET_BITS(s);
575
4.31M
      s = HUFF_EXTEND(r, s);
576
4.31M
    }
577
578
5.80M
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
4.39M
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
4.39M
      s += state.last_dc_val[ci];
590
4.39M
      state.last_dc_val[ci] = s;
591
4.39M
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
4.39M
        (*block)[0] = (JCOEF)s;
594
4.39M
      }
595
4.39M
    }
596
597
5.80M
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
84.3M
      for (k = 1; k < DCTSIZE2; k++) {
602
83.0M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
83.0M
        r = s >> 4;
605
83.0M
        s &= 15;
606
607
83.0M
        if (s) {
608
79.4M
          k += r;
609
79.4M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
79.4M
          r = GET_BITS(s);
611
79.4M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
79.4M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
79.4M
        } else {
618
3.59M
          if (r != 15)
619
3.07M
            break;
620
512k
          k += 15;
621
512k
        }
622
83.0M
      }
623
624
4.39M
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
33.9M
      for (k = 1; k < DCTSIZE2; k++) {
629
33.4M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
33.4M
        r = s >> 4;
632
33.4M
        s &= 15;
633
634
33.4M
        if (s) {
635
32.5M
          k += r;
636
32.5M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
32.5M
          DROP_BITS(s);
638
32.5M
        } else {
639
901k
          if (r != 15)
640
866k
            break;
641
34.9k
          k += 15;
642
34.9k
        }
643
33.4M
      }
644
1.40M
    }
645
5.80M
  }
646
647
  /* Completed MCU, so update state */
648
3.78M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
3.78M
  entropy->saved = state;
650
3.78M
  return TRUE;
651
3.78M
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
9.16M
{
663
9.16M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
9.16M
  BITREAD_STATE_VARS;
665
9.16M
  JOCTET *buffer;
666
9.16M
  int blkn;
667
9.16M
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
9.16M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
9.16M
  buffer = (JOCTET *)br_state.next_input_byte;
673
9.16M
  state = entropy->saved;
674
675
19.2M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
10.1M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
10.1M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
10.1M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
10.1M
    register int s, k, r, l;
680
681
10.1M
    HUFF_DECODE_FAST(s, l, dctbl);
682
10.1M
    if (s) {
683
7.71M
      FILL_BIT_BUFFER_FAST
684
7.71M
      r = GET_BITS(s);
685
7.71M
      s = HUFF_EXTEND(r, s);
686
7.71M
    }
687
688
10.1M
    if (entropy->dc_needed[blkn]) {
689
6.95M
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
6.95M
      s += state.last_dc_val[ci];
694
6.95M
      state.last_dc_val[ci] = s;
695
6.95M
      if (block)
696
6.95M
        (*block)[0] = (JCOEF)s;
697
6.95M
    }
698
699
10.1M
    if (entropy->ac_needed[blkn] && block) {
700
701
50.0M
      for (k = 1; k < DCTSIZE2; k++) {
702
49.2M
        HUFF_DECODE_FAST(s, l, actbl);
703
49.2M
        r = s >> 4;
704
49.2M
        s &= 15;
705
706
49.2M
        if (s) {
707
42.8M
          k += r;
708
42.8M
          FILL_BIT_BUFFER_FAST
709
42.8M
          r = GET_BITS(s);
710
42.8M
          s = HUFF_EXTEND(r, s);
711
42.8M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
42.8M
        } else {
713
6.36M
          if (r != 15) break;
714
234k
          k += 15;
715
234k
        }
716
49.2M
      }
717
718
6.95M
    } else {
719
720
23.1M
      for (k = 1; k < DCTSIZE2; k++) {
721
22.7M
        HUFF_DECODE_FAST(s, l, actbl);
722
22.7M
        r = s >> 4;
723
22.7M
        s &= 15;
724
725
22.7M
        if (s) {
726
19.9M
          k += r;
727
19.9M
          FILL_BIT_BUFFER_FAST
728
19.9M
          DROP_BITS(s);
729
19.9M
        } else {
730
2.80M
          if (r != 15) break;
731
19.4k
          k += 15;
732
19.4k
        }
733
22.7M
      }
734
3.16M
    }
735
10.1M
  }
736
737
9.16M
  if (cinfo->unread_marker != 0) {
738
809k
    cinfo->unread_marker = 0;
739
809k
    return FALSE;
740
809k
  }
741
742
8.35M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
8.35M
  br_state.next_input_byte = buffer;
744
8.35M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
8.35M
  entropy->saved = state;
746
8.35M
  return TRUE;
747
9.16M
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
78.1M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
78.1M
{
770
78.1M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
78.1M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
78.1M
  if (cinfo->restart_interval) {
775
34.6M
    if (entropy->restarts_to_go == 0)
776
7.70M
      if (!process_restart(cinfo))
777
0
        return FALSE;
778
34.6M
    usefast = 0;
779
34.6M
  }
780
781
78.1M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
78.1M
      cinfo->unread_marker != 0)
783
67.7M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
78.1M
  if (!entropy->pub.insufficient_data) {
789
790
12.1M
    if (usefast) {
791
9.16M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
9.16M
    } else {
793
3.78M
use_slow:
794
3.78M
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
3.78M
    }
796
797
12.1M
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
78.1M
  if (cinfo->restart_interval)
801
34.6M
    entropy->restarts_to_go--;
802
803
78.1M
  return TRUE;
804
78.1M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
68.5k
{
814
68.5k
  huff_entropy_ptr entropy;
815
68.5k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
68.5k
  std_huff_tables((j_common_ptr)cinfo);
822
823
68.5k
  entropy = (huff_entropy_ptr)
824
68.5k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
68.5k
                                sizeof(huff_entropy_decoder));
826
68.5k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
68.5k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
68.5k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
342k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
274k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
274k
  }
834
68.5k
}