Coverage Report

Created: 2023-07-31 08:14

/src/libpcap/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
#include <limits.h> /* for SIZE_MAX */
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
#include "diag-control.h"
43
44
#ifdef HAVE_OS_PROTO_H
45
#include "os-proto.h"
46
#endif
47
48
#ifdef BDEBUG
49
/*
50
 * The internal "debug printout" flag for the filter expression optimizer.
51
 * The code to print that stuff is present only if BDEBUG is defined, so
52
 * the flag, and the routine to set it, are defined only if BDEBUG is
53
 * defined.
54
 */
55
static int pcap_optimizer_debug;
56
57
/*
58
 * Routine to set that flag.
59
 *
60
 * This is intended for libpcap developers, not for general use.
61
 * If you want to set these in a program, you'll have to declare this
62
 * routine yourself, with the appropriate DLL import attribute on Windows;
63
 * it's not declared in any header file, and won't be declared in any
64
 * header file provided by libpcap.
65
 */
66
PCAP_API void pcap_set_optimizer_debug(int value);
67
68
PCAP_API_DEF void
69
pcap_set_optimizer_debug(int value)
70
{
71
  pcap_optimizer_debug = value;
72
}
73
74
/*
75
 * The internal "print dot graph" flag for the filter expression optimizer.
76
 * The code to print that stuff is present only if BDEBUG is defined, so
77
 * the flag, and the routine to set it, are defined only if BDEBUG is
78
 * defined.
79
 */
80
static int pcap_print_dot_graph;
81
82
/*
83
 * Routine to set that flag.
84
 *
85
 * This is intended for libpcap developers, not for general use.
86
 * If you want to set these in a program, you'll have to declare this
87
 * routine yourself, with the appropriate DLL import attribute on Windows;
88
 * it's not declared in any header file, and won't be declared in any
89
 * header file provided by libpcap.
90
 */
91
PCAP_API void pcap_set_print_dot_graph(int value);
92
93
PCAP_API_DEF void
94
pcap_set_print_dot_graph(int value)
95
{
96
  pcap_print_dot_graph = value;
97
}
98
99
#endif
100
101
/*
102
 * lowest_set_bit().
103
 *
104
 * Takes a 32-bit integer as an argument.
105
 *
106
 * If handed a non-zero value, returns the index of the lowest set bit,
107
 * counting upwards from zero.
108
 *
109
 * If handed zero, the results are platform- and compiler-dependent.
110
 * Keep it out of the light, don't give it any water, don't feed it
111
 * after midnight, and don't pass zero to it.
112
 *
113
 * This is the same as the count of trailing zeroes in the word.
114
 */
115
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116
  /*
117
   * GCC 3.4 and later; we have __builtin_ctz().
118
   */
119
5.86M
  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120
#elif defined(_MSC_VER)
121
  /*
122
   * Visual Studio; we support only 2005 and later, so use
123
   * _BitScanForward().
124
   */
125
#include <intrin.h>
126
127
#ifndef __clang__
128
#pragma intrinsic(_BitScanForward)
129
#endif
130
131
static __forceinline u_int
132
lowest_set_bit(int mask)
133
{
134
  unsigned long bit;
135
136
  /*
137
   * Don't sign-extend mask if long is longer than int.
138
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139
   */
140
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141
    abort();  /* mask is zero */
142
  return (u_int)bit;
143
}
144
#elif defined(MSDOS) && defined(__DJGPP__)
145
  /*
146
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147
   * we've already included.
148
   */
149
  #define lowest_set_bit(mask)  ((u_int)(ffs((mask)) - 1))
150
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151
  /*
152
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153
   * or some other platform (UN*X conforming to a sufficient recent version
154
   * of the Single UNIX Specification).
155
   */
156
  #include <strings.h>
157
  #define lowest_set_bit(mask)  (u_int)((ffs((mask)) - 1))
158
#else
159
/*
160
 * None of the above.
161
 * Use a perfect-hash-function-based function.
162
 */
163
static u_int
164
lowest_set_bit(int mask)
165
{
166
  unsigned int v = (unsigned int)mask;
167
168
  static const u_int MultiplyDeBruijnBitPosition[32] = {
169
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171
  };
172
173
  /*
174
   * We strip off all but the lowermost set bit (v & ~v),
175
   * and perform a minimal perfect hash on it to look up the
176
   * number of low-order zero bits in a table.
177
   *
178
   * See:
179
   *
180
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181
   *
182
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
183
   */
184
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185
}
186
#endif
187
188
/*
189
 * Represents a deleted instruction.
190
 */
191
66.6M
#define NOP -1
192
193
/*
194
 * Register numbers for use-def values.
195
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196
 * location.  A_ATOM is the accumulator and X_ATOM is the index
197
 * register.
198
 */
199
37.0M
#define A_ATOM BPF_MEMWORDS
200
8.25M
#define X_ATOM (BPF_MEMWORDS+1)
201
202
/*
203
 * This define is used to represent *both* the accumulator and
204
 * x register in use-def computations.
205
 * Currently, the use-def code assumes only one definition per instruction.
206
 */
207
11.7M
#define AX_ATOM N_ATOMS
208
209
/*
210
 * These data structures are used in a Cocke and Shwarz style
211
 * value numbering scheme.  Since the flowgraph is acyclic,
212
 * exit values can be propagated from a node's predecessors
213
 * provided it is uniquely defined.
214
 */
215
struct valnode {
216
  int code;
217
  bpf_u_int32 v0, v1;
218
  int val;    /* the value number */
219
  struct valnode *next;
220
};
221
222
/* Integer constants mapped with the load immediate opcode. */
223
3.28M
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225
struct vmapinfo {
226
  int is_const;
227
  bpf_u_int32 const_val;
228
};
229
230
typedef struct {
231
  /*
232
   * Place to longjmp to on an error.
233
   */
234
  jmp_buf top_ctx;
235
236
  /*
237
   * The buffer into which to put error message.
238
   */
239
  char *errbuf;
240
241
  /*
242
   * A flag to indicate that further optimization is needed.
243
   * Iterative passes are continued until a given pass yields no
244
   * code simplification or branch movement.
245
   */
246
  int done;
247
248
  /*
249
   * XXX - detect loops that do nothing but repeated AND/OR pullups
250
   * and edge moves.
251
   * If 100 passes in a row do nothing but that, treat that as a
252
   * sign that we're in a loop that just shuffles in a cycle in
253
   * which each pass just shuffles the code and we eventually
254
   * get back to the original configuration.
255
   *
256
   * XXX - we need a non-heuristic way of detecting, or preventing,
257
   * such a cycle.
258
   */
259
  int non_branch_movement_performed;
260
261
  u_int n_blocks;   /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262
  struct block **blocks;
263
  u_int n_edges;    /* twice n_blocks, so guaranteed to be > 0 */
264
  struct edge **edges;
265
266
  /*
267
   * A bit vector set representation of the dominators.
268
   * We round up the set size to the next power of two.
269
   */
270
  u_int nodewords;  /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271
  u_int edgewords;  /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272
  struct block **levels;
273
  bpf_u_int32 *space;
274
275
24.8M
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276
/*
277
 * True if a is in uset {p}
278
 */
279
1.73M
#define SET_MEMBER(p, a) \
280
1.73M
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282
/*
283
 * Add 'a' to uset p.
284
 */
285
7.70M
#define SET_INSERT(p, a) \
286
7.70M
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288
/*
289
 * Delete 'a' from uset p.
290
 */
291
#define SET_DELETE(p, a) \
292
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294
/*
295
 * a := a intersect b
296
 * n must be guaranteed to be > 0
297
 */
298
9.57M
#define SET_INTERSECT(a, b, n)\
299
9.57M
{\
300
9.57M
  register bpf_u_int32 *_x = a, *_y = b;\
301
9.57M
  register u_int _n = n;\
302
34.1M
  do *_x++ &= *_y++; while (--_n != 0);\
303
9.57M
}
304
305
/*
306
 * a := a - b
307
 * n must be guaranteed to be > 0
308
 */
309
#define SET_SUBTRACT(a, b, n)\
310
{\
311
  register bpf_u_int32 *_x = a, *_y = b;\
312
  register u_int _n = n;\
313
  do *_x++ &=~ *_y++; while (--_n != 0);\
314
}
315
316
/*
317
 * a := a union b
318
 * n must be guaranteed to be > 0
319
 */
320
3.19M
#define SET_UNION(a, b, n)\
321
3.19M
{\
322
3.19M
  register bpf_u_int32 *_x = a, *_y = b;\
323
3.19M
  register u_int _n = n;\
324
7.58M
  do *_x++ |= *_y++; while (--_n != 0);\
325
3.19M
}
326
327
  uset all_dom_sets;
328
  uset all_closure_sets;
329
  uset all_edge_sets;
330
331
5.43M
#define MODULUS 213
332
  struct valnode *hashtbl[MODULUS];
333
  bpf_u_int32 curval;
334
  bpf_u_int32 maxval;
335
336
  struct vmapinfo *vmap;
337
  struct valnode *vnode_base;
338
  struct valnode *next_vnode;
339
} opt_state_t;
340
341
typedef struct {
342
  /*
343
   * Place to longjmp to on an error.
344
   */
345
  jmp_buf top_ctx;
346
347
  /*
348
   * The buffer into which to put error message.
349
   */
350
  char *errbuf;
351
352
  /*
353
   * Some pointers used to convert the basic block form of the code,
354
   * into the array form that BPF requires.  'fstart' will point to
355
   * the malloc'd array while 'ftail' is used during the recursive
356
   * traversal.
357
   */
358
  struct bpf_insn *fstart;
359
  struct bpf_insn *ftail;
360
} conv_state_t;
361
362
static void opt_init(opt_state_t *, struct icode *);
363
static void opt_cleanup(opt_state_t *);
364
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365
    PCAP_PRINTFLIKE(2, 3);
366
367
static void intern_blocks(opt_state_t *, struct icode *);
368
369
static void find_inedges(opt_state_t *, struct block *);
370
#ifdef BDEBUG
371
static void opt_dump(opt_state_t *, struct icode *);
372
#endif
373
374
#ifndef MAX
375
1.59M
#define MAX(a,b) ((a)>(b)?(a):(b))
376
#endif
377
378
static void
379
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380
3.38M
{
381
3.38M
  int level;
382
383
3.38M
  if (isMarked(ic, b))
384
1.46M
    return;
385
386
1.92M
  Mark(ic, b);
387
1.92M
  b->link = 0;
388
389
1.92M
  if (JT(b)) {
390
1.59M
    find_levels_r(opt_state, ic, JT(b));
391
1.59M
    find_levels_r(opt_state, ic, JF(b));
392
1.59M
    level = MAX(JT(b)->level, JF(b)->level) + 1;
393
1.59M
  } else
394
331k
    level = 0;
395
1.92M
  b->level = level;
396
1.92M
  b->link = opt_state->levels[level];
397
1.92M
  opt_state->levels[level] = b;
398
1.92M
}
399
400
/*
401
 * Level graph.  The levels go from 0 at the leaves to
402
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403
 * first node of the level list, whose elements are linked
404
 * with the 'link' field of the struct block.
405
 */
406
static void
407
find_levels(opt_state_t *opt_state, struct icode *ic)
408
196k
{
409
196k
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410
196k
  unMarkAll(ic);
411
196k
  find_levels_r(opt_state, ic, ic->root);
412
196k
}
413
414
/*
415
 * Find dominator relationships.
416
 * Assumes graph has been leveled.
417
 */
418
static void
419
find_dom(opt_state_t *opt_state, struct block *root)
420
196k
{
421
196k
  u_int i;
422
196k
  int level;
423
196k
  struct block *b;
424
196k
  bpf_u_int32 *x;
425
426
  /*
427
   * Initialize sets to contain all nodes.
428
   */
429
196k
  x = opt_state->all_dom_sets;
430
  /*
431
   * In opt_init(), we've made sure the product doesn't overflow.
432
   */
433
196k
  i = opt_state->n_blocks * opt_state->nodewords;
434
9.13M
  while (i != 0) {
435
8.93M
    --i;
436
8.93M
    *x++ = 0xFFFFFFFFU;
437
8.93M
  }
438
  /* Root starts off empty. */
439
444k
  for (i = opt_state->nodewords; i != 0;) {
440
247k
    --i;
441
247k
    root->dom[i] = 0;
442
247k
  }
443
444
  /* root->level is the highest level no found. */
445
1.82M
  for (level = root->level; level >= 0; --level) {
446
3.55M
    for (b = opt_state->levels[level]; b; b = b->link) {
447
1.92M
      SET_INSERT(b->dom, b->id);
448
1.92M
      if (JT(b) == 0)
449
331k
        continue;
450
1.59M
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451
1.59M
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452
1.59M
    }
453
1.62M
  }
454
196k
}
455
456
static void
457
propedom(opt_state_t *opt_state, struct edge *ep)
458
3.85M
{
459
3.85M
  SET_INSERT(ep->edom, ep->id);
460
3.85M
  if (ep->succ) {
461
3.19M
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462
3.19M
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463
3.19M
  }
464
3.85M
}
465
466
/*
467
 * Compute edge dominators.
468
 * Assumes graph has been leveled and predecessors established.
469
 */
470
static void
471
find_edom(opt_state_t *opt_state, struct block *root)
472
196k
{
473
196k
  u_int i;
474
196k
  uset x;
475
196k
  int level;
476
196k
  struct block *b;
477
478
196k
  x = opt_state->all_edge_sets;
479
  /*
480
   * In opt_init(), we've made sure the product doesn't overflow.
481
   */
482
31.7M
  for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483
31.6M
    --i;
484
31.6M
    x[i] = 0xFFFFFFFFU;
485
31.6M
  }
486
487
  /* root->level is the highest level no found. */
488
196k
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489
196k
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490
1.82M
  for (level = root->level; level >= 0; --level) {
491
3.55M
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
492
1.92M
      propedom(opt_state, &b->et);
493
1.92M
      propedom(opt_state, &b->ef);
494
1.92M
    }
495
1.62M
  }
496
196k
}
497
498
/*
499
 * Find the backwards transitive closure of the flow graph.  These sets
500
 * are backwards in the sense that we find the set of nodes that reach
501
 * a given node, not the set of nodes that can be reached by a node.
502
 *
503
 * Assumes graph has been leveled.
504
 */
505
static void
506
find_closure(opt_state_t *opt_state, struct block *root)
507
196k
{
508
196k
  int level;
509
196k
  struct block *b;
510
511
  /*
512
   * Initialize sets to contain no nodes.
513
   */
514
196k
  memset((char *)opt_state->all_closure_sets, 0,
515
196k
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517
  /* root->level is the highest level no found. */
518
1.82M
  for (level = root->level; level >= 0; --level) {
519
3.55M
    for (b = opt_state->levels[level]; b; b = b->link) {
520
1.92M
      SET_INSERT(b->closure, b->id);
521
1.92M
      if (JT(b) == 0)
522
331k
        continue;
523
1.59M
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524
1.59M
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525
1.59M
    }
526
1.62M
  }
527
196k
}
528
529
/*
530
 * Return the register number that is used by s.
531
 *
532
 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533
 * are used, the scratch memory location's number if a scratch memory
534
 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535
 *
536
 * The implementation should probably change to an array access.
537
 */
538
static int
539
atomuse(struct stmt *s)
540
17.8M
{
541
17.8M
  register int c = s->code;
542
543
17.8M
  if (c == NOP)
544
2.65M
    return -1;
545
546
15.2M
  switch (BPF_CLASS(c)) {
547
548
203k
  case BPF_RET:
549
203k
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550
203k
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552
6.02M
  case BPF_LD:
553
7.07M
  case BPF_LDX:
554
    /*
555
     * As there are fewer than 2^31 memory locations,
556
     * s->k should be convertible to int without problems.
557
     */
558
7.07M
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559
7.07M
      (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561
2.19M
  case BPF_ST:
562
2.19M
    return A_ATOM;
563
564
0
  case BPF_STX:
565
0
    return X_ATOM;
566
567
3.15M
  case BPF_JMP:
568
4.93M
  case BPF_ALU:
569
4.93M
    if (BPF_SRC(c) == BPF_X)
570
1.15M
      return AX_ATOM;
571
3.77M
    return A_ATOM;
572
573
834k
  case BPF_MISC:
574
834k
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575
15.2M
  }
576
0
  abort();
577
  /* NOTREACHED */
578
15.2M
}
579
580
/*
581
 * Return the register number that is defined by 's'.  We assume that
582
 * a single stmt cannot define more than one register.  If no register
583
 * is defined, return -1.
584
 *
585
 * The implementation should probably change to an array access.
586
 */
587
static int
588
atomdef(struct stmt *s)
589
16.2M
{
590
16.2M
  if (s->code == NOP)
591
2.65M
    return -1;
592
593
13.6M
  switch (BPF_CLASS(s->code)) {
594
595
6.02M
  case BPF_LD:
596
7.79M
  case BPF_ALU:
597
7.79M
    return A_ATOM;
598
599
1.04M
  case BPF_LDX:
600
1.04M
    return X_ATOM;
601
602
2.19M
  case BPF_ST:
603
2.19M
  case BPF_STX:
604
2.19M
    return s->k;
605
606
834k
  case BPF_MISC:
607
834k
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608
13.6M
  }
609
1.76M
  return -1;
610
13.6M
}
611
612
/*
613
 * Compute the sets of registers used, defined, and killed by 'b'.
614
 *
615
 * "Used" means that a statement in 'b' uses the register before any
616
 * statement in 'b' defines it, i.e. it uses the value left in
617
 * that register by a predecessor block of this block.
618
 * "Defined" means that a statement in 'b' defines it.
619
 * "Killed" means that a statement in 'b' defines it before any
620
 * statement in 'b' uses it, i.e. it kills the value left in that
621
 * register by a predecessor block of this block.
622
 */
623
static void
624
compute_local_ud(struct block *b)
625
1.92M
{
626
1.92M
  struct slist *s;
627
1.92M
  atomset def = 0, use = 0, killed = 0;
628
1.92M
  int atom;
629
630
10.5M
  for (s = b->stmts; s; s = s->next) {
631
8.61M
    if (s->s.code == NOP)
632
2.47M
      continue;
633
6.14M
    atom = atomuse(&s->s);
634
6.14M
    if (atom >= 0) {
635
3.94M
      if (atom == AX_ATOM) {
636
542k
        if (!ATOMELEM(def, X_ATOM))
637
234
          use |= ATOMMASK(X_ATOM);
638
542k
        if (!ATOMELEM(def, A_ATOM))
639
0
          use |= ATOMMASK(A_ATOM);
640
542k
      }
641
3.40M
      else if (atom < N_ATOMS) {
642
3.40M
        if (!ATOMELEM(def, atom))
643
196k
          use |= ATOMMASK(atom);
644
3.40M
      }
645
0
      else
646
0
        abort();
647
3.94M
    }
648
6.14M
    atom = atomdef(&s->s);
649
6.14M
    if (atom >= 0) {
650
6.14M
      if (!ATOMELEM(use, atom))
651
6.13M
        killed |= ATOMMASK(atom);
652
6.14M
      def |= ATOMMASK(atom);
653
6.14M
    }
654
6.14M
  }
655
1.92M
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
656
    /*
657
     * XXX - what about RET?
658
     */
659
1.59M
    atom = atomuse(&b->s);
660
1.59M
    if (atom >= 0) {
661
1.59M
      if (atom == AX_ATOM) {
662
112k
        if (!ATOMELEM(def, X_ATOM))
663
2.07k
          use |= ATOMMASK(X_ATOM);
664
112k
        if (!ATOMELEM(def, A_ATOM))
665
2.07k
          use |= ATOMMASK(A_ATOM);
666
112k
      }
667
1.48M
      else if (atom < N_ATOMS) {
668
1.48M
        if (!ATOMELEM(def, atom))
669
51.5k
          use |= ATOMMASK(atom);
670
1.48M
      }
671
0
      else
672
0
        abort();
673
1.59M
    }
674
1.59M
  }
675
676
1.92M
  b->def = def;
677
1.92M
  b->kill = killed;
678
1.92M
  b->in_use = use;
679
1.92M
}
680
681
/*
682
 * Assume graph is already leveled.
683
 */
684
static void
685
find_ud(opt_state_t *opt_state, struct block *root)
686
196k
{
687
196k
  int i, maxlevel;
688
196k
  struct block *p;
689
690
  /*
691
   * root->level is the highest level no found;
692
   * count down from there.
693
   */
694
196k
  maxlevel = root->level;
695
1.82M
  for (i = maxlevel; i >= 0; --i)
696
3.55M
    for (p = opt_state->levels[i]; p; p = p->link) {
697
1.92M
      compute_local_ud(p);
698
1.92M
      p->out_use = 0;
699
1.92M
    }
700
701
1.62M
  for (i = 1; i <= maxlevel; ++i) {
702
3.02M
    for (p = opt_state->levels[i]; p; p = p->link) {
703
1.59M
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
704
1.59M
      p->in_use |= p->out_use &~ p->kill;
705
1.59M
    }
706
1.42M
  }
707
196k
}
708
static void
709
init_val(opt_state_t *opt_state)
710
196k
{
711
196k
  opt_state->curval = 0;
712
196k
  opt_state->next_vnode = opt_state->vnode_base;
713
196k
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714
196k
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715
196k
}
716
717
/*
718
 * Because we really don't have an IR, this stuff is a little messy.
719
 *
720
 * This routine looks in the table of existing value number for a value
721
 * with generated from an operation with the specified opcode and
722
 * the specified values.  If it finds it, it returns its value number,
723
 * otherwise it makes a new entry in the table and returns the
724
 * value number of that entry.
725
 */
726
static bpf_u_int32
727
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728
5.43M
{
729
5.43M
  u_int hash;
730
5.43M
  bpf_u_int32 val;
731
5.43M
  struct valnode *p;
732
733
5.43M
  hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734
5.43M
  hash %= MODULUS;
735
736
5.85M
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
737
3.34M
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
738
2.92M
      return p->val;
739
740
  /*
741
   * Not found.  Allocate a new value, and assign it a new
742
   * value number.
743
   *
744
   * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745
   * increment it before using it as the new value number, which
746
   * means we never assign VAL_UNKNOWN.
747
   *
748
   * XXX - unless we overflow, but we probably won't have 2^32-1
749
   * values; we treat 32 bits as effectively infinite.
750
   */
751
2.50M
  val = ++opt_state->curval;
752
2.50M
  if (BPF_MODE(code) == BPF_IMM &&
753
2.50M
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754
1.45M
    opt_state->vmap[val].const_val = v0;
755
1.45M
    opt_state->vmap[val].is_const = 1;
756
1.45M
  }
757
2.50M
  p = opt_state->next_vnode++;
758
2.50M
  p->val = val;
759
2.50M
  p->code = code;
760
2.50M
  p->v0 = v0;
761
2.50M
  p->v1 = v1;
762
2.50M
  p->next = opt_state->hashtbl[hash];
763
2.50M
  opt_state->hashtbl[hash] = p;
764
765
2.50M
  return val;
766
5.43M
}
767
768
static inline void
769
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770
5.13M
{
771
5.13M
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
772
261k
    s->code = NOP;
773
4.86M
  else
774
4.86M
    *valp = newval;
775
5.13M
}
776
777
/*
778
 * Do constant-folding on binary operators.
779
 * (Unary operators are handled elsewhere.)
780
 */
781
static void
782
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783
94.9k
{
784
94.9k
  bpf_u_int32 a, b;
785
786
94.9k
  a = opt_state->vmap[v0].const_val;
787
94.9k
  b = opt_state->vmap[v1].const_val;
788
789
94.9k
  switch (BPF_OP(s->code)) {
790
15.4k
  case BPF_ADD:
791
15.4k
    a += b;
792
15.4k
    break;
793
794
4.92k
  case BPF_SUB:
795
4.92k
    a -= b;
796
4.92k
    break;
797
798
17.5k
  case BPF_MUL:
799
17.5k
    a *= b;
800
17.5k
    break;
801
802
13.9k
  case BPF_DIV:
803
13.9k
    if (b == 0)
804
325
      opt_error(opt_state, "division by zero");
805
13.6k
    a /= b;
806
13.6k
    break;
807
808
13.1k
  case BPF_MOD:
809
13.1k
    if (b == 0)
810
1.61k
      opt_error(opt_state, "modulus by zero");
811
11.5k
    a %= b;
812
11.5k
    break;
813
814
15.7k
  case BPF_AND:
815
15.7k
    a &= b;
816
15.7k
    break;
817
818
4.04k
  case BPF_OR:
819
4.04k
    a |= b;
820
4.04k
    break;
821
822
6.62k
  case BPF_XOR:
823
6.62k
    a ^= b;
824
6.62k
    break;
825
826
1.81k
  case BPF_LSH:
827
    /*
828
     * A left shift of more than the width of the type
829
     * is undefined in C; we'll just treat it as shifting
830
     * all the bits out.
831
     *
832
     * XXX - the BPF interpreter doesn't check for this,
833
     * so its behavior is dependent on the behavior of
834
     * the processor on which it's running.  There are
835
     * processors on which it shifts all the bits out
836
     * and processors on which it does no shift.
837
     */
838
1.81k
    if (b < 32)
839
1.23k
      a <<= b;
840
582
    else
841
582
      a = 0;
842
1.81k
    break;
843
844
1.69k
  case BPF_RSH:
845
    /*
846
     * A right shift of more than the width of the type
847
     * is undefined in C; we'll just treat it as shifting
848
     * all the bits out.
849
     *
850
     * XXX - the BPF interpreter doesn't check for this,
851
     * so its behavior is dependent on the behavior of
852
     * the processor on which it's running.  There are
853
     * processors on which it shifts all the bits out
854
     * and processors on which it does no shift.
855
     */
856
1.69k
    if (b < 32)
857
1.30k
      a >>= b;
858
391
    else
859
391
      a = 0;
860
1.69k
    break;
861
862
0
  default:
863
0
    abort();
864
94.9k
  }
865
93.0k
  s->k = a;
866
93.0k
  s->code = BPF_LD|BPF_IMM;
867
  /*
868
   * XXX - optimizer loop detection.
869
   */
870
93.0k
  opt_state->non_branch_movement_performed = 1;
871
93.0k
  opt_state->done = 0;
872
93.0k
}
873
874
static inline struct slist *
875
this_op(struct slist *s)
876
11.5M
{
877
14.2M
  while (s != 0 && s->s.code == NOP)
878
2.63M
    s = s->next;
879
11.5M
  return s;
880
11.5M
}
881
882
static void
883
opt_not(struct block *b)
884
1.96k
{
885
1.96k
  struct block *tmp = JT(b);
886
887
1.96k
  JT(b) = JF(b);
888
1.96k
  JF(b) = tmp;
889
1.96k
}
890
891
static void
892
opt_peep(opt_state_t *opt_state, struct block *b)
893
1.76M
{
894
1.76M
  struct slist *s;
895
1.76M
  struct slist *next, *last;
896
1.76M
  bpf_u_int32 val;
897
898
1.76M
  s = b->stmts;
899
1.76M
  if (s == 0)
900
223k
    return;
901
902
1.54M
  last = s;
903
5.81M
  for (/*empty*/; /*empty*/; s = next) {
904
    /*
905
     * Skip over nops.
906
     */
907
5.81M
    s = this_op(s);
908
5.81M
    if (s == 0)
909
65.1k
      break;  /* nothing left in the block */
910
911
    /*
912
     * Find the next real instruction after that one
913
     * (skipping nops).
914
     */
915
5.75M
    next = this_op(s->next);
916
5.75M
    if (next == 0)
917
1.47M
      break;  /* no next instruction */
918
4.27M
    last = next;
919
920
    /*
921
     * st  M[k] --> st  M[k]
922
     * ldx M[k]   tax
923
     */
924
4.27M
    if (s->s.code == BPF_ST &&
925
4.27M
        next->s.code == (BPF_LDX|BPF_MEM) &&
926
4.27M
        s->s.k == next->s.k) {
927
      /*
928
       * XXX - optimizer loop detection.
929
       */
930
172k
      opt_state->non_branch_movement_performed = 1;
931
172k
      opt_state->done = 0;
932
172k
      next->s.code = BPF_MISC|BPF_TAX;
933
172k
    }
934
    /*
935
     * ld  #k --> ldx  #k
936
     * tax      txa
937
     */
938
4.27M
    if (s->s.code == (BPF_LD|BPF_IMM) &&
939
4.27M
        next->s.code == (BPF_MISC|BPF_TAX)) {
940
104k
      s->s.code = BPF_LDX|BPF_IMM;
941
104k
      next->s.code = BPF_MISC|BPF_TXA;
942
      /*
943
       * XXX - optimizer loop detection.
944
       */
945
104k
      opt_state->non_branch_movement_performed = 1;
946
104k
      opt_state->done = 0;
947
104k
    }
948
    /*
949
     * This is an ugly special case, but it happens
950
     * when you say tcp[k] or udp[k] where k is a constant.
951
     */
952
4.27M
    if (s->s.code == (BPF_LD|BPF_IMM)) {
953
823k
      struct slist *add, *tax, *ild;
954
955
      /*
956
       * Check that X isn't used on exit from this
957
       * block (which the optimizer might cause).
958
       * We know the code generator won't generate
959
       * any local dependencies.
960
       */
961
823k
      if (ATOMELEM(b->out_use, X_ATOM))
962
2.72k
        continue;
963
964
      /*
965
       * Check that the instruction following the ldi
966
       * is an addx, or it's an ldxms with an addx
967
       * following it (with 0 or more nops between the
968
       * ldxms and addx).
969
       */
970
820k
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971
820k
        add = next;
972
0
      else
973
0
        add = this_op(next->next);
974
820k
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975
820k
        continue;
976
977
      /*
978
       * Check that a tax follows that (with 0 or more
979
       * nops between them).
980
       */
981
879
      tax = this_op(add->next);
982
879
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983
566
        continue;
984
985
      /*
986
       * Check that an ild follows that (with 0 or more
987
       * nops between them).
988
       */
989
313
      ild = this_op(tax->next);
990
313
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991
313
          BPF_MODE(ild->s.code) != BPF_IND)
992
313
        continue;
993
      /*
994
       * We want to turn this sequence:
995
       *
996
       * (004) ldi     #0x2   {s}
997
       * (005) ldxms   [14]   {next}  -- optional
998
       * (006) addx     {add}
999
       * (007) tax      {tax}
1000
       * (008) ild     [x+0]    {ild}
1001
       *
1002
       * into this sequence:
1003
       *
1004
       * (004) nop
1005
       * (005) ldxms   [14]
1006
       * (006) nop
1007
       * (007) nop
1008
       * (008) ild     [x+2]
1009
       *
1010
       * XXX We need to check that X is not
1011
       * subsequently used, because we want to change
1012
       * what'll be in it after this sequence.
1013
       *
1014
       * We know we can eliminate the accumulator
1015
       * modifications earlier in the sequence since
1016
       * it is defined by the last stmt of this sequence
1017
       * (i.e., the last statement of the sequence loads
1018
       * a value into the accumulator, so we can eliminate
1019
       * earlier operations on the accumulator).
1020
       */
1021
0
      ild->s.k += s->s.k;
1022
0
      s->s.code = NOP;
1023
0
      add->s.code = NOP;
1024
0
      tax->s.code = NOP;
1025
      /*
1026
       * XXX - optimizer loop detection.
1027
       */
1028
0
      opt_state->non_branch_movement_performed = 1;
1029
0
      opt_state->done = 0;
1030
0
    }
1031
4.27M
  }
1032
  /*
1033
   * If the comparison at the end of a block is an equality
1034
   * comparison against a constant, and nobody uses the value
1035
   * we leave in the A register at the end of a block, and
1036
   * the operation preceding the comparison is an arithmetic
1037
   * operation, we can sometime optimize it away.
1038
   */
1039
1.54M
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040
1.54M
      !ATOMELEM(b->out_use, A_ATOM)) {
1041
    /*
1042
     * We can optimize away certain subtractions of the
1043
     * X register.
1044
     */
1045
1.26M
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046
19.6k
      val = b->val[X_ATOM];
1047
19.6k
      if (opt_state->vmap[val].is_const) {
1048
        /*
1049
         * If we have a subtract to do a comparison,
1050
         * and the X register is a known constant,
1051
         * we can merge this value into the
1052
         * comparison:
1053
         *
1054
         * sub x  ->  nop
1055
         * jeq #y jeq #(x+y)
1056
         */
1057
10.0k
        b->s.k += opt_state->vmap[val].const_val;
1058
10.0k
        last->s.code = NOP;
1059
        /*
1060
         * XXX - optimizer loop detection.
1061
         */
1062
10.0k
        opt_state->non_branch_movement_performed = 1;
1063
10.0k
        opt_state->done = 0;
1064
10.0k
      } else if (b->s.k == 0) {
1065
        /*
1066
         * If the X register isn't a constant,
1067
         * and the comparison in the test is
1068
         * against 0, we can compare with the
1069
         * X register, instead:
1070
         *
1071
         * sub x  ->  nop
1072
         * jeq #0 jeq x
1073
         */
1074
9.58k
        last->s.code = NOP;
1075
9.58k
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076
        /*
1077
         * XXX - optimizer loop detection.
1078
         */
1079
9.58k
        opt_state->non_branch_movement_performed = 1;
1080
9.58k
        opt_state->done = 0;
1081
9.58k
      }
1082
19.6k
    }
1083
    /*
1084
     * Likewise, a constant subtract can be simplified:
1085
     *
1086
     * sub #x ->  nop
1087
     * jeq #y ->  jeq #(x+y)
1088
     */
1089
1.24M
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090
30
      last->s.code = NOP;
1091
30
      b->s.k += last->s.k;
1092
      /*
1093
       * XXX - optimizer loop detection.
1094
       */
1095
30
      opt_state->non_branch_movement_performed = 1;
1096
30
      opt_state->done = 0;
1097
30
    }
1098
    /*
1099
     * And, similarly, a constant AND can be simplified
1100
     * if we're testing against 0, i.e.:
1101
     *
1102
     * and #k nop
1103
     * jeq #0  -> jset #k
1104
     */
1105
1.24M
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106
1.24M
        b->s.k == 0) {
1107
1.96k
      b->s.k = last->s.k;
1108
1.96k
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109
1.96k
      last->s.code = NOP;
1110
      /*
1111
       * XXX - optimizer loop detection.
1112
       */
1113
1.96k
      opt_state->non_branch_movement_performed = 1;
1114
1.96k
      opt_state->done = 0;
1115
1.96k
      opt_not(b);
1116
1.96k
    }
1117
1.26M
  }
1118
  /*
1119
   * jset #0        ->   never
1120
   * jset #ffffffff ->   always
1121
   */
1122
1.54M
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123
24.1k
    if (b->s.k == 0)
1124
336
      JT(b) = JF(b);
1125
24.1k
    if (b->s.k == 0xffffffffU)
1126
5
      JF(b) = JT(b);
1127
24.1k
  }
1128
  /*
1129
   * If we're comparing against the index register, and the index
1130
   * register is a known constant, we can just compare against that
1131
   * constant.
1132
   */
1133
1.54M
  val = b->val[X_ATOM];
1134
1.54M
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135
35.8k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1136
35.8k
    b->s.code &= ~BPF_X;
1137
35.8k
    b->s.k = v;
1138
35.8k
  }
1139
  /*
1140
   * If the accumulator is a known constant, we can compute the
1141
   * comparison result.
1142
   */
1143
1.54M
  val = b->val[A_ATOM];
1144
1.54M
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145
162k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1146
162k
    switch (BPF_OP(b->s.code)) {
1147
1148
80.6k
    case BPF_JEQ:
1149
80.6k
      v = v == b->s.k;
1150
80.6k
      break;
1151
1152
33.0k
    case BPF_JGT:
1153
33.0k
      v = v > b->s.k;
1154
33.0k
      break;
1155
1156
48.4k
    case BPF_JGE:
1157
48.4k
      v = v >= b->s.k;
1158
48.4k
      break;
1159
1160
0
    case BPF_JSET:
1161
0
      v &= b->s.k;
1162
0
      break;
1163
1164
0
    default:
1165
0
      abort();
1166
162k
    }
1167
162k
    if (JF(b) != JT(b)) {
1168
      /*
1169
       * XXX - optimizer loop detection.
1170
       */
1171
71.8k
      opt_state->non_branch_movement_performed = 1;
1172
71.8k
      opt_state->done = 0;
1173
71.8k
    }
1174
162k
    if (v)
1175
51.4k
      JF(b) = JT(b);
1176
110k
    else
1177
110k
      JT(b) = JF(b);
1178
162k
  }
1179
1.54M
}
1180
1181
/*
1182
 * Compute the symbolic value of expression of 's', and update
1183
 * anything it defines in the value table 'val'.  If 'alter' is true,
1184
 * do various optimizations.  This code would be cleaner if symbolic
1185
 * evaluation and code transformations weren't folded together.
1186
 */
1187
static void
1188
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189
8.55M
{
1190
8.55M
  int op;
1191
8.55M
  bpf_u_int32 v;
1192
1193
8.55M
  switch (s->code) {
1194
1195
217k
  case BPF_LD|BPF_ABS|BPF_W:
1196
457k
  case BPF_LD|BPF_ABS|BPF_H:
1197
1.05M
  case BPF_LD|BPF_ABS|BPF_B:
1198
1.05M
    v = F(opt_state, s->code, s->k, 0L);
1199
1.05M
    vstore(s, &val[A_ATOM], v, alter);
1200
1.05M
    break;
1201
1202
11.8k
  case BPF_LD|BPF_IND|BPF_W:
1203
77.5k
  case BPF_LD|BPF_IND|BPF_H:
1204
236k
  case BPF_LD|BPF_IND|BPF_B:
1205
236k
    v = val[X_ATOM];
1206
236k
    if (alter && opt_state->vmap[v].is_const) {
1207
14.7k
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208
14.7k
      s->k += opt_state->vmap[v].const_val;
1209
14.7k
      v = F(opt_state, s->code, s->k, 0L);
1210
      /*
1211
       * XXX - optimizer loop detection.
1212
       */
1213
14.7k
      opt_state->non_branch_movement_performed = 1;
1214
14.7k
      opt_state->done = 0;
1215
14.7k
    }
1216
221k
    else
1217
221k
      v = F(opt_state, s->code, s->k, v);
1218
236k
    vstore(s, &val[A_ATOM], v, alter);
1219
236k
    break;
1220
1221
10.1k
  case BPF_LD|BPF_LEN:
1222
10.1k
    v = F(opt_state, s->code, 0L, 0L);
1223
10.1k
    vstore(s, &val[A_ATOM], v, alter);
1224
10.1k
    break;
1225
1226
910k
  case BPF_LD|BPF_IMM:
1227
910k
    v = K(s->k);
1228
910k
    vstore(s, &val[A_ATOM], v, alter);
1229
910k
    break;
1230
1231
185k
  case BPF_LDX|BPF_IMM:
1232
185k
    v = K(s->k);
1233
185k
    vstore(s, &val[X_ATOM], v, alter);
1234
185k
    break;
1235
1236
25.5k
  case BPF_LDX|BPF_MSH|BPF_B:
1237
25.5k
    v = F(opt_state, s->code, s->k, 0L);
1238
25.5k
    vstore(s, &val[X_ATOM], v, alter);
1239
25.5k
    break;
1240
1241
214k
  case BPF_ALU|BPF_NEG:
1242
214k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243
46.8k
      s->code = BPF_LD|BPF_IMM;
1244
      /*
1245
       * Do this negation as unsigned arithmetic; that's
1246
       * what modern BPF engines do, and it guarantees
1247
       * that all possible values can be negated.  (Yeah,
1248
       * negating 0x80000000, the minimum signed 32-bit
1249
       * two's-complement value, results in 0x80000000,
1250
       * so it's still negative, but we *should* be doing
1251
       * all unsigned arithmetic here, to match what
1252
       * modern BPF engines do.)
1253
       *
1254
       * Express it as 0U - (unsigned value) so that we
1255
       * don't get compiler warnings about negating an
1256
       * unsigned value and don't get UBSan warnings
1257
       * about the result of negating 0x80000000 being
1258
       * undefined.
1259
       */
1260
46.8k
      s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261
46.8k
      val[A_ATOM] = K(s->k);
1262
46.8k
    }
1263
167k
    else
1264
167k
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265
214k
    break;
1266
1267
28.0k
  case BPF_ALU|BPF_ADD|BPF_K:
1268
28.9k
  case BPF_ALU|BPF_SUB|BPF_K:
1269
29.8k
  case BPF_ALU|BPF_MUL|BPF_K:
1270
30.6k
  case BPF_ALU|BPF_DIV|BPF_K:
1271
31.6k
  case BPF_ALU|BPF_MOD|BPF_K:
1272
197k
  case BPF_ALU|BPF_AND|BPF_K:
1273
197k
  case BPF_ALU|BPF_OR|BPF_K:
1274
197k
  case BPF_ALU|BPF_XOR|BPF_K:
1275
214k
  case BPF_ALU|BPF_LSH|BPF_K:
1276
214k
  case BPF_ALU|BPF_RSH|BPF_K:
1277
214k
    op = BPF_OP(s->code);
1278
214k
    if (alter) {
1279
46.2k
      if (s->k == 0) {
1280
        /*
1281
         * Optimize operations where the constant
1282
         * is zero.
1283
         *
1284
         * Don't optimize away "sub #0"
1285
         * as it may be needed later to
1286
         * fixup the generated math code.
1287
         *
1288
         * Fail if we're dividing by zero or taking
1289
         * a modulus by zero.
1290
         */
1291
591
        if (op == BPF_ADD ||
1292
591
            op == BPF_LSH || op == BPF_RSH ||
1293
591
            op == BPF_OR || op == BPF_XOR) {
1294
159
          s->code = NOP;
1295
159
          break;
1296
159
        }
1297
432
        if (op == BPF_MUL || op == BPF_AND) {
1298
198
          s->code = BPF_LD|BPF_IMM;
1299
198
          val[A_ATOM] = K(s->k);
1300
198
          break;
1301
198
        }
1302
234
        if (op == BPF_DIV)
1303
3
          opt_error(opt_state,
1304
3
              "division by zero");
1305
231
        if (op == BPF_MOD)
1306
2
          opt_error(opt_state,
1307
2
              "modulus by zero");
1308
231
      }
1309
45.9k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1310
211
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311
211
        val[A_ATOM] = K(s->k);
1312
211
        break;
1313
211
      }
1314
45.9k
    }
1315
214k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316
214k
    break;
1317
1318
94.6k
  case BPF_ALU|BPF_ADD|BPF_X:
1319
137k
  case BPF_ALU|BPF_SUB|BPF_X:
1320
227k
  case BPF_ALU|BPF_MUL|BPF_X:
1321
300k
  case BPF_ALU|BPF_DIV|BPF_X:
1322
376k
  case BPF_ALU|BPF_MOD|BPF_X:
1323
458k
  case BPF_ALU|BPF_AND|BPF_X:
1324
480k
  case BPF_ALU|BPF_OR|BPF_X:
1325
516k
  case BPF_ALU|BPF_XOR|BPF_X:
1326
525k
  case BPF_ALU|BPF_LSH|BPF_X:
1327
534k
  case BPF_ALU|BPF_RSH|BPF_X:
1328
534k
    op = BPF_OP(s->code);
1329
534k
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330
96.8k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1331
94.7k
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332
94.7k
        val[A_ATOM] = K(s->k);
1333
94.7k
      }
1334
2.03k
      else {
1335
2.03k
        s->code = BPF_ALU|BPF_K|op;
1336
2.03k
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337
2.03k
        if ((op == BPF_LSH || op == BPF_RSH) &&
1338
2.03k
            s->k > 31)
1339
8
          opt_error(opt_state,
1340
8
              "shift by more than 31 bits");
1341
        /*
1342
         * XXX - optimizer loop detection.
1343
         */
1344
2.02k
        opt_state->non_branch_movement_performed = 1;
1345
2.02k
        opt_state->done = 0;
1346
2.02k
        val[A_ATOM] =
1347
2.02k
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1348
2.02k
      }
1349
96.7k
      break;
1350
96.8k
    }
1351
    /*
1352
     * Check if we're doing something to an accumulator
1353
     * that is 0, and simplify.  This may not seem like
1354
     * much of a simplification but it could open up further
1355
     * optimizations.
1356
     * XXX We could also check for mul by 1, etc.
1357
     */
1358
438k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359
438k
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360
415
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361
96
        s->code = BPF_MISC|BPF_TXA;
1362
96
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363
96
        break;
1364
96
      }
1365
319
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366
319
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367
196
        s->code = BPF_LD|BPF_IMM;
1368
196
        s->k = 0;
1369
196
        vstore(s, &val[A_ATOM], K(s->k), alter);
1370
196
        break;
1371
196
      }
1372
123
      else if (op == BPF_NEG) {
1373
0
        s->code = NOP;
1374
0
        break;
1375
0
      }
1376
415
    }
1377
437k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378
437k
    break;
1379
1380
3.26k
  case BPF_MISC|BPF_TXA:
1381
3.26k
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382
3.26k
    break;
1383
1384
896k
  case BPF_LD|BPF_MEM:
1385
896k
    v = val[s->k];
1386
896k
    if (alter && opt_state->vmap[v].is_const) {
1387
178k
      s->code = BPF_LD|BPF_IMM;
1388
178k
      s->k = opt_state->vmap[v].const_val;
1389
      /*
1390
       * XXX - optimizer loop detection.
1391
       */
1392
178k
      opt_state->non_branch_movement_performed = 1;
1393
178k
      opt_state->done = 0;
1394
178k
    }
1395
896k
    vstore(s, &val[A_ATOM], v, alter);
1396
896k
    break;
1397
1398
332k
  case BPF_MISC|BPF_TAX:
1399
332k
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400
332k
    break;
1401
1402
360k
  case BPF_LDX|BPF_MEM:
1403
360k
    v = val[s->k];
1404
360k
    if (alter && opt_state->vmap[v].is_const) {
1405
14.7k
      s->code = BPF_LDX|BPF_IMM;
1406
14.7k
      s->k = opt_state->vmap[v].const_val;
1407
      /*
1408
       * XXX - optimizer loop detection.
1409
       */
1410
14.7k
      opt_state->non_branch_movement_performed = 1;
1411
14.7k
      opt_state->done = 0;
1412
14.7k
    }
1413
360k
    vstore(s, &val[X_ATOM], v, alter);
1414
360k
    break;
1415
1416
1.11M
  case BPF_ST:
1417
1.11M
    vstore(s, &val[s->k], val[A_ATOM], alter);
1418
1.11M
    break;
1419
1420
0
  case BPF_STX:
1421
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1422
0
    break;
1423
8.55M
  }
1424
8.55M
}
1425
1426
static void
1427
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428
10.1M
{
1429
10.1M
  register int atom;
1430
1431
10.1M
  atom = atomuse(s);
1432
10.1M
  if (atom >= 0) {
1433
5.02M
    if (atom == AX_ATOM) {
1434
500k
      last[X_ATOM] = 0;
1435
500k
      last[A_ATOM] = 0;
1436
500k
    }
1437
4.52M
    else
1438
4.52M
      last[atom] = 0;
1439
5.02M
  }
1440
10.1M
  atom = atomdef(s);
1441
10.1M
  if (atom >= 0) {
1442
5.72M
    if (last[atom]) {
1443
      /*
1444
       * XXX - optimizer loop detection.
1445
       */
1446
497k
      opt_state->non_branch_movement_performed = 1;
1447
497k
      opt_state->done = 0;
1448
497k
      last[atom]->code = NOP;
1449
497k
    }
1450
5.72M
    last[atom] = s;
1451
5.72M
  }
1452
10.1M
}
1453
1454
static void
1455
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456
1.76M
{
1457
1.76M
  register struct slist *s;
1458
1.76M
  register int atom;
1459
1.76M
  struct stmt *last[N_ATOMS];
1460
1461
1.76M
  memset((char *)last, 0, sizeof last);
1462
1463
10.1M
  for (s = b->stmts; s != 0; s = s->next)
1464
8.38M
    deadstmt(opt_state, &s->s, last);
1465
1.76M
  deadstmt(opt_state, &b->s, last);
1466
1467
33.5M
  for (atom = 0; atom < N_ATOMS; ++atom)
1468
31.7M
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469
226k
      last[atom]->code = NOP;
1470
      /*
1471
       * XXX - optimizer loop detection.
1472
       */
1473
226k
      opt_state->non_branch_movement_performed = 1;
1474
226k
      opt_state->done = 0;
1475
226k
    }
1476
1.76M
}
1477
1478
static void
1479
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480
1.91M
{
1481
1.91M
  struct slist *s;
1482
1.91M
  struct edge *p;
1483
1.91M
  int i;
1484
1.91M
  bpf_u_int32 aval, xval;
1485
1486
#if 0
1487
  for (s = b->stmts; s && s->next; s = s->next)
1488
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489
      do_stmts = 0;
1490
      break;
1491
    }
1492
#endif
1493
1494
  /*
1495
   * Initialize the atom values.
1496
   */
1497
1.91M
  p = b->in_edges;
1498
1.91M
  if (p == 0) {
1499
    /*
1500
     * We have no predecessors, so everything is undefined
1501
     * upon entry to this block.
1502
     */
1503
196k
    memset((char *)b->val, 0, sizeof(b->val));
1504
1.72M
  } else {
1505
    /*
1506
     * Inherit values from our predecessors.
1507
     *
1508
     * First, get the values from the predecessor along the
1509
     * first edge leading to this node.
1510
     */
1511
1.72M
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512
    /*
1513
     * Now look at all the other nodes leading to this node.
1514
     * If, for the predecessor along that edge, a register
1515
     * has a different value from the one we have (i.e.,
1516
     * control paths are merging, and the merging paths
1517
     * assign different values to that register), give the
1518
     * register the undefined value of 0.
1519
     */
1520
3.17M
    while ((p = p->next) != NULL) {
1521
27.6M
      for (i = 0; i < N_ATOMS; ++i)
1522
26.1M
        if (b->val[i] != p->pred->val[i])
1523
1.80M
          b->val[i] = 0;
1524
1.45M
    }
1525
1.72M
  }
1526
1.91M
  aval = b->val[A_ATOM];
1527
1.91M
  xval = b->val[X_ATOM];
1528
10.4M
  for (s = b->stmts; s; s = s->next)
1529
8.55M
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531
  /*
1532
   * This is a special case: if we don't use anything from this
1533
   * block, and we load the accumulator or index register with a
1534
   * value that is already there, or if this block is a return,
1535
   * eliminate all the statements.
1536
   *
1537
   * XXX - what if it does a store?  Presumably that falls under
1538
   * the heading of "if we don't use anything from this block",
1539
   * i.e., if we use any memory location set to a different
1540
   * value by this block, then we use something from this block.
1541
   *
1542
   * XXX - why does it matter whether we use anything from this
1543
   * block?  If the accumulator or index register doesn't change
1544
   * its value, isn't that OK even if we use that value?
1545
   *
1546
   * XXX - if we load the accumulator with a different value,
1547
   * and the block ends with a conditional branch, we obviously
1548
   * can't eliminate it, as the branch depends on that value.
1549
   * For the index register, the conditional branch only depends
1550
   * on the index register value if the test is against the index
1551
   * register value rather than a constant; if nothing uses the
1552
   * value we put into the index register, and we're not testing
1553
   * against the index register's value, and there aren't any
1554
   * other problems that would keep us from eliminating this
1555
   * block, can we eliminate it?
1556
   */
1557
1.91M
  if (do_stmts &&
1558
1.91M
      ((b->out_use == 0 &&
1559
538k
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560
538k
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561
538k
       BPF_CLASS(b->s.code) == BPF_RET)) {
1562
150k
    if (b->stmts != 0) {
1563
20.7k
      b->stmts = 0;
1564
      /*
1565
       * XXX - optimizer loop detection.
1566
       */
1567
20.7k
      opt_state->non_branch_movement_performed = 1;
1568
20.7k
      opt_state->done = 0;
1569
20.7k
    }
1570
1.76M
  } else {
1571
1.76M
    opt_peep(opt_state, b);
1572
1.76M
    opt_deadstores(opt_state, b);
1573
1.76M
  }
1574
  /*
1575
   * Set up values for branch optimizer.
1576
   */
1577
1.91M
  if (BPF_SRC(b->s.code) == BPF_K)
1578
1.83M
    b->oval = K(b->s.k);
1579
86.9k
  else
1580
86.9k
    b->oval = b->val[X_ATOM];
1581
1.91M
  b->et.code = b->s.code;
1582
1.91M
  b->ef.code = -b->s.code;
1583
1.91M
}
1584
1585
/*
1586
 * Return true if any register that is used on exit from 'succ', has
1587
 * an exit value that is different from the corresponding exit value
1588
 * from 'b'.
1589
 */
1590
static int
1591
use_conflict(struct block *b, struct block *succ)
1592
988k
{
1593
988k
  int atom;
1594
988k
  atomset use = succ->out_use;
1595
1596
988k
  if (use == 0)
1597
903k
    return 0;
1598
1599
1.31M
  for (atom = 0; atom < N_ATOMS; ++atom)
1600
1.25M
    if (ATOMELEM(use, atom))
1601
85.0k
      if (b->val[atom] != succ->val[atom])
1602
27.1k
        return 1;
1603
57.8k
  return 0;
1604
85.0k
}
1605
1606
/*
1607
 * Given a block that is the successor of an edge, and an edge that
1608
 * dominates that edge, return either a pointer to a child of that
1609
 * block (a block to which that block jumps) if that block is a
1610
 * candidate to replace the successor of the latter edge or NULL
1611
 * if neither of the children of the first block are candidates.
1612
 */
1613
static struct block *
1614
fold_edge(struct block *child, struct edge *ep)
1615
5.86M
{
1616
5.86M
  int sense;
1617
5.86M
  bpf_u_int32 aval0, aval1, oval0, oval1;
1618
5.86M
  int code = ep->code;
1619
1620
5.86M
  if (code < 0) {
1621
    /*
1622
     * This edge is a "branch if false" edge.
1623
     */
1624
2.29M
    code = -code;
1625
2.29M
    sense = 0;
1626
3.57M
  } else {
1627
    /*
1628
     * This edge is a "branch if true" edge.
1629
     */
1630
3.57M
    sense = 1;
1631
3.57M
  }
1632
1633
  /*
1634
   * If the opcode for the branch at the end of the block we
1635
   * were handed isn't the same as the opcode for the branch
1636
   * to which the edge we were handed corresponds, the tests
1637
   * for those branches aren't testing the same conditions,
1638
   * so the blocks to which the first block branches aren't
1639
   * candidates to replace the successor of the edge.
1640
   */
1641
5.86M
  if (child->s.code != code)
1642
2.02M
    return 0;
1643
1644
3.84M
  aval0 = child->val[A_ATOM];
1645
3.84M
  oval0 = child->oval;
1646
3.84M
  aval1 = ep->pred->val[A_ATOM];
1647
3.84M
  oval1 = ep->pred->oval;
1648
1649
  /*
1650
   * If the A register value on exit from the successor block
1651
   * isn't the same as the A register value on exit from the
1652
   * predecessor of the edge, the blocks to which the first
1653
   * block branches aren't candidates to replace the successor
1654
   * of the edge.
1655
   */
1656
3.84M
  if (aval0 != aval1)
1657
2.56M
    return 0;
1658
1659
1.27M
  if (oval0 == oval1)
1660
    /*
1661
     * The operands of the branch instructions are
1662
     * identical, so the branches are testing the
1663
     * same condition, and the result is true if a true
1664
     * branch was taken to get here, otherwise false.
1665
     */
1666
551k
    return sense ? JT(child) : JF(child);
1667
1668
727k
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669
    /*
1670
     * At this point, we only know the comparison if we
1671
     * came down the true branch, and it was an equality
1672
     * comparison with a constant.
1673
     *
1674
     * I.e., if we came down the true branch, and the branch
1675
     * was an equality comparison with a constant, we know the
1676
     * accumulator contains that constant.  If we came down
1677
     * the false branch, or the comparison wasn't with a
1678
     * constant, we don't know what was in the accumulator.
1679
     *
1680
     * We rely on the fact that distinct constants have distinct
1681
     * value numbers.
1682
     */
1683
191k
    return JF(child);
1684
1685
535k
  return 0;
1686
727k
}
1687
1688
/*
1689
 * If we can make this edge go directly to a child of the edge's current
1690
 * successor, do so.
1691
 */
1692
static void
1693
opt_j(opt_state_t *opt_state, struct edge *ep)
1694
2.34M
{
1695
2.34M
  register u_int i, k;
1696
2.34M
  register struct block *target;
1697
1698
  /*
1699
   * Does this edge go to a block where, if the test
1700
   * at the end of it succeeds, it goes to a block
1701
   * that's a leaf node of the DAG, i.e. a return
1702
   * statement?
1703
   * If so, there's nothing to optimize.
1704
   */
1705
2.34M
  if (JT(ep->succ) == 0)
1706
767k
    return;
1707
1708
  /*
1709
   * Does this edge go to a block that goes, in turn, to
1710
   * the same block regardless of whether the test at the
1711
   * end succeeds or fails?
1712
   */
1713
1.58M
  if (JT(ep->succ) == JF(ep->succ)) {
1714
    /*
1715
     * Common branch targets can be eliminated, provided
1716
     * there is no data dependency.
1717
     *
1718
     * Check whether any register used on exit from the
1719
     * block to which the successor of this edge goes
1720
     * has a value at that point that's different from
1721
     * the value it has on exit from the predecessor of
1722
     * this edge.  If not, the predecessor of this edge
1723
     * can just go to the block to which the successor
1724
     * of this edge goes, bypassing the successor of this
1725
     * edge, as the successor of this edge isn't doing
1726
     * any calculations whose results are different
1727
     * from what the blocks before it did and isn't
1728
     * doing any tests the results of which matter.
1729
     */
1730
245k
    if (!use_conflict(ep->pred, JT(ep->succ))) {
1731
      /*
1732
       * No, there isn't.
1733
       * Make this edge go to the block to
1734
       * which the successor of that edge
1735
       * goes.
1736
       *
1737
       * XXX - optimizer loop detection.
1738
       */
1739
227k
      opt_state->non_branch_movement_performed = 1;
1740
227k
      opt_state->done = 0;
1741
227k
      ep->succ = JT(ep->succ);
1742
227k
    }
1743
245k
  }
1744
  /*
1745
   * For each edge dominator that matches the successor of this
1746
   * edge, promote the edge successor to the its grandchild.
1747
   *
1748
   * XXX We violate the set abstraction here in favor a reasonably
1749
   * efficient loop.
1750
   */
1751
2.12M
 top:
1752
10.3M
  for (i = 0; i < opt_state->edgewords; ++i) {
1753
    /* i'th word in the bitset of dominators */
1754
9.00M
    register bpf_u_int32 x = ep->edom[i];
1755
1756
14.1M
    while (x != 0) {
1757
      /* Find the next dominator in that word and mark it as found */
1758
5.86M
      k = lowest_set_bit(x);
1759
5.86M
      x &=~ ((bpf_u_int32)1 << k);
1760
5.86M
      k += i * BITS_PER_WORD;
1761
1762
5.86M
      target = fold_edge(ep->succ, opt_state->edges[k]);
1763
      /*
1764
       * We have a candidate to replace the successor
1765
       * of ep.
1766
       *
1767
       * Check that there is no data dependency between
1768
       * nodes that will be violated if we move the edge;
1769
       * i.e., if any register used on exit from the
1770
       * candidate has a value at that point different
1771
       * from the value it has when we exit the
1772
       * predecessor of that edge, there's a data
1773
       * dependency that will be violated.
1774
       */
1775
5.86M
      if (target != 0 && !use_conflict(ep->pred, target)) {
1776
        /*
1777
         * It's safe to replace the successor of
1778
         * ep; do so, and note that we've made
1779
         * at least one change.
1780
         *
1781
         * XXX - this is one of the operations that
1782
         * happens when the optimizer gets into
1783
         * one of those infinite loops.
1784
         */
1785
733k
        opt_state->done = 0;
1786
733k
        ep->succ = target;
1787
733k
        if (JT(target) != 0)
1788
          /*
1789
           * Start over unless we hit a leaf.
1790
           */
1791
545k
          goto top;
1792
188k
        return;
1793
733k
      }
1794
5.86M
    }
1795
9.00M
  }
1796
2.12M
}
1797
1798
/*
1799
 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800
 * "Predicate Assertion Propagation" in the BPF+ paper?
1801
 *
1802
 * Note that this looks at block dominators, not edge dominators.
1803
 * Don't think so.
1804
 *
1805
 * "A or B" compiles into
1806
 *
1807
 *          A
1808
 *       t / \ f
1809
 *        /   B
1810
 *       / t / \ f
1811
 *      \   /
1812
 *       \ /
1813
 *        X
1814
 *
1815
 *
1816
 */
1817
static void
1818
or_pullup(opt_state_t *opt_state, struct block *b)
1819
1.17M
{
1820
1.17M
  bpf_u_int32 val;
1821
1.17M
  int at_top;
1822
1.17M
  struct block *pull;
1823
1.17M
  struct block **diffp, **samep;
1824
1.17M
  struct edge *ep;
1825
1826
1.17M
  ep = b->in_edges;
1827
1.17M
  if (ep == 0)
1828
348k
    return;
1829
1830
  /*
1831
   * Make sure each predecessor loads the same value.
1832
   * XXX why?
1833
   */
1834
825k
  val = ep->pred->val[A_ATOM];
1835
942k
  for (ep = ep->next; ep != 0; ep = ep->next)
1836
248k
    if (val != ep->pred->val[A_ATOM])
1837
131k
      return;
1838
1839
  /*
1840
   * For the first edge in the list of edges coming into this block,
1841
   * see whether the predecessor of that edge comes here via a true
1842
   * branch or a false branch.
1843
   */
1844
694k
  if (JT(b->in_edges->pred) == b)
1845
387k
    diffp = &JT(b->in_edges->pred); /* jt */
1846
306k
  else
1847
306k
    diffp = &JF(b->in_edges->pred);  /* jf */
1848
1849
  /*
1850
   * diffp is a pointer to a pointer to the block.
1851
   *
1852
   * Go down the false chain looking as far as you can,
1853
   * making sure that each jump-compare is doing the
1854
   * same as the original block.
1855
   *
1856
   * If you reach the bottom before you reach a
1857
   * different jump-compare, just exit.  There's nothing
1858
   * to do here.  XXX - no, this version is checking for
1859
   * the value leaving the block; that's from the BPF+
1860
   * pullup routine.
1861
   */
1862
694k
  at_top = 1;
1863
975k
  for (;;) {
1864
    /*
1865
     * Done if that's not going anywhere XXX
1866
     */
1867
975k
    if (*diffp == 0)
1868
0
      return;
1869
1870
    /*
1871
     * Done if that predecessor blah blah blah isn't
1872
     * going the same place we're going XXX
1873
     *
1874
     * Does the true edge of this block point to the same
1875
     * location as the true edge of b?
1876
     */
1877
975k
    if (JT(*diffp) != JT(b))
1878
204k
      return;
1879
1880
    /*
1881
     * Done if this node isn't a dominator of that
1882
     * node blah blah blah XXX
1883
     *
1884
     * Does b dominate diffp?
1885
     */
1886
771k
    if (!SET_MEMBER((*diffp)->dom, b->id))
1887
3.60k
      return;
1888
1889
    /*
1890
     * Break out of the loop if that node's value of A
1891
     * isn't the value of A above XXX
1892
     */
1893
767k
    if ((*diffp)->val[A_ATOM] != val)
1894
485k
      break;
1895
1896
    /*
1897
     * Get the JF for that node XXX
1898
     * Go down the false path.
1899
     */
1900
281k
    diffp = &JF(*diffp);
1901
281k
    at_top = 0;
1902
281k
  }
1903
1904
  /*
1905
   * Now that we've found a different jump-compare in a chain
1906
   * below b, search further down until we find another
1907
   * jump-compare that looks at the original value.  This
1908
   * jump-compare should get pulled up.  XXX again we're
1909
   * comparing values not jump-compares.
1910
   */
1911
485k
  samep = &JF(*diffp);
1912
562k
  for (;;) {
1913
    /*
1914
     * Done if that's not going anywhere XXX
1915
     */
1916
562k
    if (*samep == 0)
1917
0
      return;
1918
1919
    /*
1920
     * Done if that predecessor blah blah blah isn't
1921
     * going the same place we're going XXX
1922
     */
1923
562k
    if (JT(*samep) != JT(b))
1924
457k
      return;
1925
1926
    /*
1927
     * Done if this node isn't a dominator of that
1928
     * node blah blah blah XXX
1929
     *
1930
     * Does b dominate samep?
1931
     */
1932
104k
    if (!SET_MEMBER((*samep)->dom, b->id))
1933
25.4k
      return;
1934
1935
    /*
1936
     * Break out of the loop if that node's value of A
1937
     * is the value of A above XXX
1938
     */
1939
79.4k
    if ((*samep)->val[A_ATOM] == val)
1940
2.86k
      break;
1941
1942
    /* XXX Need to check that there are no data dependencies
1943
       between dp0 and dp1.  Currently, the code generator
1944
       will not produce such dependencies. */
1945
76.6k
    samep = &JF(*samep);
1946
76.6k
  }
1947
#ifdef notdef
1948
  /* XXX This doesn't cover everything. */
1949
  for (i = 0; i < N_ATOMS; ++i)
1950
    if ((*samep)->val[i] != pred->val[i])
1951
      return;
1952
#endif
1953
  /* Pull up the node. */
1954
2.86k
  pull = *samep;
1955
2.86k
  *samep = JF(pull);
1956
2.86k
  JF(pull) = *diffp;
1957
1958
  /*
1959
   * At the top of the chain, each predecessor needs to point at the
1960
   * pulled up node.  Inside the chain, there is only one predecessor
1961
   * to worry about.
1962
   */
1963
2.86k
  if (at_top) {
1964
7.30k
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965
4.62k
      if (JT(ep->pred) == b)
1966
2.11k
        JT(ep->pred) = pull;
1967
2.51k
      else
1968
2.51k
        JF(ep->pred) = pull;
1969
4.62k
    }
1970
2.67k
  }
1971
186
  else
1972
186
    *diffp = pull;
1973
1974
  /*
1975
   * XXX - this is one of the operations that happens when the
1976
   * optimizer gets into one of those infinite loops.
1977
   */
1978
2.86k
  opt_state->done = 0;
1979
2.86k
}
1980
1981
static void
1982
and_pullup(opt_state_t *opt_state, struct block *b)
1983
1.17M
{
1984
1.17M
  bpf_u_int32 val;
1985
1.17M
  int at_top;
1986
1.17M
  struct block *pull;
1987
1.17M
  struct block **diffp, **samep;
1988
1.17M
  struct edge *ep;
1989
1990
1.17M
  ep = b->in_edges;
1991
1.17M
  if (ep == 0)
1992
348k
    return;
1993
1994
  /*
1995
   * Make sure each predecessor loads the same value.
1996
   */
1997
825k
  val = ep->pred->val[A_ATOM];
1998
942k
  for (ep = ep->next; ep != 0; ep = ep->next)
1999
248k
    if (val != ep->pred->val[A_ATOM])
2000
131k
      return;
2001
2002
694k
  if (JT(b->in_edges->pred) == b)
2003
387k
    diffp = &JT(b->in_edges->pred);
2004
306k
  else
2005
306k
    diffp = &JF(b->in_edges->pred);
2006
2007
694k
  at_top = 1;
2008
905k
  for (;;) {
2009
905k
    if (*diffp == 0)
2010
0
      return;
2011
2012
905k
    if (JF(*diffp) != JF(b))
2013
149k
      return;
2014
2015
756k
    if (!SET_MEMBER((*diffp)->dom, b->id))
2016
17.3k
      return;
2017
2018
738k
    if ((*diffp)->val[A_ATOM] != val)
2019
527k
      break;
2020
2021
211k
    diffp = &JT(*diffp);
2022
211k
    at_top = 0;
2023
211k
  }
2024
527k
  samep = &JT(*diffp);
2025
604k
  for (;;) {
2026
604k
    if (*samep == 0)
2027
0
      return;
2028
2029
604k
    if (JF(*samep) != JF(b))
2030
505k
      return;
2031
2032
99.1k
    if (!SET_MEMBER((*samep)->dom, b->id))
2033
19.7k
      return;
2034
2035
79.3k
    if ((*samep)->val[A_ATOM] == val)
2036
1.64k
      break;
2037
2038
    /* XXX Need to check that there are no data dependencies
2039
       between diffp and samep.  Currently, the code generator
2040
       will not produce such dependencies. */
2041
77.7k
    samep = &JT(*samep);
2042
77.7k
  }
2043
#ifdef notdef
2044
  /* XXX This doesn't cover everything. */
2045
  for (i = 0; i < N_ATOMS; ++i)
2046
    if ((*samep)->val[i] != pred->val[i])
2047
      return;
2048
#endif
2049
  /* Pull up the node. */
2050
1.64k
  pull = *samep;
2051
1.64k
  *samep = JT(pull);
2052
1.64k
  JT(pull) = *diffp;
2053
2054
  /*
2055
   * At the top of the chain, each predecessor needs to point at the
2056
   * pulled up node.  Inside the chain, there is only one predecessor
2057
   * to worry about.
2058
   */
2059
1.64k
  if (at_top) {
2060
3.61k
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061
1.99k
      if (JT(ep->pred) == b)
2062
996
        JT(ep->pred) = pull;
2063
1.00k
      else
2064
1.00k
        JF(ep->pred) = pull;
2065
1.99k
    }
2066
1.61k
  }
2067
23
  else
2068
23
    *diffp = pull;
2069
2070
  /*
2071
   * XXX - this is one of the operations that happens when the
2072
   * optimizer gets into one of those infinite loops.
2073
   */
2074
1.64k
  opt_state->done = 0;
2075
1.64k
}
2076
2077
static void
2078
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079
196k
{
2080
196k
  int i, maxlevel;
2081
196k
  struct block *p;
2082
2083
196k
  init_val(opt_state);
2084
196k
  maxlevel = ic->root->level;
2085
2086
196k
  find_inedges(opt_state, ic->root);
2087
1.81M
  for (i = maxlevel; i >= 0; --i)
2088
3.53M
    for (p = opt_state->levels[i]; p; p = p->link)
2089
1.91M
      opt_blk(opt_state, p, do_stmts);
2090
2091
196k
  if (do_stmts)
2092
    /*
2093
     * No point trying to move branches; it can't possibly
2094
     * make a difference at this point.
2095
     *
2096
     * XXX - this might be after we detect a loop where
2097
     * we were just looping infinitely moving branches
2098
     * in such a fashion that we went through two or more
2099
     * versions of the machine code, eventually returning
2100
     * to the first version.  (We're really not doing a
2101
     * full loop detection, we're just testing for two
2102
     * passes in a row where we do nothing but
2103
     * move branches.)
2104
     */
2105
81.8k
    return;
2106
2107
  /*
2108
   * Is this what the BPF+ paper describes in sections 6.1.1,
2109
   * 6.1.2, and 6.1.3?
2110
   */
2111
1.18M
  for (i = 1; i <= maxlevel; ++i) {
2112
2.24M
    for (p = opt_state->levels[i]; p; p = p->link) {
2113
1.17M
      opt_j(opt_state, &p->et);
2114
1.17M
      opt_j(opt_state, &p->ef);
2115
1.17M
    }
2116
1.06M
  }
2117
2118
114k
  find_inedges(opt_state, ic->root);
2119
1.18M
  for (i = 1; i <= maxlevel; ++i) {
2120
2.24M
    for (p = opt_state->levels[i]; p; p = p->link) {
2121
1.17M
      or_pullup(opt_state, p);
2122
1.17M
      and_pullup(opt_state, p);
2123
1.17M
    }
2124
1.06M
  }
2125
114k
}
2126
2127
static inline void
2128
link_inedge(struct edge *parent, struct block *child)
2129
5.53M
{
2130
5.53M
  parent->next = child->in_edges;
2131
5.53M
  child->in_edges = parent;
2132
5.53M
}
2133
2134
static void
2135
find_inedges(opt_state_t *opt_state, struct block *root)
2136
309k
{
2137
309k
  u_int i;
2138
309k
  int level;
2139
309k
  struct block *b;
2140
2141
6.19M
  for (i = 0; i < opt_state->n_blocks; ++i)
2142
5.88M
    opt_state->blocks[i]->in_edges = 0;
2143
2144
  /*
2145
   * Traverse the graph, adding each edge to the predecessor
2146
   * list of its successors.  Skip the leaves (i.e. level 0).
2147
   */
2148
2.80M
  for (level = root->level; level > 0; --level) {
2149
5.26M
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150
2.76M
      link_inedge(&b->et, JT(b));
2151
2.76M
      link_inedge(&b->ef, JF(b));
2152
2.76M
    }
2153
2.49M
  }
2154
309k
}
2155
2156
static void
2157
opt_root(struct block **b)
2158
37.2k
{
2159
37.2k
  struct slist *tmp, *s;
2160
2161
37.2k
  s = (*b)->stmts;
2162
37.2k
  (*b)->stmts = 0;
2163
62.5k
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164
25.2k
    *b = JT(*b);
2165
2166
37.2k
  tmp = (*b)->stmts;
2167
37.2k
  if (tmp != 0)
2168
5.45k
    sappend(s, tmp);
2169
37.2k
  (*b)->stmts = s;
2170
2171
  /*
2172
   * If the root node is a return, then there is no
2173
   * point executing any statements (since the bpf machine
2174
   * has no side effects).
2175
   */
2176
37.2k
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177
19.2k
    (*b)->stmts = 0;
2178
37.2k
}
2179
2180
static void
2181
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182
78.4k
{
2183
2184
#ifdef BDEBUG
2185
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186
    printf("opt_loop(root, %d) begin\n", do_stmts);
2187
    opt_dump(opt_state, ic);
2188
  }
2189
#endif
2190
2191
  /*
2192
   * XXX - optimizer loop detection.
2193
   */
2194
78.4k
  int loop_count = 0;
2195
196k
  for (;;) {
2196
196k
    opt_state->done = 1;
2197
    /*
2198
     * XXX - optimizer loop detection.
2199
     */
2200
196k
    opt_state->non_branch_movement_performed = 0;
2201
196k
    find_levels(opt_state, ic);
2202
196k
    find_dom(opt_state, ic->root);
2203
196k
    find_closure(opt_state, ic->root);
2204
196k
    find_ud(opt_state, ic->root);
2205
196k
    find_edom(opt_state, ic->root);
2206
196k
    opt_blks(opt_state, ic, do_stmts);
2207
#ifdef BDEBUG
2208
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210
      opt_dump(opt_state, ic);
2211
    }
2212
#endif
2213
2214
    /*
2215
     * Was anything done in this optimizer pass?
2216
     */
2217
196k
    if (opt_state->done) {
2218
      /*
2219
       * No, so we've reached a fixed point.
2220
       * We're done.
2221
       */
2222
76.4k
      break;
2223
76.4k
    }
2224
2225
    /*
2226
     * XXX - was anything done other than branch movement
2227
     * in this pass?
2228
     */
2229
120k
    if (opt_state->non_branch_movement_performed) {
2230
      /*
2231
       * Yes.  Clear any loop-detection counter;
2232
       * we're making some form of progress (assuming
2233
       * we can't get into a cycle doing *other*
2234
       * optimizations...).
2235
       */
2236
111k
      loop_count = 0;
2237
111k
    } else {
2238
      /*
2239
       * No - increment the counter, and quit if
2240
       * it's up to 100.
2241
       */
2242
8.61k
      loop_count++;
2243
8.61k
      if (loop_count >= 100) {
2244
        /*
2245
         * We've done nothing but branch movement
2246
         * for 100 passes; we're probably
2247
         * in a cycle and will never reach a
2248
         * fixed point.
2249
         *
2250
         * XXX - yes, we really need a non-
2251
         * heuristic way of detecting a cycle.
2252
         */
2253
0
        opt_state->done = 1;
2254
0
        break;
2255
0
      }
2256
8.61k
    }
2257
120k
  }
2258
78.4k
}
2259
2260
/*
2261
 * Optimize the filter code in its dag representation.
2262
 * Return 0 on success, -1 on error.
2263
 */
2264
int
2265
bpf_optimize(struct icode *ic, char *errbuf)
2266
39.2k
{
2267
39.2k
  opt_state_t opt_state;
2268
2269
39.2k
  memset(&opt_state, 0, sizeof(opt_state));
2270
39.2k
  opt_state.errbuf = errbuf;
2271
39.2k
  opt_state.non_branch_movement_performed = 0;
2272
39.2k
  if (setjmp(opt_state.top_ctx)) {
2273
1.94k
    opt_cleanup(&opt_state);
2274
1.94k
    return -1;
2275
1.94k
  }
2276
37.2k
  opt_init(&opt_state, ic);
2277
37.2k
  opt_loop(&opt_state, ic, 0);
2278
37.2k
  opt_loop(&opt_state, ic, 1);
2279
37.2k
  intern_blocks(&opt_state, ic);
2280
#ifdef BDEBUG
2281
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282
    printf("after intern_blocks()\n");
2283
    opt_dump(&opt_state, ic);
2284
  }
2285
#endif
2286
37.2k
  opt_root(&ic->root);
2287
#ifdef BDEBUG
2288
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289
    printf("after opt_root()\n");
2290
    opt_dump(&opt_state, ic);
2291
  }
2292
#endif
2293
37.2k
  opt_cleanup(&opt_state);
2294
37.2k
  return 0;
2295
39.2k
}
2296
2297
static void
2298
make_marks(struct icode *ic, struct block *p)
2299
886k
{
2300
886k
  if (!isMarked(ic, p)) {
2301
484k
    Mark(ic, p);
2302
484k
    if (BPF_CLASS(p->s.code) != BPF_RET) {
2303
421k
      make_marks(ic, JT(p));
2304
421k
      make_marks(ic, JF(p));
2305
421k
    }
2306
484k
  }
2307
886k
}
2308
2309
/*
2310
 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311
 * only for nodes that are alive.
2312
 */
2313
static void
2314
mark_code(struct icode *ic)
2315
42.9k
{
2316
42.9k
  ic->cur_mark += 1;
2317
42.9k
  make_marks(ic, ic->root);
2318
42.9k
}
2319
2320
/*
2321
 * True iff the two stmt lists load the same value from the packet into
2322
 * the accumulator.
2323
 */
2324
static int
2325
eq_slist(struct slist *x, struct slist *y)
2326
25.9k
{
2327
46.1k
  for (;;) {
2328
55.9k
    while (x && x->s.code == NOP)
2329
9.76k
      x = x->next;
2330
57.6k
    while (y && y->s.code == NOP)
2331
11.4k
      y = y->next;
2332
46.1k
    if (x == 0)
2333
15.1k
      return y == 0;
2334
31.0k
    if (y == 0)
2335
586
      return x == 0;
2336
30.4k
    if (x->s.code != y->s.code || x->s.k != y->s.k)
2337
10.2k
      return 0;
2338
20.2k
    x = x->next;
2339
20.2k
    y = y->next;
2340
20.2k
  }
2341
25.9k
}
2342
2343
static inline int
2344
eq_blk(struct block *b0, struct block *b1)
2345
13.5M
{
2346
13.5M
  if (b0->s.code == b1->s.code &&
2347
13.5M
      b0->s.k == b1->s.k &&
2348
13.5M
      b0->et.succ == b1->et.succ &&
2349
13.5M
      b0->ef.succ == b1->ef.succ)
2350
25.9k
    return eq_slist(b0->stmts, b1->stmts);
2351
13.5M
  return 0;
2352
13.5M
}
2353
2354
static void
2355
intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356
37.2k
{
2357
37.2k
  struct block *p;
2358
37.2k
  u_int i, j;
2359
37.2k
  int done1; /* don't shadow global */
2360
42.9k
 top:
2361
42.9k
  done1 = 1;
2362
1.20M
  for (i = 0; i < opt_state->n_blocks; ++i)
2363
1.16M
    opt_state->blocks[i]->link = 0;
2364
2365
42.9k
  mark_code(ic);
2366
2367
1.16M
  for (i = opt_state->n_blocks - 1; i != 0; ) {
2368
1.12M
    --i;
2369
1.12M
    if (!isMarked(ic, opt_state->blocks[i]))
2370
667k
      continue;
2371
22.2M
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372
21.8M
      if (!isMarked(ic, opt_state->blocks[j]))
2373
8.28M
        continue;
2374
13.5M
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375
14.6k
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376
9.21k
          opt_state->blocks[j]->link : opt_state->blocks[j];
2377
14.6k
        break;
2378
14.6k
      }
2379
13.5M
    }
2380
455k
  }
2381
1.20M
  for (i = 0; i < opt_state->n_blocks; ++i) {
2382
1.16M
    p = opt_state->blocks[i];
2383
1.16M
    if (JT(p) == 0)
2384
81.7k
      continue;
2385
1.08M
    if (JT(p)->link) {
2386
12.0k
      done1 = 0;
2387
12.0k
      JT(p) = JT(p)->link;
2388
12.0k
    }
2389
1.08M
    if (JF(p)->link) {
2390
10.8k
      done1 = 0;
2391
10.8k
      JF(p) = JF(p)->link;
2392
10.8k
    }
2393
1.08M
  }
2394
42.9k
  if (!done1)
2395
5.71k
    goto top;
2396
42.9k
}
2397
2398
static void
2399
opt_cleanup(opt_state_t *opt_state)
2400
39.2k
{
2401
39.2k
  free((void *)opt_state->vnode_base);
2402
39.2k
  free((void *)opt_state->vmap);
2403
39.2k
  free((void *)opt_state->edges);
2404
39.2k
  free((void *)opt_state->space);
2405
39.2k
  free((void *)opt_state->levels);
2406
39.2k
  free((void *)opt_state->blocks);
2407
39.2k
}
2408
2409
/*
2410
 * For optimizer errors.
2411
 */
2412
static void PCAP_NORETURN
2413
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414
1.94k
{
2415
1.94k
  va_list ap;
2416
2417
1.94k
  if (opt_state->errbuf != NULL) {
2418
1.94k
    va_start(ap, fmt);
2419
1.94k
    (void)vsnprintf(opt_state->errbuf,
2420
1.94k
        PCAP_ERRBUF_SIZE, fmt, ap);
2421
1.94k
    va_end(ap);
2422
1.94k
  }
2423
1.94k
  longjmp(opt_state->top_ctx, 1);
2424
  /* NOTREACHED */
2425
#ifdef _AIX
2426
  PCAP_UNREACHABLE
2427
#endif /* _AIX */
2428
1.94k
}
2429
2430
/*
2431
 * Return the number of stmts in 's'.
2432
 */
2433
static u_int
2434
slength(struct slist *s)
2435
2.88M
{
2436
2.88M
  u_int n = 0;
2437
2438
10.4M
  for (; s; s = s->next)
2439
7.60M
    if (s->s.code != NOP)
2440
6.82M
      ++n;
2441
2.88M
  return n;
2442
2.88M
}
2443
2444
/*
2445
 * Return the number of nodes reachable by 'p'.
2446
 * All nodes should be initially unmarked.
2447
 */
2448
static int
2449
count_blocks(struct icode *ic, struct block *p)
2450
1.40M
{
2451
1.40M
  if (p == 0 || isMarked(ic, p))
2452
724k
    return 0;
2453
685k
  Mark(ic, p);
2454
685k
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455
1.40M
}
2456
2457
/*
2458
 * Do a depth first search on the flow graph, numbering the
2459
 * the basic blocks, and entering them into the 'blocks' array.`
2460
 */
2461
static void
2462
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463
1.40M
{
2464
1.40M
  u_int n;
2465
2466
1.40M
  if (p == 0 || isMarked(ic, p))
2467
724k
    return;
2468
2469
685k
  Mark(ic, p);
2470
685k
  n = opt_state->n_blocks++;
2471
685k
  if (opt_state->n_blocks == 0) {
2472
    /*
2473
     * Overflow.
2474
     */
2475
0
    opt_error(opt_state, "filter is too complex to optimize");
2476
0
  }
2477
685k
  p->id = n;
2478
685k
  opt_state->blocks[n] = p;
2479
2480
685k
  number_blks_r(opt_state, ic, JT(p));
2481
685k
  number_blks_r(opt_state, ic, JF(p));
2482
685k
}
2483
2484
/*
2485
 * Return the number of stmts in the flowgraph reachable by 'p'.
2486
 * The nodes should be unmarked before calling.
2487
 *
2488
 * Note that "stmts" means "instructions", and that this includes
2489
 *
2490
 *  side-effect statements in 'p' (slength(p->stmts));
2491
 *
2492
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2493
 *
2494
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2495
 *
2496
 *  the conditional jump itself (1);
2497
 *
2498
 *  an extra long jump if the true branch requires it (p->longjt);
2499
 *
2500
 *  an extra long jump if the false branch requires it (p->longjf).
2501
 */
2502
static u_int
2503
count_stmts(struct icode *ic, struct block *p)
2504
2.51M
{
2505
2.51M
  u_int n;
2506
2507
2.51M
  if (p == 0 || isMarked(ic, p))
2508
1.27M
    return 0;
2509
1.23M
  Mark(ic, p);
2510
1.23M
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511
1.23M
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512
2.51M
}
2513
2514
/*
2515
 * Allocate memory.  All allocation is done before optimization
2516
 * is begun.  A linear bound on the size of all data structures is computed
2517
 * from the total number of blocks and/or statements.
2518
 */
2519
static void
2520
opt_init(opt_state_t *opt_state, struct icode *ic)
2521
39.2k
{
2522
39.2k
  bpf_u_int32 *p;
2523
39.2k
  int i, n, max_stmts;
2524
39.2k
  u_int product;
2525
39.2k
  size_t block_memsize, edge_memsize;
2526
2527
  /*
2528
   * First, count the blocks, so we can malloc an array to map
2529
   * block number to block.  Then, put the blocks into the array.
2530
   */
2531
39.2k
  unMarkAll(ic);
2532
39.2k
  n = count_blocks(ic, ic->root);
2533
39.2k
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534
39.2k
  if (opt_state->blocks == NULL)
2535
0
    opt_error(opt_state, "malloc");
2536
39.2k
  unMarkAll(ic);
2537
39.2k
  opt_state->n_blocks = 0;
2538
39.2k
  number_blks_r(opt_state, ic, ic->root);
2539
2540
  /*
2541
   * This "should not happen".
2542
   */
2543
39.2k
  if (opt_state->n_blocks == 0)
2544
0
    opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546
39.2k
  opt_state->n_edges = 2 * opt_state->n_blocks;
2547
39.2k
  if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548
    /*
2549
     * Overflow.
2550
     */
2551
0
    opt_error(opt_state, "filter is too complex to optimize");
2552
0
  }
2553
39.2k
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554
39.2k
  if (opt_state->edges == NULL) {
2555
0
    opt_error(opt_state, "malloc");
2556
0
  }
2557
2558
  /*
2559
   * The number of levels is bounded by the number of nodes.
2560
   */
2561
39.2k
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562
39.2k
  if (opt_state->levels == NULL) {
2563
0
    opt_error(opt_state, "malloc");
2564
0
  }
2565
2566
39.2k
  opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567
39.2k
  opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569
  /*
2570
   * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571
   * in a u_int; we use it as a u_int number-of-iterations
2572
   * value.
2573
   */
2574
39.2k
  product = opt_state->n_blocks * opt_state->nodewords;
2575
39.2k
  if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576
    /*
2577
     * XXX - just punt and don't try to optimize?
2578
     * In practice, this is unlikely to happen with
2579
     * a normal filter.
2580
     */
2581
0
    opt_error(opt_state, "filter is too complex to optimize");
2582
0
  }
2583
2584
  /*
2585
   * Make sure the total memory required for that doesn't
2586
   * overflow.
2587
   */
2588
39.2k
  block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589
39.2k
  if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590
0
    opt_error(opt_state, "filter is too complex to optimize");
2591
0
  }
2592
2593
  /*
2594
   * Make sure opt_state->n_edges * opt_state->edgewords fits
2595
   * in a u_int; we use it as a u_int number-of-iterations
2596
   * value.
2597
   */
2598
39.2k
  product = opt_state->n_edges * opt_state->edgewords;
2599
39.2k
  if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600
0
    opt_error(opt_state, "filter is too complex to optimize");
2601
0
  }
2602
2603
  /*
2604
   * Make sure the total memory required for that doesn't
2605
   * overflow.
2606
   */
2607
39.2k
  edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608
39.2k
  if (edge_memsize / product != sizeof(*opt_state->space)) {
2609
0
    opt_error(opt_state, "filter is too complex to optimize");
2610
0
  }
2611
2612
  /*
2613
   * Make sure the total memory required for both of them doesn't
2614
   * overflow.
2615
   */
2616
39.2k
  if (block_memsize > SIZE_MAX - edge_memsize) {
2617
0
    opt_error(opt_state, "filter is too complex to optimize");
2618
0
  }
2619
2620
  /* XXX */
2621
39.2k
  opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622
39.2k
  if (opt_state->space == NULL) {
2623
0
    opt_error(opt_state, "malloc");
2624
0
  }
2625
39.2k
  p = opt_state->space;
2626
39.2k
  opt_state->all_dom_sets = p;
2627
724k
  for (i = 0; i < n; ++i) {
2628
685k
    opt_state->blocks[i]->dom = p;
2629
685k
    p += opt_state->nodewords;
2630
685k
  }
2631
39.2k
  opt_state->all_closure_sets = p;
2632
724k
  for (i = 0; i < n; ++i) {
2633
685k
    opt_state->blocks[i]->closure = p;
2634
685k
    p += opt_state->nodewords;
2635
685k
  }
2636
39.2k
  opt_state->all_edge_sets = p;
2637
724k
  for (i = 0; i < n; ++i) {
2638
685k
    register struct block *b = opt_state->blocks[i];
2639
2640
685k
    b->et.edom = p;
2641
685k
    p += opt_state->edgewords;
2642
685k
    b->ef.edom = p;
2643
685k
    p += opt_state->edgewords;
2644
685k
    b->et.id = i;
2645
685k
    opt_state->edges[i] = &b->et;
2646
685k
    b->ef.id = opt_state->n_blocks + i;
2647
685k
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648
685k
    b->et.pred = b;
2649
685k
    b->ef.pred = b;
2650
685k
  }
2651
39.2k
  max_stmts = 0;
2652
724k
  for (i = 0; i < n; ++i)
2653
685k
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654
  /*
2655
   * We allocate at most 3 value numbers per statement,
2656
   * so this is an upper bound on the number of valnodes
2657
   * we'll need.
2658
   */
2659
39.2k
  opt_state->maxval = 3 * max_stmts;
2660
39.2k
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661
39.2k
  if (opt_state->vmap == NULL) {
2662
0
    opt_error(opt_state, "malloc");
2663
0
  }
2664
39.2k
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665
39.2k
  if (opt_state->vnode_base == NULL) {
2666
0
    opt_error(opt_state, "malloc");
2667
0
  }
2668
39.2k
}
2669
2670
/*
2671
 * This is only used when supporting optimizer debugging.  It is
2672
 * global state, so do *not* do more than one compile in parallel
2673
 * and expect it to provide meaningful information.
2674
 */
2675
#ifdef BDEBUG
2676
int bids[NBIDS];
2677
#endif
2678
2679
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680
    PCAP_PRINTFLIKE(2, 3);
2681
2682
/*
2683
 * Returns true if successful.  Returns false if a branch has
2684
 * an offset that is too large.  If so, we have marked that
2685
 * branch so that on a subsequent iteration, it will be treated
2686
 * properly.
2687
 */
2688
static int
2689
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690
2.13M
{
2691
2.13M
  struct bpf_insn *dst;
2692
2.13M
  struct slist *src;
2693
2.13M
  u_int slen;
2694
2.13M
  u_int off;
2695
2.13M
  struct slist **offset = NULL;
2696
2697
2.13M
  if (p == 0 || isMarked(ic, p))
2698
1.03M
    return (1);
2699
1.09M
  Mark(ic, p);
2700
2701
1.09M
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702
94.2k
    return (0);
2703
1.00M
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704
37.7k
    return (0);
2705
2706
964k
  slen = slength(p->stmts);
2707
964k
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708
    /* inflate length by any extra jumps */
2709
2710
964k
  p->offset = (int)(dst - conv_state->fstart);
2711
2712
  /* generate offset[] for convenience  */
2713
964k
  if (slen) {
2714
855k
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715
855k
    if (!offset) {
2716
0
      conv_error(conv_state, "not enough core");
2717
      /*NOTREACHED*/
2718
0
    }
2719
855k
  }
2720
964k
  src = p->stmts;
2721
3.03M
  for (off = 0; off < slen && src; off++) {
2722
#if 0
2723
    printf("off=%d src=%x\n", off, src);
2724
#endif
2725
2.06M
    offset[off] = src;
2726
2.06M
    src = src->next;
2727
2.06M
  }
2728
2729
964k
  off = 0;
2730
3.42M
  for (src = p->stmts; src; src = src->next) {
2731
2.45M
    if (src->s.code == NOP)
2732
390k
      continue;
2733
2.06M
    dst->code = (u_short)src->s.code;
2734
2.06M
    dst->k = src->s.k;
2735
2736
    /* fill block-local relative jump */
2737
2.06M
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738
#if 0
2739
      if (src->s.jt || src->s.jf) {
2740
        free(offset);
2741
        conv_error(conv_state, "illegal jmp destination");
2742
        /*NOTREACHED*/
2743
      }
2744
#endif
2745
2.04M
      goto filled;
2746
2.04M
    }
2747
21.9k
    if (off == slen - 2)  /*???*/
2748
0
      goto filled;
2749
2750
21.9k
      {
2751
21.9k
    u_int i;
2752
21.9k
    int jt, jf;
2753
21.9k
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755
#if 0
2756
    printf("code=%x off=%d %x %x\n", src->s.code,
2757
      off, src->s.jt, src->s.jf);
2758
#endif
2759
2760
21.9k
    if (!src->s.jt || !src->s.jf) {
2761
0
      free(offset);
2762
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2763
      /*NOTREACHED*/
2764
0
    }
2765
2766
21.9k
    jt = jf = 0;
2767
803k
    for (i = 0; i < slen; i++) {
2768
781k
      if (offset[i] == src->s.jt) {
2769
21.9k
        if (jt) {
2770
0
          free(offset);
2771
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2772
          /*NOTREACHED*/
2773
0
        }
2774
2775
21.9k
        if (i - off - 1 >= 256) {
2776
0
          free(offset);
2777
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2778
          /*NOTREACHED*/
2779
0
        }
2780
21.9k
        dst->jt = (u_char)(i - off - 1);
2781
21.9k
        jt++;
2782
21.9k
      }
2783
781k
      if (offset[i] == src->s.jf) {
2784
21.9k
        if (jf) {
2785
0
          free(offset);
2786
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2787
          /*NOTREACHED*/
2788
0
        }
2789
21.9k
        if (i - off - 1 >= 256) {
2790
0
          free(offset);
2791
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2792
          /*NOTREACHED*/
2793
0
        }
2794
21.9k
        dst->jf = (u_char)(i - off - 1);
2795
21.9k
        jf++;
2796
21.9k
      }
2797
781k
    }
2798
21.9k
    if (!jt || !jf) {
2799
0
      free(offset);
2800
0
      conv_error(conv_state, ljerr, "no destination found", off);
2801
      /*NOTREACHED*/
2802
0
    }
2803
21.9k
      }
2804
2.06M
filled:
2805
2.06M
    ++dst;
2806
2.06M
    ++off;
2807
2.06M
  }
2808
964k
  if (offset)
2809
855k
    free(offset);
2810
2811
#ifdef BDEBUG
2812
  if (dst - conv_state->fstart < NBIDS)
2813
    bids[dst - conv_state->fstart] = p->id + 1;
2814
#endif
2815
964k
  dst->code = (u_short)p->s.code;
2816
964k
  dst->k = p->s.k;
2817
964k
  if (JT(p)) {
2818
    /* number of extra jumps inserted */
2819
901k
    u_char extrajmps = 0;
2820
901k
    off = JT(p)->offset - (p->offset + slen) - 1;
2821
901k
    if (off >= 256) {
2822
        /* offset too large for branch, must add a jump */
2823
21.9k
        if (p->longjt == 0) {
2824
      /* mark this instruction and retry */
2825
1.84k
      p->longjt++;
2826
1.84k
      return(0);
2827
1.84k
        }
2828
20.1k
        dst->jt = extrajmps;
2829
20.1k
        extrajmps++;
2830
20.1k
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2831
20.1k
        dst[extrajmps].k = off - extrajmps;
2832
20.1k
    }
2833
879k
    else
2834
879k
        dst->jt = (u_char)off;
2835
899k
    off = JF(p)->offset - (p->offset + slen) - 1;
2836
899k
    if (off >= 256) {
2837
        /* offset too large for branch, must add a jump */
2838
44.3k
        if (p->longjf == 0) {
2839
      /* mark this instruction and retry */
2840
3.02k
      p->longjf++;
2841
3.02k
      return(0);
2842
3.02k
        }
2843
        /* branch if F to following jump */
2844
        /* if two jumps are inserted, F goes to second one */
2845
41.3k
        dst->jf = extrajmps;
2846
41.3k
        extrajmps++;
2847
41.3k
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2848
41.3k
        dst[extrajmps].k = off - extrajmps;
2849
41.3k
    }
2850
854k
    else
2851
854k
        dst->jf = (u_char)off;
2852
899k
  }
2853
959k
  return (1);
2854
964k
}
2855
2856
2857
/*
2858
 * Convert flowgraph intermediate representation to the
2859
 * BPF array representation.  Set *lenp to the number of instructions.
2860
 *
2861
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862
 * not* do free(fp) before returning fp; doing so would make no sense,
2863
 * as the BPF array pointed to by the return value of icode_to_fcode()
2864
 * must be valid - it's being returned for use in a bpf_program structure.
2865
 *
2866
 * If it appears that icode_to_fcode() is leaking, the problem is that
2867
 * the program using pcap_compile() is failing to free the memory in
2868
 * the BPF program when it's done - the leak is in the program, not in
2869
 * the routine that happens to be allocating the memory.  (By analogy, if
2870
 * a program calls fopen() without ever calling fclose() on the FILE *,
2871
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872
 * the program.)  Change the program to use pcap_freecode() when it's
2873
 * done with the filter program.  See the pcap man page.
2874
 */
2875
struct bpf_insn *
2876
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877
    char *errbuf)
2878
31.9k
{
2879
31.9k
  u_int n;
2880
31.9k
  struct bpf_insn *fp;
2881
31.9k
  conv_state_t conv_state;
2882
2883
31.9k
  conv_state.fstart = NULL;
2884
31.9k
  conv_state.errbuf = errbuf;
2885
31.9k
  if (setjmp(conv_state.top_ctx) != 0) {
2886
0
    free(conv_state.fstart);
2887
0
    return NULL;
2888
0
  }
2889
2890
  /*
2891
   * Loop doing convert_code_r() until no branches remain
2892
   * with too-large offsets.
2893
   */
2894
36.8k
  for (;;) {
2895
36.8k
      unMarkAll(ic);
2896
36.8k
      n = *lenp = count_stmts(ic, root);
2897
2898
36.8k
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899
36.8k
      if (fp == NULL) {
2900
0
    (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901
0
        "malloc");
2902
0
    return NULL;
2903
0
      }
2904
36.8k
      memset((char *)fp, 0, sizeof(*fp) * n);
2905
36.8k
      conv_state.fstart = fp;
2906
36.8k
      conv_state.ftail = fp + n;
2907
2908
36.8k
      unMarkAll(ic);
2909
36.8k
      if (convert_code_r(&conv_state, ic, root))
2910
31.9k
    break;
2911
4.86k
      free(fp);
2912
4.86k
  }
2913
2914
31.9k
  return fp;
2915
31.9k
}
2916
2917
/*
2918
 * For iconv_to_fconv() errors.
2919
 */
2920
static void PCAP_NORETURN
2921
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922
0
{
2923
0
  va_list ap;
2924
2925
0
  va_start(ap, fmt);
2926
0
  (void)vsnprintf(conv_state->errbuf,
2927
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2928
0
  va_end(ap);
2929
0
  longjmp(conv_state->top_ctx, 1);
2930
  /* NOTREACHED */
2931
#ifdef _AIX
2932
  PCAP_UNREACHABLE
2933
#endif /* _AIX */
2934
0
}
2935
2936
/*
2937
 * Make a copy of a BPF program and put it in the "fcode" member of
2938
 * a "pcap_t".
2939
 *
2940
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941
 * member of the "pcap_t" with an error message, and return -1;
2942
 * otherwise, return 0.
2943
 */
2944
int
2945
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946
0
{
2947
0
  size_t prog_size;
2948
2949
  /*
2950
   * Validate the program.
2951
   */
2952
0
  if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953
0
    snprintf(p->errbuf, sizeof(p->errbuf),
2954
0
      "BPF program is not valid");
2955
0
    return (-1);
2956
0
  }
2957
2958
  /*
2959
   * Free up any already installed program.
2960
   */
2961
0
  pcap_freecode(&p->fcode);
2962
2963
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964
0
  p->fcode.bf_len = fp->bf_len;
2965
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966
0
  if (p->fcode.bf_insns == NULL) {
2967
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968
0
        errno, "malloc");
2969
0
    return (-1);
2970
0
  }
2971
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972
0
  return (0);
2973
0
}
2974
2975
#ifdef BDEBUG
2976
static void
2977
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978
    FILE *out)
2979
{
2980
  int icount, noffset;
2981
  int i;
2982
2983
  if (block == NULL || isMarked(ic, block))
2984
    return;
2985
  Mark(ic, block);
2986
2987
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988
  noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990
  fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991
  for (i = block->offset; i < noffset; i++) {
2992
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993
  }
2994
  fprintf(out, "\" tooltip=\"");
2995
  for (i = 0; i < BPF_MEMWORDS; i++)
2996
    if (block->val[i] != VAL_UNKNOWN)
2997
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000
  fprintf(out, "\"");
3001
  if (JT(block) == NULL)
3002
    fprintf(out, ", peripheries=2");
3003
  fprintf(out, "];\n");
3004
3005
  dot_dump_node(ic, JT(block), prog, out);
3006
  dot_dump_node(ic, JF(block), prog, out);
3007
}
3008
3009
static void
3010
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011
{
3012
  if (block == NULL || isMarked(ic, block))
3013
    return;
3014
  Mark(ic, block);
3015
3016
  if (JT(block)) {
3017
    fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018
        block->id, JT(block)->id);
3019
    fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020
         block->id, JF(block)->id);
3021
  }
3022
  dot_dump_edge(ic, JT(block), out);
3023
  dot_dump_edge(ic, JF(block), out);
3024
}
3025
3026
/* Output the block CFG using graphviz/DOT language
3027
 * In the CFG, block's code, value index for each registers at EXIT,
3028
 * and the jump relationship is show.
3029
 *
3030
 * example DOT for BPF `ip src host 1.1.1.1' is:
3031
    digraph BPF {
3032
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
3033
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
3034
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036
      "block0":se -> "block1":n [label="T"];
3037
      "block0":sw -> "block3":n [label="F"];
3038
      "block1":se -> "block2":n [label="T"];
3039
      "block1":sw -> "block3":n [label="F"];
3040
    }
3041
 *
3042
 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044
 */
3045
static int
3046
dot_dump(struct icode *ic, char *errbuf)
3047
{
3048
  struct bpf_program f;
3049
  FILE *out = stdout;
3050
3051
  memset(bids, 0, sizeof bids);
3052
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053
  if (f.bf_insns == NULL)
3054
    return -1;
3055
3056
  fprintf(out, "digraph BPF {\n");
3057
  unMarkAll(ic);
3058
  dot_dump_node(ic, ic->root, &f, out);
3059
  unMarkAll(ic);
3060
  dot_dump_edge(ic, ic->root, out);
3061
  fprintf(out, "}\n");
3062
3063
  free((char *)f.bf_insns);
3064
  return 0;
3065
}
3066
3067
static int
3068
plain_dump(struct icode *ic, char *errbuf)
3069
{
3070
  struct bpf_program f;
3071
3072
  memset(bids, 0, sizeof bids);
3073
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074
  if (f.bf_insns == NULL)
3075
    return -1;
3076
  bpf_dump(&f, 1);
3077
  putchar('\n');
3078
  free((char *)f.bf_insns);
3079
  return 0;
3080
}
3081
3082
static void
3083
opt_dump(opt_state_t *opt_state, struct icode *ic)
3084
{
3085
  int status;
3086
  char errbuf[PCAP_ERRBUF_SIZE];
3087
3088
  /*
3089
   * If the CFG, in DOT format, is requested, output it rather than
3090
   * the code that would be generated from that graph.
3091
   */
3092
  if (pcap_print_dot_graph)
3093
    status = dot_dump(ic, errbuf);
3094
  else
3095
    status = plain_dump(ic, errbuf);
3096
  if (status == -1)
3097
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098
}
3099
#endif