Coverage Report

Created: 2023-09-28 22:20

/src/mbedtls/library/ecp.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  Elliptic curves over GF(p): generic functions
3
 *
4
 *  Copyright The Mbed TLS Contributors
5
 *  SPDX-License-Identifier: Apache-2.0
6
 *
7
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8
 *  not use this file except in compliance with the License.
9
 *  You may obtain a copy of the License at
10
 *
11
 *  http://www.apache.org/licenses/LICENSE-2.0
12
 *
13
 *  Unless required by applicable law or agreed to in writing, software
14
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
 *  See the License for the specific language governing permissions and
17
 *  limitations under the License.
18
 */
19
20
/*
21
 * References:
22
 *
23
 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
24
 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
25
 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
26
 * RFC 4492 for the related TLS structures and constants
27
 * RFC 7748 for the Curve448 and Curve25519 curve definitions
28
 *
29
 * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
30
 *
31
 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
32
 *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
33
 *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
34
 *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
35
 *
36
 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
37
 *     render ECC resistant against Side Channel Attacks. IACR Cryptology
38
 *     ePrint Archive, 2004, vol. 2004, p. 342.
39
 *     <http://eprint.iacr.org/2004/342.pdf>
40
 */
41
42
#include "common.h"
43
44
/**
45
 * \brief Function level alternative implementation.
46
 *
47
 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
48
 * replace certain functions in this module. The alternative implementations are
49
 * typically hardware accelerators and need to activate the hardware before the
50
 * computation starts and deactivate it after it finishes. The
51
 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
52
 * this purpose.
53
 *
54
 * To preserve the correct functionality the following conditions must hold:
55
 *
56
 * - The alternative implementation must be activated by
57
 *   mbedtls_internal_ecp_init() before any of the replaceable functions is
58
 *   called.
59
 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
60
 *   implementation is activated.
61
 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
62
 *   implementation is activated.
63
 * - Public functions must not return while the alternative implementation is
64
 *   activated.
65
 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
66
 *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
67
 *   \endcode ensures that the alternative implementation supports the current
68
 *   group.
69
 */
70
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
71
#endif
72
73
#if defined(MBEDTLS_ECP_C)
74
75
#include "mbedtls/ecp.h"
76
#include "mbedtls/threading.h"
77
#include "mbedtls/platform_util.h"
78
#include "mbedtls/error.h"
79
80
#include "bn_mul.h"
81
#include "ecp_invasive.h"
82
83
#include <string.h>
84
85
#if !defined(MBEDTLS_ECP_ALT)
86
87
#include "mbedtls/platform.h"
88
89
#include "ecp_internal_alt.h"
90
91
#if defined(MBEDTLS_SELF_TEST)
92
/*
93
 * Counts of point addition and doubling, and field multiplications.
94
 * Used to test resistance of point multiplication to simple timing attacks.
95
 */
96
static unsigned long add_count, dbl_count, mul_count;
97
#endif
98
99
#if defined(MBEDTLS_ECP_RESTARTABLE)
100
/*
101
 * Maximum number of "basic operations" to be done in a row.
102
 *
103
 * Default value 0 means that ECC operations will not yield.
104
 * Note that regardless of the value of ecp_max_ops, always at
105
 * least one step is performed before yielding.
106
 *
107
 * Setting ecp_max_ops=1 can be suitable for testing purposes
108
 * as it will interrupt computation at all possible points.
109
 */
110
static unsigned ecp_max_ops = 0;
111
112
/*
113
 * Set ecp_max_ops
114
 */
115
void mbedtls_ecp_set_max_ops(unsigned max_ops)
116
{
117
    ecp_max_ops = max_ops;
118
}
119
120
/*
121
 * Check if restart is enabled
122
 */
123
int mbedtls_ecp_restart_is_enabled(void)
124
{
125
    return ecp_max_ops != 0;
126
}
127
128
/*
129
 * Restart sub-context for ecp_mul_comb()
130
 */
131
struct mbedtls_ecp_restart_mul {
132
    mbedtls_ecp_point R;    /* current intermediate result                  */
133
    size_t i;               /* current index in various loops, 0 outside    */
134
    mbedtls_ecp_point *T;   /* table for precomputed points                 */
135
    unsigned char T_size;   /* number of points in table T                  */
136
    enum {                  /* what were we doing last time we returned?    */
137
        ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
138
        ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
139
        ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
140
        ecp_rsm_pre_add,        /* precompute remaining points by adding    */
141
        ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
142
        ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
143
        ecp_rsm_final_norm,     /* do the final normalization               */
144
    } state;
145
};
146
147
/*
148
 * Init restart_mul sub-context
149
 */
150
static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
151
{
152
    mbedtls_ecp_point_init(&ctx->R);
153
    ctx->i = 0;
154
    ctx->T = NULL;
155
    ctx->T_size = 0;
156
    ctx->state = ecp_rsm_init;
157
}
158
159
/*
160
 * Free the components of a restart_mul sub-context
161
 */
162
static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
163
{
164
    unsigned char i;
165
166
    if (ctx == NULL) {
167
        return;
168
    }
169
170
    mbedtls_ecp_point_free(&ctx->R);
171
172
    if (ctx->T != NULL) {
173
        for (i = 0; i < ctx->T_size; i++) {
174
            mbedtls_ecp_point_free(ctx->T + i);
175
        }
176
        mbedtls_free(ctx->T);
177
    }
178
179
    ecp_restart_rsm_init(ctx);
180
}
181
182
/*
183
 * Restart context for ecp_muladd()
184
 */
185
struct mbedtls_ecp_restart_muladd {
186
    mbedtls_ecp_point mP;       /* mP value                             */
187
    mbedtls_ecp_point R;        /* R intermediate result                */
188
    enum {                      /* what should we do next?              */
189
        ecp_rsma_mul1 = 0,      /* first multiplication                 */
190
        ecp_rsma_mul2,          /* second multiplication                */
191
        ecp_rsma_add,           /* addition                             */
192
        ecp_rsma_norm,          /* normalization                        */
193
    } state;
194
};
195
196
/*
197
 * Init restart_muladd sub-context
198
 */
199
static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
200
{
201
    mbedtls_ecp_point_init(&ctx->mP);
202
    mbedtls_ecp_point_init(&ctx->R);
203
    ctx->state = ecp_rsma_mul1;
204
}
205
206
/*
207
 * Free the components of a restart_muladd sub-context
208
 */
209
static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
210
{
211
    if (ctx == NULL) {
212
        return;
213
    }
214
215
    mbedtls_ecp_point_free(&ctx->mP);
216
    mbedtls_ecp_point_free(&ctx->R);
217
218
    ecp_restart_ma_init(ctx);
219
}
220
221
/*
222
 * Initialize a restart context
223
 */
224
void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
225
{
226
    ctx->ops_done = 0;
227
    ctx->depth = 0;
228
    ctx->rsm = NULL;
229
    ctx->ma = NULL;
230
}
231
232
/*
233
 * Free the components of a restart context
234
 */
235
void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
236
{
237
    if (ctx == NULL) {
238
        return;
239
    }
240
241
    ecp_restart_rsm_free(ctx->rsm);
242
    mbedtls_free(ctx->rsm);
243
244
    ecp_restart_ma_free(ctx->ma);
245
    mbedtls_free(ctx->ma);
246
247
    mbedtls_ecp_restart_init(ctx);
248
}
249
250
/*
251
 * Check if we can do the next step
252
 */
253
int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
254
                             mbedtls_ecp_restart_ctx *rs_ctx,
255
                             unsigned ops)
256
{
257
    if (rs_ctx != NULL && ecp_max_ops != 0) {
258
        /* scale depending on curve size: the chosen reference is 256-bit,
259
         * and multiplication is quadratic. Round to the closest integer. */
260
        if (grp->pbits >= 512) {
261
            ops *= 4;
262
        } else if (grp->pbits >= 384) {
263
            ops *= 2;
264
        }
265
266
        /* Avoid infinite loops: always allow first step.
267
         * Because of that, however, it's not generally true
268
         * that ops_done <= ecp_max_ops, so the check
269
         * ops_done > ecp_max_ops below is mandatory. */
270
        if ((rs_ctx->ops_done != 0) &&
271
            (rs_ctx->ops_done > ecp_max_ops ||
272
             ops > ecp_max_ops - rs_ctx->ops_done)) {
273
            return MBEDTLS_ERR_ECP_IN_PROGRESS;
274
        }
275
276
        /* update running count */
277
        rs_ctx->ops_done += ops;
278
    }
279
280
    return 0;
281
}
282
283
/* Call this when entering a function that needs its own sub-context */
284
#define ECP_RS_ENTER(SUB)   do {                                      \
285
        /* reset ops count for this call if top-level */                    \
286
        if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
287
        rs_ctx->ops_done = 0;                                           \
288
                                                                        \
289
        /* set up our own sub-context if needed */                          \
290
        if (mbedtls_ecp_restart_is_enabled() &&                             \
291
            rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
292
        {                                                                   \
293
            rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
294
            if (rs_ctx->SUB == NULL)                                       \
295
            return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
296
                                                                      \
297
            ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
298
        }                                                                   \
299
} while (0)
300
301
/* Call this when leaving a function that needs its own sub-context */
302
#define ECP_RS_LEAVE(SUB)   do {                                      \
303
        /* clear our sub-context when not in progress (done or error) */    \
304
        if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
305
            ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
306
        {                                                                   \
307
            ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
308
            mbedtls_free(rs_ctx->SUB);                                    \
309
            rs_ctx->SUB = NULL;                                             \
310
        }                                                                   \
311
                                                                        \
312
        if (rs_ctx != NULL)                                                \
313
        rs_ctx->depth--;                                                \
314
} while (0)
315
316
#else /* MBEDTLS_ECP_RESTARTABLE */
317
318
88
#define ECP_RS_ENTER(sub)     (void) rs_ctx;
319
88
#define ECP_RS_LEAVE(sub)     (void) rs_ctx;
320
321
#endif /* MBEDTLS_ECP_RESTARTABLE */
322
323
static void mpi_init_many(mbedtls_mpi *arr, size_t size)
324
220
{
325
1.18k
    while (size--) {
326
968
        mbedtls_mpi_init(arr++);
327
968
    }
328
220
}
329
330
static void mpi_free_many(mbedtls_mpi *arr, size_t size)
331
220
{
332
1.18k
    while (size--) {
333
968
        mbedtls_mpi_free(arr++);
334
968
    }
335
220
}
336
337
/*
338
 * List of supported curves:
339
 *  - internal ID
340
 *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
341
 *  - size in bits
342
 *  - readable name
343
 *
344
 * Curves are listed in order: largest curves first, and for a given size,
345
 * fastest curves first.
346
 *
347
 * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
348
 */
349
static const mbedtls_ecp_curve_info ecp_supported_curves[] =
350
{
351
#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
352
    { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
353
#endif
354
#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
355
    { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
356
#endif
357
#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
358
    { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
359
#endif
360
#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
361
    { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
362
#endif
363
#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
364
    { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
365
#endif
366
#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
367
    { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
368
#endif
369
#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
370
    { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
371
#endif
372
#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
373
    { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
374
#endif
375
#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
376
    { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
377
#endif
378
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
379
    { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
380
#endif
381
#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
382
    { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
383
#endif
384
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
385
    { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
386
#endif
387
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
388
    { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
389
#endif
390
    { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
391
};
392
393
#define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
394
    sizeof(ecp_supported_curves[0])
395
396
static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
397
398
/*
399
 * List of supported curves and associated info
400
 */
401
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
402
1.56k
{
403
1.56k
    return ecp_supported_curves;
404
1.56k
}
405
406
/*
407
 * List of supported curves, group ID only
408
 */
409
const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
410
0
{
411
0
    static int init_done = 0;
412
413
0
    if (!init_done) {
414
0
        size_t i = 0;
415
0
        const mbedtls_ecp_curve_info *curve_info;
416
417
0
        for (curve_info = mbedtls_ecp_curve_list();
418
0
             curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
419
0
             curve_info++) {
420
0
            ecp_supported_grp_id[i++] = curve_info->grp_id;
421
0
        }
422
0
        ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
423
424
0
        init_done = 1;
425
0
    }
426
427
0
    return ecp_supported_grp_id;
428
0
}
429
430
/*
431
 * Get the curve info for the internal identifier
432
 */
433
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
434
0
{
435
0
    const mbedtls_ecp_curve_info *curve_info;
436
437
0
    for (curve_info = mbedtls_ecp_curve_list();
438
0
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
439
0
         curve_info++) {
440
0
        if (curve_info->grp_id == grp_id) {
441
0
            return curve_info;
442
0
        }
443
0
    }
444
445
0
    return NULL;
446
0
}
447
448
/*
449
 * Get the curve info from the TLS identifier
450
 */
451
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
452
1.56k
{
453
1.56k
    const mbedtls_ecp_curve_info *curve_info;
454
455
1.56k
    for (curve_info = mbedtls_ecp_curve_list();
456
3.53k
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
457
3.51k
         curve_info++) {
458
3.51k
        if (curve_info->tls_id == tls_id) {
459
1.54k
            return curve_info;
460
1.54k
        }
461
3.51k
    }
462
463
20
    return NULL;
464
1.56k
}
465
466
/*
467
 * Get the curve info from the name
468
 */
469
const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
470
0
{
471
0
    const mbedtls_ecp_curve_info *curve_info;
472
473
0
    if (name == NULL) {
474
0
        return NULL;
475
0
    }
476
477
0
    for (curve_info = mbedtls_ecp_curve_list();
478
0
         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
479
0
         curve_info++) {
480
0
        if (strcmp(curve_info->name, name) == 0) {
481
0
            return curve_info;
482
0
        }
483
0
    }
484
485
0
    return NULL;
486
0
}
487
488
/*
489
 * Get the type of a curve
490
 */
491
mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
492
22.5k
{
493
22.5k
    if (grp->G.X.p == NULL) {
494
0
        return MBEDTLS_ECP_TYPE_NONE;
495
0
    }
496
497
22.5k
    if (grp->G.Y.p == NULL) {
498
66
        return MBEDTLS_ECP_TYPE_MONTGOMERY;
499
22.5k
    } else {
500
22.5k
        return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
501
22.5k
    }
502
22.5k
}
503
504
/*
505
 * Initialize (the components of) a point
506
 */
507
void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
508
21.6k
{
509
21.6k
    mbedtls_mpi_init(&pt->X);
510
21.6k
    mbedtls_mpi_init(&pt->Y);
511
21.6k
    mbedtls_mpi_init(&pt->Z);
512
21.6k
}
513
514
/*
515
 * Initialize (the components of) a group
516
 */
517
void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
518
12.9k
{
519
12.9k
    grp->id = MBEDTLS_ECP_DP_NONE;
520
12.9k
    mbedtls_mpi_init(&grp->P);
521
12.9k
    mbedtls_mpi_init(&grp->A);
522
12.9k
    mbedtls_mpi_init(&grp->B);
523
12.9k
    mbedtls_ecp_point_init(&grp->G);
524
12.9k
    mbedtls_mpi_init(&grp->N);
525
12.9k
    grp->pbits = 0;
526
12.9k
    grp->nbits = 0;
527
12.9k
    grp->h = 0;
528
12.9k
    grp->modp = NULL;
529
12.9k
    grp->t_pre = NULL;
530
12.9k
    grp->t_post = NULL;
531
12.9k
    grp->t_data = NULL;
532
12.9k
    grp->T = NULL;
533
12.9k
    grp->T_size = 0;
534
12.9k
}
535
536
/*
537
 * Initialize (the components of) a key pair
538
 */
539
void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
540
4.86k
{
541
4.86k
    mbedtls_ecp_group_init(&key->grp);
542
4.86k
    mbedtls_mpi_init(&key->d);
543
4.86k
    mbedtls_ecp_point_init(&key->Q);
544
4.86k
}
545
546
/*
547
 * Unallocate (the components of) a point
548
 */
549
void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
550
13.8k
{
551
13.8k
    if (pt == NULL) {
552
0
        return;
553
0
    }
554
555
13.8k
    mbedtls_mpi_free(&(pt->X));
556
13.8k
    mbedtls_mpi_free(&(pt->Y));
557
13.8k
    mbedtls_mpi_free(&(pt->Z));
558
13.8k
}
559
560
/*
561
 * Check that the comb table (grp->T) is static initialized.
562
 */
563
static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
564
11.6k
{
565
11.6k
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
566
11.6k
    return grp->T != NULL && grp->T_size == 0;
567
#else
568
    (void) grp;
569
    return 0;
570
#endif
571
11.6k
}
572
573
/*
574
 * Unallocate (the components of) a group
575
 */
576
void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
577
11.5k
{
578
11.5k
    size_t i;
579
580
11.5k
    if (grp == NULL) {
581
0
        return;
582
0
    }
583
584
11.5k
    if (grp->h != 1) {
585
6.57k
        mbedtls_mpi_free(&grp->A);
586
6.57k
        mbedtls_mpi_free(&grp->B);
587
6.57k
        mbedtls_ecp_point_free(&grp->G);
588
6.57k
    }
589
590
11.5k
    if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591
0
        for (i = 0; i < grp->T_size; i++) {
592
0
            mbedtls_ecp_point_free(&grp->T[i]);
593
0
        }
594
0
        mbedtls_free(grp->T);
595
0
    }
596
597
11.5k
    mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598
11.5k
}
599
600
/*
601
 * Unallocate (the components of) a key pair
602
 */
603
void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604
3.46k
{
605
3.46k
    if (key == NULL) {
606
0
        return;
607
0
    }
608
609
3.46k
    mbedtls_ecp_group_free(&key->grp);
610
3.46k
    mbedtls_mpi_free(&key->d);
611
3.46k
    mbedtls_ecp_point_free(&key->Q);
612
3.46k
}
613
614
/*
615
 * Copy the contents of a point
616
 */
617
int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618
292
{
619
292
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620
292
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621
292
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622
292
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623
624
292
cleanup:
625
292
    return ret;
626
292
}
627
628
/*
629
 * Copy the contents of a group object
630
 */
631
int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632
15
{
633
15
    return mbedtls_ecp_group_load(dst, src->id);
634
15
}
635
636
/*
637
 * Set point to zero
638
 */
639
int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640
45
{
641
45
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642
45
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643
45
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644
45
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645
646
45
cleanup:
647
45
    return ret;
648
45
}
649
650
/*
651
 * Tell if a point is zero
652
 */
653
int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654
44
{
655
44
    return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656
44
}
657
658
/*
659
 * Compare two points lazily
660
 */
661
int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662
                          const mbedtls_ecp_point *Q)
663
0
{
664
0
    if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665
0
        mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666
0
        mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667
0
        return 0;
668
0
    }
669
670
0
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671
0
}
672
673
/*
674
 * Import a non-zero point from ASCII strings
675
 */
676
int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677
                                  const char *x, const char *y)
678
0
{
679
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683
684
0
cleanup:
685
0
    return ret;
686
0
}
687
688
/*
689
 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690
 */
691
int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692
                                   const mbedtls_ecp_point *P,
693
                                   int format, size_t *olen,
694
                                   unsigned char *buf, size_t buflen)
695
44
{
696
44
    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697
44
    size_t plen;
698
44
    if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699
44
        format != MBEDTLS_ECP_PF_COMPRESSED) {
700
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701
0
    }
702
703
44
    plen = mbedtls_mpi_size(&grp->P);
704
705
44
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706
44
    (void) format; /* Montgomery curves always use the same point format */
707
44
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708
0
        *olen = plen;
709
0
        if (buflen < *olen) {
710
0
            return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711
0
        }
712
713
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714
0
    }
715
44
#endif
716
44
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717
44
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718
        /*
719
         * Common case: P == 0
720
         */
721
44
        if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722
0
            if (buflen < 1) {
723
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724
0
            }
725
726
0
            buf[0] = 0x00;
727
0
            *olen = 1;
728
729
0
            return 0;
730
0
        }
731
732
44
        if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733
44
            *olen = 2 * plen + 1;
734
735
44
            if (buflen < *olen) {
736
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737
0
            }
738
739
44
            buf[0] = 0x04;
740
44
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741
44
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742
44
        } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743
0
            *olen = plen + 1;
744
745
0
            if (buflen < *olen) {
746
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747
0
            }
748
749
0
            buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751
0
        }
752
44
    }
753
44
#endif
754
755
44
cleanup:
756
44
    return ret;
757
44
}
758
759
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760
static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761
                                   const mbedtls_mpi *X,
762
                                   mbedtls_mpi *Y,
763
                                   int parity_bit);
764
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765
766
/*
767
 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768
 */
769
int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770
                                  mbedtls_ecp_point *pt,
771
                                  const unsigned char *buf, size_t ilen)
772
6.30k
{
773
6.30k
    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774
6.30k
    size_t plen;
775
6.30k
    if (ilen < 1) {
776
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777
0
    }
778
779
6.30k
    plen = mbedtls_mpi_size(&grp->P);
780
781
6.30k
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782
6.30k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783
61
        if (plen != ilen) {
784
56
            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785
56
        }
786
787
5
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788
5
        mbedtls_mpi_free(&pt->Y);
789
790
5
        if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791
            /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792
3
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793
3
        }
794
795
5
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796
5
    }
797
6.25k
#endif
798
6.25k
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799
6.25k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800
6.24k
        if (buf[0] == 0x00) {
801
71
            if (ilen == 1) {
802
45
                return mbedtls_ecp_set_zero(pt);
803
45
            } else {
804
26
                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805
26
            }
806
71
        }
807
808
6.17k
        if (ilen < 1 + plen) {
809
32
            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810
32
        }
811
812
6.14k
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813
6.14k
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814
815
6.14k
        if (buf[0] == 0x04) {
816
            /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817
6.02k
            if (ilen != 1 + plen * 2) {
818
222
                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819
222
            }
820
5.80k
            return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821
6.02k
        } else if (buf[0] == 0x02 || buf[0] == 0x03) {
822
            /* format == MBEDTLS_ECP_PF_COMPRESSED */
823
56
            if (ilen != 1 + plen) {
824
52
                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825
52
            }
826
4
            return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827
4
                                           (buf[0] & 1));
828
61
        } else {
829
61
            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830
61
        }
831
6.14k
    }
832
5
#endif
833
834
5
cleanup:
835
5
    return ret;
836
6.25k
}
837
838
/*
839
 * Import a point from a TLS ECPoint record (RFC 4492)
840
 *      struct {
841
 *          opaque point <1..2^8-1>;
842
 *      } ECPoint;
843
 */
844
int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845
                               mbedtls_ecp_point *pt,
846
                               const unsigned char **buf, size_t buf_len)
847
1.54k
{
848
1.54k
    unsigned char data_len;
849
1.54k
    const unsigned char *buf_start;
850
    /*
851
     * We must have at least two bytes (1 for length, at least one for data)
852
     */
853
1.54k
    if (buf_len < 2) {
854
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855
0
    }
856
857
1.54k
    data_len = *(*buf)++;
858
1.54k
    if (data_len < 1 || data_len > buf_len - 1) {
859
30
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860
30
    }
861
862
    /*
863
     * Save buffer start for read_binary and update buf
864
     */
865
1.51k
    buf_start = *buf;
866
1.51k
    *buf += data_len;
867
868
1.51k
    return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869
1.54k
}
870
871
/*
872
 * Export a point as a TLS ECPoint record (RFC 4492)
873
 *      struct {
874
 *          opaque point <1..2^8-1>;
875
 *      } ECPoint;
876
 */
877
int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878
                                int format, size_t *olen,
879
                                unsigned char *buf, size_t blen)
880
44
{
881
44
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882
44
    if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883
44
        format != MBEDTLS_ECP_PF_COMPRESSED) {
884
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885
0
    }
886
887
    /*
888
     * buffer length must be at least one, for our length byte
889
     */
890
44
    if (blen < 1) {
891
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892
0
    }
893
894
44
    if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895
44
                                              olen, buf + 1, blen - 1)) != 0) {
896
0
        return ret;
897
0
    }
898
899
    /*
900
     * write length to the first byte and update total length
901
     */
902
44
    buf[0] = (unsigned char) *olen;
903
44
    ++*olen;
904
905
44
    return 0;
906
44
}
907
908
/*
909
 * Set a group from an ECParameters record (RFC 4492)
910
 */
911
int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912
                               const unsigned char **buf, size_t len)
913
0
{
914
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915
0
    mbedtls_ecp_group_id grp_id;
916
0
    if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917
0
        return ret;
918
0
    }
919
920
0
    return mbedtls_ecp_group_load(grp, grp_id);
921
0
}
922
923
/*
924
 * Read a group id from an ECParameters record (RFC 4492) and convert it to
925
 * mbedtls_ecp_group_id.
926
 */
927
int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928
                                  const unsigned char **buf, size_t len)
929
1.58k
{
930
1.58k
    uint16_t tls_id;
931
1.58k
    const mbedtls_ecp_curve_info *curve_info;
932
    /*
933
     * We expect at least three bytes (see below)
934
     */
935
1.58k
    if (len < 3) {
936
1
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937
1
    }
938
939
    /*
940
     * First byte is curve_type; only named_curve is handled
941
     */
942
1.58k
    if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943
23
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944
23
    }
945
946
    /*
947
     * Next two bytes are the namedcurve value
948
     */
949
1.56k
    tls_id = *(*buf)++;
950
1.56k
    tls_id <<= 8;
951
1.56k
    tls_id |= *(*buf)++;
952
953
1.56k
    if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
954
20
        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
955
20
    }
956
957
1.54k
    *grp = curve_info->grp_id;
958
959
1.54k
    return 0;
960
1.56k
}
961
962
/*
963
 * Write the ECParameters record corresponding to a group (RFC 4492)
964
 */
965
int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
966
                                unsigned char *buf, size_t blen)
967
0
{
968
0
    const mbedtls_ecp_curve_info *curve_info;
969
0
    if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
970
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
971
0
    }
972
973
    /*
974
     * We are going to write 3 bytes (see below)
975
     */
976
0
    *olen = 3;
977
0
    if (blen < *olen) {
978
0
        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
979
0
    }
980
981
    /*
982
     * First byte is curve_type, always named_curve
983
     */
984
0
    *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
985
986
    /*
987
     * Next two bytes are the namedcurve value
988
     */
989
0
    MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
990
991
0
    return 0;
992
0
}
993
994
/*
995
 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
996
 * See the documentation of struct mbedtls_ecp_group.
997
 *
998
 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
999
 */
1000
static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1001
256k
{
1002
256k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1003
1004
256k
    if (grp->modp == NULL) {
1005
0
        return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1006
0
    }
1007
1008
    /* N->s < 0 is a much faster test, which fails only if N is 0 */
1009
256k
    if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1010
256k
        mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1011
1
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1012
1
    }
1013
1014
256k
    MBEDTLS_MPI_CHK(grp->modp(N));
1015
1016
    /* N->s < 0 is a much faster test, which fails only if N is 0 */
1017
265k
    while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1018
8.58k
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1019
8.58k
    }
1020
1021
459k
    while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1022
        /* we known P, N and the result are positive */
1023
202k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1024
202k
    }
1025
1026
256k
cleanup:
1027
256k
    return ret;
1028
256k
}
1029
1030
/*
1031
 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1032
 *
1033
 * In order to guarantee that, we need to ensure that operands of
1034
 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1035
 * bring the result back to this range.
1036
 *
1037
 * The following macros are shortcuts for doing that.
1038
 */
1039
1040
/*
1041
 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1042
 */
1043
#if defined(MBEDTLS_SELF_TEST)
1044
256k
#define INC_MUL_COUNT   mul_count++;
1045
#else
1046
#define INC_MUL_COUNT
1047
#endif
1048
1049
#define MOD_MUL(N)                                                    \
1050
256k
    do                                                                  \
1051
256k
    {                                                                   \
1052
256k
        MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
1053
256k
        INC_MUL_COUNT                                                   \
1054
256k
    } while (0)
1055
1056
static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1057
                                      mbedtls_mpi *X,
1058
                                      const mbedtls_mpi *A,
1059
                                      const mbedtls_mpi *B)
1060
256k
{
1061
256k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1062
256k
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1063
256k
    MOD_MUL(*X);
1064
256k
cleanup:
1065
256k
    return ret;
1066
256k
}
1067
1068
/*
1069
 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1070
 * N->s < 0 is a very fast test, which fails only if N is 0
1071
 */
1072
#define MOD_SUB(N)                                                          \
1073
147k
    do {                                                                      \
1074
218k
        while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \
1075
147k
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \
1076
147k
    } while (0)
1077
1078
#if (defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1079
    !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1080
    defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1081
    defined(MBEDTLS_ECP_ADD_MIXED_ALT))) || \
1082
    (defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
1083
    !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1084
    defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)))
1085
static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1086
                                      mbedtls_mpi *X,
1087
                                      const mbedtls_mpi *A,
1088
                                      const mbedtls_mpi *B)
1089
142k
{
1090
142k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1091
142k
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1092
142k
    MOD_SUB(X);
1093
142k
cleanup:
1094
142k
    return ret;
1095
142k
}
1096
#endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
1097
1098
/*
1099
 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1100
 * We known P, N and the result are positive, so sub_abs is correct, and
1101
 * a bit faster.
1102
 */
1103
#define MOD_ADD(N)                                                   \
1104
210k
    while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \
1105
130k
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1106
1107
static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1108
                                      mbedtls_mpi *X,
1109
                                      const mbedtls_mpi *A,
1110
                                      const mbedtls_mpi *B)
1111
24.4k
{
1112
24.4k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1113
24.4k
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1114
24.4k
    MOD_ADD(X);
1115
24.4k
cleanup:
1116
24.4k
    return ret;
1117
24.4k
}
1118
1119
static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1120
                                          mbedtls_mpi *X,
1121
                                          const mbedtls_mpi *A,
1122
                                          mbedtls_mpi_uint c)
1123
19.7k
{
1124
19.7k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1125
1126
19.7k
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1127
19.7k
    MOD_ADD(X);
1128
19.7k
cleanup:
1129
19.7k
    return ret;
1130
19.7k
}
1131
1132
static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1133
                                          mbedtls_mpi *X,
1134
                                          const mbedtls_mpi *A,
1135
                                          mbedtls_mpi_uint c)
1136
4.72k
{
1137
4.72k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1138
1139
4.72k
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1140
4.72k
    MOD_SUB(X);
1141
4.72k
cleanup:
1142
4.72k
    return ret;
1143
4.72k
}
1144
1145
#define MPI_ECP_SUB_INT(X, A, c)             \
1146
4.72k
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1147
1148
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1149
    !(defined(MBEDTLS_ECP_NO_FALLBACK) && \
1150
    defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1151
    defined(MBEDTLS_ECP_ADD_MIXED_ALT))
1152
static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1153
                                          mbedtls_mpi *X,
1154
                                          size_t count)
1155
86.1k
{
1156
86.1k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1157
86.1k
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1158
86.1k
    MOD_ADD(X);
1159
86.1k
cleanup:
1160
86.1k
    return ret;
1161
86.1k
}
1162
#endif \
1163
    /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
1164
1165
/*
1166
 * Macro wrappers around ECP modular arithmetic
1167
 *
1168
 * Currently, these wrappers are defined via the bignum module.
1169
 */
1170
1171
#define MPI_ECP_ADD(X, A, B)                                                  \
1172
24.4k
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1173
1174
#define MPI_ECP_SUB(X, A, B)                                                  \
1175
142k
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1176
1177
#define MPI_ECP_MUL(X, A, B)                                                  \
1178
145k
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1179
1180
#define MPI_ECP_SQR(X, A)                                                     \
1181
111k
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1182
1183
#define MPI_ECP_MUL_INT(X, A, c)                                              \
1184
19.7k
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1185
1186
#define MPI_ECP_INV(dst, src)                                                 \
1187
176
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1188
1189
#define MPI_ECP_MOV(X, A)                                                     \
1190
66.6k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1191
1192
#define MPI_ECP_SHIFT_L(X, count)                                             \
1193
86.1k
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1194
1195
#define MPI_ECP_LSET(X, c)                                                    \
1196
7.65k
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1197
1198
#define MPI_ECP_CMP_INT(X, c)                                                 \
1199
29.4k
    mbedtls_mpi_cmp_int(X, c)
1200
1201
#define MPI_ECP_CMP(X, Y)                                                     \
1202
4.85k
    mbedtls_mpi_cmp_mpi(X, Y)
1203
1204
/* Needs f_rng, p_rng to be defined. */
1205
#define MPI_ECP_RAND(X)                                                       \
1206
176
    MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1207
1208
/* Conditional negation
1209
 * Needs grp and a temporary MPI tmp to be defined. */
1210
#define MPI_ECP_COND_NEG(X, cond)                                        \
1211
7.21k
    do                                                                     \
1212
7.21k
    {                                                                      \
1213
7.21k
        unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \
1214
7.21k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \
1215
7.21k
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \
1216
7.21k
                                                     nonzero & cond)); \
1217
7.21k
    } while (0)
1218
1219
0
#define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1220
1221
#define MPI_ECP_VALID(X)                      \
1222
7.34k
    ((X)->p != NULL)
1223
1224
#define MPI_ECP_COND_ASSIGN(X, Y, cond)       \
1225
251k
    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1226
1227
#define MPI_ECP_COND_SWAP(X, Y, cond)       \
1228
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1229
1230
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1231
1232
/*
1233
 * Computes the right-hand side of the Short Weierstrass equation
1234
 * RHS = X^3 + A X + B
1235
 */
1236
static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1237
                      mbedtls_mpi *rhs,
1238
                      const mbedtls_mpi *X)
1239
4.72k
{
1240
4.72k
    int ret;
1241
1242
    /* Compute X^3 + A X + B as X (X^2 + A) + B */
1243
4.72k
    MPI_ECP_SQR(rhs, X);
1244
1245
    /* Special case for A = -3 */
1246
4.72k
    if (grp->A.p == NULL) {
1247
4.72k
        MPI_ECP_SUB_INT(rhs, rhs, 3);
1248
4.72k
    } else {
1249
0
        MPI_ECP_ADD(rhs, rhs, &grp->A);
1250
0
    }
1251
1252
4.72k
    MPI_ECP_MUL(rhs, rhs, X);
1253
4.72k
    MPI_ECP_ADD(rhs, rhs, &grp->B);
1254
1255
4.72k
cleanup:
1256
4.72k
    return ret;
1257
4.72k
}
1258
1259
/*
1260
 * Derive Y from X and a parity bit
1261
 */
1262
static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1263
                                   const mbedtls_mpi *X,
1264
                                   mbedtls_mpi *Y,
1265
                                   int parity_bit)
1266
4
{
1267
    /* w = y^2 = x^3 + ax + b
1268
     * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)
1269
     *
1270
     * Note: this method for extracting square root does not validate that w
1271
     * was indeed a square so this function will return garbage in Y if X
1272
     * does not correspond to a point on the curve.
1273
     */
1274
1275
    /* Check prerequisite p = 3 mod 4 */
1276
4
    if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1277
4
        mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1278
0
        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1279
0
    }
1280
1281
4
    int ret;
1282
4
    mbedtls_mpi exp;
1283
4
    mbedtls_mpi_init(&exp);
1284
1285
    /* use Y to store intermediate result, actually w above */
1286
4
    MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1287
1288
    /* w = y^2 */ /* Y contains y^2 intermediate result */
1289
    /* exp = ((p+1)/4) */
1290
3
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1291
3
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1292
    /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */
1293
3
    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1294
1295
    /* check parity bit match or else invert Y */
1296
    /* This quick inversion implementation is valid because Y != 0 for all
1297
     * Short Weierstrass curves supported by mbedtls, as each supported curve
1298
     * has an order that is a large prime, so each supported curve does not
1299
     * have any point of order 2, and a point with Y == 0 would be of order 2 */
1300
3
    if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1301
1
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1302
1
    }
1303
1304
4
cleanup:
1305
1306
4
    mbedtls_mpi_free(&exp);
1307
4
    return ret;
1308
3
}
1309
1310
/*
1311
 * For curves in short Weierstrass form, we do all the internal operations in
1312
 * Jacobian coordinates.
1313
 *
1314
 * For multiplication, we'll use a comb method with countermeasures against
1315
 * SPA, hence timing attacks.
1316
 */
1317
1318
/*
1319
 * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1320
 * Cost: 1N := 1I + 3M + 1S
1321
 */
1322
static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1323
88
{
1324
88
    if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1325
0
        return 0;
1326
0
    }
1327
1328
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1329
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1330
        return mbedtls_internal_ecp_normalize_jac(grp, pt);
1331
    }
1332
#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1333
1334
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1335
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1336
#else
1337
88
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1338
88
    mbedtls_mpi T;
1339
88
    mbedtls_mpi_init(&T);
1340
1341
88
    MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */
1342
88
    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */
1343
88
    MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */
1344
88
    MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */
1345
88
    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */
1346
1347
88
    MPI_ECP_LSET(&pt->Z, 1);
1348
1349
88
cleanup:
1350
1351
88
    mbedtls_mpi_free(&T);
1352
1353
88
    return ret;
1354
88
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1355
88
}
1356
1357
/*
1358
 * Normalize jacobian coordinates of an array of (pointers to) points,
1359
 * using Montgomery's trick to perform only one inversion mod P.
1360
 * (See for example Cohen's "A Course in Computational Algebraic Number
1361
 * Theory", Algorithm 10.3.4.)
1362
 *
1363
 * Warning: fails (returning an error) if one of the points is zero!
1364
 * This should never happen, see choice of w in ecp_mul_comb().
1365
 *
1366
 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1367
 */
1368
static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1369
                                  mbedtls_ecp_point *T[], size_t T_size)
1370
88
{
1371
88
    if (T_size < 2) {
1372
0
        return ecp_normalize_jac(grp, *T);
1373
0
    }
1374
1375
#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1376
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1377
        return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1378
    }
1379
#endif
1380
1381
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1382
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1383
#else
1384
88
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1385
88
    size_t i;
1386
88
    mbedtls_mpi *c, t;
1387
1388
88
    if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1389
0
        return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1390
0
    }
1391
1392
88
    mbedtls_mpi_init(&t);
1393
1394
88
    mpi_init_many(c, T_size);
1395
    /*
1396
     * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1
1397
     */
1398
88
    MPI_ECP_MOV(&c[0], &T[0]->Z);
1399
440
    for (i = 1; i < T_size; i++) {
1400
352
        MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1401
352
    }
1402
1403
    /*
1404
     * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1405
     */
1406
88
    MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1407
1408
440
    for (i = T_size - 1;; i--) {
1409
        /* At the start of iteration i (note that i decrements), we have
1410
         * - c[j] = Z_0 * .... * Z_j        for j  < i,
1411
         * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,
1412
         *
1413
         * This is maintained via
1414
         * - c[i-1] <- c[i] * Z_i
1415
         *
1416
         * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1417
         * to do the actual normalization. For i==0, we already have
1418
         * c[0] = 1 / Z_0.
1419
         */
1420
1421
440
        if (i > 0) {
1422
            /* Compute 1/Z_i and establish invariant for the next iteration. */
1423
352
            MPI_ECP_MUL(&t,      &c[i], &c[i-1]);
1424
352
            MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1425
352
        } else {
1426
88
            MPI_ECP_MOV(&t, &c[0]);
1427
88
        }
1428
1429
        /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1430
440
        MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1431
440
        MPI_ECP_SQR(&t,       &t);
1432
440
        MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1433
440
        MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1434
1435
        /*
1436
         * Post-precessing: reclaim some memory by shrinking coordinates
1437
         * - not storing Z (always 1)
1438
         * - shrinking other coordinates, but still keeping the same number of
1439
         *   limbs as P, as otherwise it will too likely be regrown too fast.
1440
         */
1441
440
        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1442
440
        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1443
1444
440
        MPI_ECP_LSET(&T[i]->Z, 1);
1445
1446
440
        if (i == 0) {
1447
88
            break;
1448
88
        }
1449
440
    }
1450
1451
88
cleanup:
1452
1453
88
    mbedtls_mpi_free(&t);
1454
88
    mpi_free_many(c, T_size);
1455
88
    mbedtls_free(c);
1456
1457
88
    return ret;
1458
88
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1459
88
}
1460
1461
/*
1462
 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1463
 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1464
 */
1465
static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1466
                               mbedtls_ecp_point *Q,
1467
                               unsigned char inv)
1468
7.21k
{
1469
7.21k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1470
7.21k
    mbedtls_mpi tmp;
1471
7.21k
    mbedtls_mpi_init(&tmp);
1472
1473
7.21k
    MPI_ECP_COND_NEG(&Q->Y, inv);
1474
1475
7.21k
cleanup:
1476
7.21k
    mbedtls_mpi_free(&tmp);
1477
7.21k
    return ret;
1478
7.21k
}
1479
1480
/*
1481
 * Point doubling R = 2 P, Jacobian coordinates
1482
 *
1483
 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1484
 *
1485
 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1486
 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1487
 *
1488
 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1489
 *
1490
 * Cost: 1D := 3M + 4S          (A ==  0)
1491
 *             4M + 4S          (A == -3)
1492
 *             3M + 6S + 1a     otherwise
1493
 */
1494
static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1495
                          const mbedtls_ecp_point *P,
1496
                          mbedtls_mpi tmp[4])
1497
19.7k
{
1498
19.7k
#if defined(MBEDTLS_SELF_TEST)
1499
19.7k
    dbl_count++;
1500
19.7k
#endif
1501
1502
#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1503
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1504
        return mbedtls_internal_ecp_double_jac(grp, R, P);
1505
    }
1506
#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1507
1508
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1509
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1510
#else
1511
19.7k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1512
1513
    /* Special case for A = -3 */
1514
19.7k
    if (grp->A.p == NULL) {
1515
        /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1516
19.7k
        MPI_ECP_SQR(&tmp[1],  &P->Z);
1517
19.7k
        MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);
1518
19.7k
        MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);
1519
19.7k
        MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);
1520
19.7k
        MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);
1521
19.7k
    } else {
1522
        /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1523
0
        MPI_ECP_SQR(&tmp[1],  &P->X);
1524
0
        MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);
1525
1526
        /* Optimize away for "koblitz" curves with A = 0 */
1527
0
        if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1528
            /* M += A.Z^4 */
1529
0
            MPI_ECP_SQR(&tmp[1],  &P->Z);
1530
0
            MPI_ECP_SQR(&tmp[2],  &tmp[1]);
1531
0
            MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);
1532
0
            MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);
1533
0
        }
1534
0
    }
1535
1536
    /* tmp[1] <- S = 4.X.Y^2 */
1537
19.7k
    MPI_ECP_SQR(&tmp[2],  &P->Y);
1538
19.7k
    MPI_ECP_SHIFT_L(&tmp[2],  1);
1539
19.7k
    MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);
1540
19.7k
    MPI_ECP_SHIFT_L(&tmp[1],  1);
1541
1542
    /* tmp[3] <- U = 8.Y^4 */
1543
19.7k
    MPI_ECP_SQR(&tmp[3],  &tmp[2]);
1544
19.7k
    MPI_ECP_SHIFT_L(&tmp[3],  1);
1545
1546
    /* tmp[2] <- T = M^2 - 2.S */
1547
19.7k
    MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1548
19.7k
    MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1549
19.7k
    MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1550
1551
    /* tmp[1] <- S = M(S - T) - U */
1552
19.7k
    MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);
1553
19.7k
    MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);
1554
19.7k
    MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);
1555
1556
    /* tmp[3] <- U = 2.Y.Z */
1557
19.7k
    MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);
1558
19.7k
    MPI_ECP_SHIFT_L(&tmp[3],  1);
1559
1560
    /* Store results */
1561
19.7k
    MPI_ECP_MOV(&R->X, &tmp[2]);
1562
19.7k
    MPI_ECP_MOV(&R->Y, &tmp[1]);
1563
19.7k
    MPI_ECP_MOV(&R->Z, &tmp[3]);
1564
1565
19.7k
cleanup:
1566
1567
19.7k
    return ret;
1568
19.7k
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1569
19.7k
}
1570
1571
/*
1572
 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1573
 *
1574
 * The coordinates of Q must be normalized (= affine),
1575
 * but those of P don't need to. R is not normalized.
1576
 *
1577
 * P,Q,R may alias, but only at the level of EC points: they must be either
1578
 * equal as pointers, or disjoint (including the coordinate data buffers).
1579
 * Fine-grained aliasing at the level of coordinates is not supported.
1580
 *
1581
 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1582
 * None of these cases can happen as intermediate step in ecp_mul_comb():
1583
 * - at each step, P, Q and R are multiples of the base point, the factor
1584
 *   being less than its order, so none of them is zero;
1585
 * - Q is an odd multiple of the base point, P an even multiple,
1586
 *   due to the choice of precomputed points in the modified comb method.
1587
 * So branches for these cases do not leak secret information.
1588
 *
1589
 * Cost: 1A := 8M + 3S
1590
 */
1591
static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1592
                         const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1593
                         mbedtls_mpi tmp[4])
1594
7.34k
{
1595
7.34k
#if defined(MBEDTLS_SELF_TEST)
1596
7.34k
    add_count++;
1597
7.34k
#endif
1598
1599
#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1600
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1601
        return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1602
    }
1603
#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1604
1605
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1606
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1607
#else
1608
7.34k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1609
1610
    /* NOTE: Aliasing between input and output is allowed, so one has to make
1611
     *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1612
     *       longer read from. */
1613
7.34k
    mbedtls_mpi * const X = &R->X;
1614
7.34k
    mbedtls_mpi * const Y = &R->Y;
1615
7.34k
    mbedtls_mpi * const Z = &R->Z;
1616
1617
7.34k
    if (!MPI_ECP_VALID(&Q->Z)) {
1618
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1619
0
    }
1620
1621
    /*
1622
     * Trivial cases: P == 0 or Q == 0 (case 1)
1623
     */
1624
7.34k
    if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1625
0
        return mbedtls_ecp_copy(R, Q);
1626
0
    }
1627
1628
7.34k
    if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1629
0
        return mbedtls_ecp_copy(R, P);
1630
0
    }
1631
1632
    /*
1633
     * Make sure Q coordinates are normalized
1634
     */
1635
7.34k
    if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1636
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1637
0
    }
1638
1639
7.34k
    MPI_ECP_SQR(&tmp[0], &P->Z);
1640
7.34k
    MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1641
7.34k
    MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1642
7.34k
    MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1643
7.34k
    MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1644
7.34k
    MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1645
1646
    /* Special cases (2) and (3) */
1647
7.34k
    if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1648
0
        if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1649
0
            ret = ecp_double_jac(grp, R, P, tmp);
1650
0
            goto cleanup;
1651
0
        } else {
1652
0
            ret = mbedtls_ecp_set_zero(R);
1653
0
            goto cleanup;
1654
0
        }
1655
0
    }
1656
1657
    /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1658
7.34k
    MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);
1659
7.34k
    MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1660
7.34k
    MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);
1661
7.34k
    MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);
1662
1663
7.34k
    MPI_ECP_MOV(&tmp[0], &tmp[2]);
1664
7.34k
    MPI_ECP_SHIFT_L(&tmp[0], 1);
1665
1666
    /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1667
7.34k
    MPI_ECP_SQR(X,        &tmp[1]);
1668
7.34k
    MPI_ECP_SUB(X,        X,        &tmp[0]);
1669
7.34k
    MPI_ECP_SUB(X,        X,        &tmp[3]);
1670
7.34k
    MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);
1671
7.34k
    MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);
1672
7.34k
    MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);
1673
    /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1674
7.34k
    MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);
1675
1676
7.34k
cleanup:
1677
1678
7.34k
    return ret;
1679
7.34k
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1680
7.34k
}
1681
1682
/*
1683
 * Randomize jacobian coordinates:
1684
 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1685
 * This is sort of the reverse operation of ecp_normalize_jac().
1686
 *
1687
 * This countermeasure was first suggested in [2].
1688
 */
1689
static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1690
                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1691
176
{
1692
#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1693
    if (mbedtls_internal_ecp_grp_capable(grp)) {
1694
        return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1695
    }
1696
#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1697
1698
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1699
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1700
#else
1701
176
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1702
176
    mbedtls_mpi l;
1703
1704
176
    mbedtls_mpi_init(&l);
1705
1706
    /* Generate l such that 1 < l < p */
1707
176
    MPI_ECP_RAND(&l);
1708
1709
    /* Z' = l * Z */
1710
176
    MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);
1711
1712
    /* Y' = l * Y */
1713
176
    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1714
1715
    /* X' = l^2 * X */
1716
176
    MPI_ECP_SQR(&l,       &l);
1717
176
    MPI_ECP_MUL(&pt->X,   &pt->X,     &l);
1718
1719
    /* Y'' = l^2 * Y' = l^3 * Y */
1720
176
    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1721
1722
176
cleanup:
1723
176
    mbedtls_mpi_free(&l);
1724
1725
176
    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1726
0
        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1727
0
    }
1728
176
    return ret;
1729
176
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1730
176
}
1731
1732
/*
1733
 * Check and define parameters used by the comb method (see below for details)
1734
 */
1735
#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1736
#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1737
#endif
1738
1739
/* d = ceil( n / w ) */
1740
#define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
1741
1742
/* number of precomputed points */
1743
#define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1744
1745
/*
1746
 * Compute the representation of m that will be used with our comb method.
1747
 *
1748
 * The basic comb method is described in GECC 3.44 for example. We use a
1749
 * modified version that provides resistance to SPA by avoiding zero
1750
 * digits in the representation as in [3]. We modify the method further by
1751
 * requiring that all K_i be odd, which has the small cost that our
1752
 * representation uses one more K_i, due to carries, but saves on the size of
1753
 * the precomputed table.
1754
 *
1755
 * Summary of the comb method and its modifications:
1756
 *
1757
 * - The goal is to compute m*P for some w*d-bit integer m.
1758
 *
1759
 * - The basic comb method splits m into the w-bit integers
1760
 *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1761
 *   index has residue i modulo d, and computes m * P as
1762
 *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1763
 *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1764
 *
1765
 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1766
 *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1767
 *   thereby successively converting it into a form where all summands
1768
 *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1769
 *
1770
 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1771
 *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1772
 *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1773
 *   Performing and iterating this procedure for those x[i] that are even
1774
 *   (keeping track of carry), we can transform the original sum into one of the form
1775
 *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1776
 *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1777
 *   which is why we are only computing half of it in the first place in
1778
 *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1779
 *
1780
 * - For the sake of compactness, only the seven low-order bits of x[i]
1781
 *   are used to represent its absolute value (K_i in the paper), and the msb
1782
 *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1783
 *   if s_i == -1;
1784
 *
1785
 * Calling conventions:
1786
 * - x is an array of size d + 1
1787
 * - w is the size, ie number of teeth, of the comb, and must be between
1788
 *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1789
 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1790
 *   (the result will be incorrect if these assumptions are not satisfied)
1791
 */
1792
static void ecp_comb_recode_core(unsigned char x[], size_t d,
1793
                                 unsigned char w, const mbedtls_mpi *m)
1794
88
{
1795
88
    size_t i, j;
1796
88
    unsigned char c, cc, adjust;
1797
1798
88
    memset(x, 0, d+1);
1799
1800
    /* First get the classical comb values (except for x_d = 0) */
1801
7.12k
    for (i = 0; i < d; i++) {
1802
40.8k
        for (j = 0; j < w; j++) {
1803
33.7k
            x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1804
33.7k
        }
1805
7.04k
    }
1806
1807
    /* Now make sure x_1 .. x_d are odd */
1808
88
    c = 0;
1809
7.12k
    for (i = 1; i <= d; i++) {
1810
        /* Add carry and update it */
1811
7.04k
        cc   = x[i] & c;
1812
7.04k
        x[i] = x[i] ^ c;
1813
7.04k
        c = cc;
1814
1815
        /* Adjust if needed, avoiding branches */
1816
7.04k
        adjust = 1 - (x[i] & 0x01);
1817
7.04k
        c   |= x[i] & (x[i-1] * adjust);
1818
7.04k
        x[i] = x[i] ^ (x[i-1] * adjust);
1819
7.04k
        x[i-1] |= adjust << 7;
1820
7.04k
    }
1821
88
}
1822
1823
/*
1824
 * Precompute points for the adapted comb method
1825
 *
1826
 * Assumption: T must be able to hold 2^{w - 1} elements.
1827
 *
1828
 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1829
 *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1830
 *
1831
 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1832
 *
1833
 * Note: Even comb values (those where P would be omitted from the
1834
 *       sum defining T[i] above) are not needed in our adaption
1835
 *       the comb method. See ecp_comb_recode_core().
1836
 *
1837
 * This function currently works in four steps:
1838
 * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1839
 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1840
 * (3) [add]      Computation of all T[i]
1841
 * (4) [norm_add] Normalization of all T[i]
1842
 *
1843
 * Step 1 can be interrupted but not the others; together with the final
1844
 * coordinate normalization they are the largest steps done at once, depending
1845
 * on the window size. Here are operation counts for P-256:
1846
 *
1847
 * step     (2)     (3)     (4)
1848
 * w = 5    142     165     208
1849
 * w = 4    136      77     160
1850
 * w = 3    130      33     136
1851
 * w = 2    124      11     124
1852
 *
1853
 * So if ECC operations are blocking for too long even with a low max_ops
1854
 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1855
 * to minimize maximum blocking time.
1856
 */
1857
static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1858
                               mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1859
                               unsigned char w, size_t d,
1860
                               mbedtls_ecp_restart_ctx *rs_ctx)
1861
44
{
1862
44
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1863
44
    unsigned char i;
1864
44
    size_t j = 0;
1865
44
    const unsigned char T_size = 1U << (w - 1);
1866
44
    mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1867
1868
44
    mbedtls_mpi tmp[4];
1869
1870
44
    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1871
1872
#if defined(MBEDTLS_ECP_RESTARTABLE)
1873
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1874
        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1875
            goto dbl;
1876
        }
1877
        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1878
            goto norm_dbl;
1879
        }
1880
        if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1881
            goto add;
1882
        }
1883
        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1884
            goto norm_add;
1885
        }
1886
    }
1887
#else
1888
44
    (void) rs_ctx;
1889
44
#endif
1890
1891
#if defined(MBEDTLS_ECP_RESTARTABLE)
1892
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1893
        rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1894
1895
        /* initial state for the loop */
1896
        rs_ctx->rsm->i = 0;
1897
    }
1898
1899
dbl:
1900
#endif
1901
    /*
1902
     * Set T[0] = P and
1903
     * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1904
     */
1905
44
    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1906
1907
#if defined(MBEDTLS_ECP_RESTARTABLE)
1908
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1909
        j = rs_ctx->rsm->i;
1910
    } else
1911
#endif
1912
44
    j = 0;
1913
1914
12.7k
    for (; j < d * (w - 1); j++) {
1915
12.6k
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1916
1917
12.6k
        i = 1U << (j / d);
1918
12.6k
        cur = T + i;
1919
1920
12.6k
        if (j % d == 0) {
1921
132
            MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1922
132
        }
1923
1924
12.6k
        MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1925
12.6k
    }
1926
1927
#if defined(MBEDTLS_ECP_RESTARTABLE)
1928
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1929
        rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1930
    }
1931
1932
norm_dbl:
1933
#endif
1934
    /*
1935
     * Normalize current elements in T to allow them to be used in
1936
     * ecp_add_mixed() below, which requires one normalized input.
1937
     *
1938
     * As T has holes, use an auxiliary array of pointers to elements in T.
1939
     *
1940
     */
1941
44
    j = 0;
1942
176
    for (i = 1; i < T_size; i <<= 1) {
1943
132
        TT[j++] = T + i;
1944
132
    }
1945
1946
44
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1947
1948
44
    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1949
1950
#if defined(MBEDTLS_ECP_RESTARTABLE)
1951
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1952
        rs_ctx->rsm->state = ecp_rsm_pre_add;
1953
    }
1954
1955
add:
1956
#endif
1957
    /*
1958
     * Compute the remaining ones using the minimal number of additions
1959
     * Be careful to update T[2^l] only after using it!
1960
     */
1961
44
    MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1962
1963
176
    for (i = 1; i < T_size; i <<= 1) {
1964
132
        j = i;
1965
440
        while (j--) {
1966
308
            MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1967
308
        }
1968
132
    }
1969
1970
#if defined(MBEDTLS_ECP_RESTARTABLE)
1971
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1972
        rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1973
    }
1974
1975
norm_add:
1976
#endif
1977
    /*
1978
     * Normalize final elements in T. Even though there are no holes now, we
1979
     * still need the auxiliary array for homogeneity with the previous
1980
     * call. Also, skip T[0] which is already normalised, being a copy of P.
1981
     */
1982
352
    for (j = 0; j + 1 < T_size; j++) {
1983
308
        TT[j] = T + j + 1;
1984
308
    }
1985
1986
44
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1987
1988
44
    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1989
1990
    /* Free Z coordinate (=1 after normalization) to save RAM.
1991
     * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1992
     * since from this point onwards, they are only accessed indirectly
1993
     * via the getter function ecp_select_comb() which does set the
1994
     * target's Z coordinate to 1. */
1995
396
    for (i = 0; i < T_size; i++) {
1996
352
        mbedtls_mpi_free(&T[i].Z);
1997
352
    }
1998
1999
44
cleanup:
2000
2001
44
    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2002
2003
#if defined(MBEDTLS_ECP_RESTARTABLE)
2004
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2005
        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2006
        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
2007
            rs_ctx->rsm->i = j;
2008
        }
2009
    }
2010
#endif
2011
2012
44
    return ret;
2013
44
}
2014
2015
/*
2016
 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2017
 *
2018
 * See ecp_comb_recode_core() for background
2019
 */
2020
static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2021
                           const mbedtls_ecp_point T[], unsigned char T_size,
2022
                           unsigned char i)
2023
7.12k
{
2024
7.12k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2025
7.12k
    unsigned char ii, j;
2026
2027
    /* Ignore the "sign" bit and scale down */
2028
7.12k
    ii =  (i & 0x7Fu) >> 1;
2029
2030
    /* Read the whole table to thwart cache-based timing attacks */
2031
132k
    for (j = 0; j < T_size; j++) {
2032
125k
        MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2033
125k
        MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2034
125k
    }
2035
2036
    /* Safely invert result if i is "negative" */
2037
7.12k
    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2038
2039
7.12k
    MPI_ECP_LSET(&R->Z, 1);
2040
2041
7.12k
cleanup:
2042
7.12k
    return ret;
2043
7.12k
}
2044
2045
/*
2046
 * Core multiplication algorithm for the (modified) comb method.
2047
 * This part is actually common with the basic comb method (GECC 3.44)
2048
 *
2049
 * Cost: d A + d D + 1 R
2050
 */
2051
static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2052
                             const mbedtls_ecp_point T[], unsigned char T_size,
2053
                             const unsigned char x[], size_t d,
2054
                             int (*f_rng)(void *, unsigned char *, size_t),
2055
                             void *p_rng,
2056
                             mbedtls_ecp_restart_ctx *rs_ctx)
2057
88
{
2058
88
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2059
88
    mbedtls_ecp_point Txi;
2060
88
    mbedtls_mpi tmp[4];
2061
88
    size_t i;
2062
2063
88
    mbedtls_ecp_point_init(&Txi);
2064
88
    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2065
2066
88
#if !defined(MBEDTLS_ECP_RESTARTABLE)
2067
88
    (void) rs_ctx;
2068
88
#endif
2069
2070
#if defined(MBEDTLS_ECP_RESTARTABLE)
2071
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2072
        rs_ctx->rsm->state != ecp_rsm_comb_core) {
2073
        rs_ctx->rsm->i = 0;
2074
        rs_ctx->rsm->state = ecp_rsm_comb_core;
2075
    }
2076
2077
    /* new 'if' instead of nested for the sake of the 'else' branch */
2078
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2079
        /* restore current index (R already pointing to rs_ctx->rsm->R) */
2080
        i = rs_ctx->rsm->i;
2081
    } else
2082
#endif
2083
88
    {
2084
        /* Start with a non-zero point and randomize its coordinates */
2085
88
        i = d;
2086
88
        MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2087
88
        if (f_rng != 0) {
2088
88
            MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2089
88
        }
2090
88
    }
2091
2092
7.12k
    while (i != 0) {
2093
7.04k
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2094
7.04k
        --i;
2095
2096
7.04k
        MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2097
7.04k
        MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2098
7.04k
        MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2099
7.04k
    }
2100
2101
88
cleanup:
2102
2103
88
    mbedtls_ecp_point_free(&Txi);
2104
88
    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2105
2106
#if defined(MBEDTLS_ECP_RESTARTABLE)
2107
    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2108
        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2109
        rs_ctx->rsm->i = i;
2110
        /* no need to save R, already pointing to rs_ctx->rsm->R */
2111
    }
2112
#endif
2113
2114
88
    return ret;
2115
88
}
2116
2117
/*
2118
 * Recode the scalar to get constant-time comb multiplication
2119
 *
2120
 * As the actual scalar recoding needs an odd scalar as a starting point,
2121
 * this wrapper ensures that by replacing m by N - m if necessary, and
2122
 * informs the caller that the result of multiplication will be negated.
2123
 *
2124
 * This works because we only support large prime order for Short Weierstrass
2125
 * curves, so N is always odd hence either m or N - m is.
2126
 *
2127
 * See ecp_comb_recode_core() for background.
2128
 */
2129
static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2130
                                  const mbedtls_mpi *m,
2131
                                  unsigned char k[COMB_MAX_D + 1],
2132
                                  size_t d,
2133
                                  unsigned char w,
2134
                                  unsigned char *parity_trick)
2135
88
{
2136
88
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2137
88
    mbedtls_mpi M, mm;
2138
2139
88
    mbedtls_mpi_init(&M);
2140
88
    mbedtls_mpi_init(&mm);
2141
2142
    /* N is always odd (see above), just make extra sure */
2143
88
    if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2144
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2145
0
    }
2146
2147
    /* do we need the parity trick? */
2148
88
    *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2149
2150
    /* execute parity fix in constant time */
2151
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2152
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2153
88
    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2154
2155
    /* actual scalar recoding */
2156
88
    ecp_comb_recode_core(k, d, w, &M);
2157
2158
88
cleanup:
2159
88
    mbedtls_mpi_free(&mm);
2160
88
    mbedtls_mpi_free(&M);
2161
2162
88
    return ret;
2163
88
}
2164
2165
/*
2166
 * Perform comb multiplication (for short Weierstrass curves)
2167
 * once the auxiliary table has been pre-computed.
2168
 *
2169
 * Scalar recoding may use a parity trick that makes us compute -m * P,
2170
 * if that is the case we'll need to recover m * P at the end.
2171
 */
2172
static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2173
                                      mbedtls_ecp_point *R,
2174
                                      const mbedtls_mpi *m,
2175
                                      const mbedtls_ecp_point *T,
2176
                                      unsigned char T_size,
2177
                                      unsigned char w,
2178
                                      size_t d,
2179
                                      int (*f_rng)(void *, unsigned char *, size_t),
2180
                                      void *p_rng,
2181
                                      mbedtls_ecp_restart_ctx *rs_ctx)
2182
88
{
2183
88
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2184
88
    unsigned char parity_trick;
2185
88
    unsigned char k[COMB_MAX_D + 1];
2186
88
    mbedtls_ecp_point *RR = R;
2187
2188
#if defined(MBEDTLS_ECP_RESTARTABLE)
2189
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2190
        RR = &rs_ctx->rsm->R;
2191
2192
        if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2193
            goto final_norm;
2194
        }
2195
    }
2196
#endif
2197
2198
88
    MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2199
88
                                           &parity_trick));
2200
88
    MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2201
88
                                      f_rng, p_rng, rs_ctx));
2202
88
    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2203
2204
#if defined(MBEDTLS_ECP_RESTARTABLE)
2205
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2206
        rs_ctx->rsm->state = ecp_rsm_final_norm;
2207
    }
2208
2209
final_norm:
2210
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2211
#endif
2212
    /*
2213
     * Knowledge of the jacobian coordinates may leak the last few bits of the
2214
     * scalar [1], and since our MPI implementation isn't constant-flow,
2215
     * inversion (used for coordinate normalization) may leak the full value
2216
     * of its input via side-channels [2].
2217
     *
2218
     * [1] https://eprint.iacr.org/2003/191
2219
     * [2] https://eprint.iacr.org/2020/055
2220
     *
2221
     * Avoid the leak by randomizing coordinates before we normalize them.
2222
     */
2223
88
    if (f_rng != 0) {
2224
88
        MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2225
88
    }
2226
2227
88
    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2228
2229
#if defined(MBEDTLS_ECP_RESTARTABLE)
2230
    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2231
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2232
    }
2233
#endif
2234
2235
88
cleanup:
2236
88
    return ret;
2237
88
}
2238
2239
/*
2240
 * Pick window size based on curve size and whether we optimize for base point
2241
 */
2242
static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2243
                                          unsigned char p_eq_g)
2244
88
{
2245
88
    unsigned char w;
2246
2247
    /*
2248
     * Minimize the number of multiplications, that is minimize
2249
     * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2250
     * (see costs of the various parts, with 1S = 1M)
2251
     */
2252
88
    w = grp->nbits >= 384 ? 5 : 4;
2253
2254
    /*
2255
     * If P == G, pre-compute a bit more, since this may be re-used later.
2256
     * Just adding one avoids upping the cost of the first mul too much,
2257
     * and the memory cost too.
2258
     */
2259
88
    if (p_eq_g) {
2260
44
        w++;
2261
44
    }
2262
2263
    /*
2264
     * If static comb table may not be used (!p_eq_g) or static comb table does
2265
     * not exists, make sure w is within bounds.
2266
     * (The last test is useful only for very small curves in the test suite.)
2267
     *
2268
     * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2269
     * static comb table, because the size of static comb table is fixed when
2270
     * it is generated.
2271
     */
2272
88
#if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2273
88
    if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2274
44
        w = MBEDTLS_ECP_WINDOW_SIZE;
2275
44
    }
2276
88
#endif
2277
88
    if (w >= grp->nbits) {
2278
0
        w = 2;
2279
0
    }
2280
2281
88
    return w;
2282
88
}
2283
2284
/*
2285
 * Multiplication using the comb method - for curves in short Weierstrass form
2286
 *
2287
 * This function is mainly responsible for administrative work:
2288
 * - managing the restart context if enabled
2289
 * - managing the table of precomputed points (passed between the below two
2290
 *   functions): allocation, computation, ownership transfer, freeing.
2291
 *
2292
 * It delegates the actual arithmetic work to:
2293
 *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2294
 *
2295
 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2296
 */
2297
static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2298
                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2299
                        int (*f_rng)(void *, unsigned char *, size_t),
2300
                        void *p_rng,
2301
                        mbedtls_ecp_restart_ctx *rs_ctx)
2302
88
{
2303
88
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2304
88
    unsigned char w, p_eq_g, i;
2305
88
    size_t d;
2306
88
    unsigned char T_size = 0, T_ok = 0;
2307
88
    mbedtls_ecp_point *T = NULL;
2308
2309
88
    ECP_RS_ENTER(rsm);
2310
2311
    /* Is P the base point ? */
2312
88
#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2313
88
    p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2314
88
              MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2315
#else
2316
    p_eq_g = 0;
2317
#endif
2318
2319
    /* Pick window size and deduce related sizes */
2320
88
    w = ecp_pick_window_size(grp, p_eq_g);
2321
88
    T_size = 1U << (w - 1);
2322
88
    d = (grp->nbits + w - 1) / w;
2323
2324
    /* Pre-computed table: do we have it already for the base point? */
2325
88
    if (p_eq_g && grp->T != NULL) {
2326
        /* second pointer to the same table, will be deleted on exit */
2327
44
        T = grp->T;
2328
44
        T_ok = 1;
2329
44
    } else
2330
#if defined(MBEDTLS_ECP_RESTARTABLE)
2331
    /* Pre-computed table: do we have one in progress? complete? */
2332
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2333
        /* transfer ownership of T from rsm to local function */
2334
        T = rs_ctx->rsm->T;
2335
        rs_ctx->rsm->T = NULL;
2336
        rs_ctx->rsm->T_size = 0;
2337
2338
        /* This effectively jumps to the call to mul_comb_after_precomp() */
2339
        T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2340
    } else
2341
#endif
2342
    /* Allocate table if we didn't have any */
2343
44
    {
2344
44
        T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2345
44
        if (T == NULL) {
2346
0
            ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2347
0
            goto cleanup;
2348
0
        }
2349
2350
396
        for (i = 0; i < T_size; i++) {
2351
352
            mbedtls_ecp_point_init(&T[i]);
2352
352
        }
2353
2354
44
        T_ok = 0;
2355
44
    }
2356
2357
    /* Compute table (or finish computing it) if not done already */
2358
88
    if (!T_ok) {
2359
44
        MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2360
2361
44
        if (p_eq_g) {
2362
            /* almost transfer ownership of T to the group, but keep a copy of
2363
             * the pointer to use for calling the next function more easily */
2364
0
            grp->T = T;
2365
0
            grp->T_size = T_size;
2366
0
        }
2367
44
    }
2368
2369
    /* Actual comb multiplication using precomputed points */
2370
88
    MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2371
88
                                               T, T_size, w, d,
2372
88
                                               f_rng, p_rng, rs_ctx));
2373
2374
88
cleanup:
2375
2376
    /* does T belong to the group? */
2377
88
    if (T == grp->T) {
2378
44
        T = NULL;
2379
44
    }
2380
2381
    /* does T belong to the restart context? */
2382
#if defined(MBEDTLS_ECP_RESTARTABLE)
2383
    if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2384
        /* transfer ownership of T from local function to rsm */
2385
        rs_ctx->rsm->T_size = T_size;
2386
        rs_ctx->rsm->T = T;
2387
        T = NULL;
2388
    }
2389
#endif
2390
2391
    /* did T belong to us? then let's destroy it! */
2392
88
    if (T != NULL) {
2393
396
        for (i = 0; i < T_size; i++) {
2394
352
            mbedtls_ecp_point_free(&T[i]);
2395
352
        }
2396
44
        mbedtls_free(T);
2397
44
    }
2398
2399
    /* prevent caller from using invalid value */
2400
88
    int should_free_R = (ret != 0);
2401
#if defined(MBEDTLS_ECP_RESTARTABLE)
2402
    /* don't free R while in progress in case R == P */
2403
    if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2404
        should_free_R = 0;
2405
    }
2406
#endif
2407
88
    if (should_free_R) {
2408
0
        mbedtls_ecp_point_free(R);
2409
0
    }
2410
2411
88
    ECP_RS_LEAVE(rsm);
2412
2413
88
    return ret;
2414
88
}
2415
2416
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2417
2418
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2419
/*
2420
 * For Montgomery curves, we do all the internal arithmetic in projective
2421
 * coordinates. Import/export of points uses only the x coordinates, which is
2422
 * internally represented as X / Z.
2423
 *
2424
 * For scalar multiplication, we'll use a Montgomery ladder.
2425
 */
2426
2427
/*
2428
 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2429
 * Cost: 1M + 1I
2430
 */
2431
static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2432
0
{
2433
#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2434
    if (mbedtls_internal_ecp_grp_capable(grp)) {
2435
        return mbedtls_internal_ecp_normalize_mxz(grp, P);
2436
    }
2437
#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2438
2439
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2440
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2441
#else
2442
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2443
0
    MPI_ECP_INV(&P->Z, &P->Z);
2444
0
    MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2445
0
    MPI_ECP_LSET(&P->Z, 1);
2446
2447
0
cleanup:
2448
0
    return ret;
2449
0
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2450
0
}
2451
2452
/*
2453
 * Randomize projective x/z coordinates:
2454
 * (X, Z) -> (l X, l Z) for random l
2455
 * This is sort of the reverse operation of ecp_normalize_mxz().
2456
 *
2457
 * This countermeasure was first suggested in [2].
2458
 * Cost: 2M
2459
 */
2460
static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2461
                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2462
0
{
2463
#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2464
    if (mbedtls_internal_ecp_grp_capable(grp)) {
2465
        return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2466
    }
2467
#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2468
2469
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2470
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2471
#else
2472
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2473
0
    mbedtls_mpi l;
2474
0
    mbedtls_mpi_init(&l);
2475
2476
    /* Generate l such that 1 < l < p */
2477
0
    MPI_ECP_RAND(&l);
2478
2479
0
    MPI_ECP_MUL(&P->X, &P->X, &l);
2480
0
    MPI_ECP_MUL(&P->Z, &P->Z, &l);
2481
2482
0
cleanup:
2483
0
    mbedtls_mpi_free(&l);
2484
2485
0
    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2486
0
        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2487
0
    }
2488
0
    return ret;
2489
0
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2490
0
}
2491
2492
/*
2493
 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2494
 * for Montgomery curves in x/z coordinates.
2495
 *
2496
 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2497
 * with
2498
 * d =  X1
2499
 * P = (X2, Z2)
2500
 * Q = (X3, Z3)
2501
 * R = (X4, Z4)
2502
 * S = (X5, Z5)
2503
 * and eliminating temporary variables tO, ..., t4.
2504
 *
2505
 * Cost: 5M + 4S
2506
 */
2507
static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2508
                              mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2509
                              const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2510
                              const mbedtls_mpi *d,
2511
                              mbedtls_mpi T[4])
2512
0
{
2513
#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2514
    if (mbedtls_internal_ecp_grp_capable(grp)) {
2515
        return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2516
    }
2517
#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2518
2519
#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2520
    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2521
#else
2522
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2523
2524
0
    MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */
2525
0
    MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */
2526
0
    MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */
2527
0
    MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */
2528
0
    MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */
2529
0
    MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */
2530
0
    MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */
2531
0
    MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */
2532
0
    MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */
2533
0
    MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */
2534
0
    MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */
2535
0
    MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */
2536
0
    MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */
2537
0
    MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */
2538
0
    MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */
2539
0
    MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */
2540
0
    MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */
2541
0
    MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2542
2543
0
cleanup:
2544
2545
0
    return ret;
2546
0
#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2547
0
}
2548
2549
/*
2550
 * Multiplication with Montgomery ladder in x/z coordinates,
2551
 * for curves in Montgomery form
2552
 */
2553
static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2554
                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2555
                       int (*f_rng)(void *, unsigned char *, size_t),
2556
                       void *p_rng)
2557
0
{
2558
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2559
0
    size_t i;
2560
0
    unsigned char b;
2561
0
    mbedtls_ecp_point RP;
2562
0
    mbedtls_mpi PX;
2563
0
    mbedtls_mpi tmp[4];
2564
0
    mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2565
2566
0
    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2567
2568
0
    if (f_rng == NULL) {
2569
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2570
0
    }
2571
2572
    /* Save PX and read from P before writing to R, in case P == R */
2573
0
    MPI_ECP_MOV(&PX, &P->X);
2574
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2575
2576
    /* Set R to zero in modified x/z coordinates */
2577
0
    MPI_ECP_LSET(&R->X, 1);
2578
0
    MPI_ECP_LSET(&R->Z, 0);
2579
0
    mbedtls_mpi_free(&R->Y);
2580
2581
    /* RP.X might be slightly larger than P, so reduce it */
2582
0
    MOD_ADD(&RP.X);
2583
2584
    /* Randomize coordinates of the starting point */
2585
0
    MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2586
2587
    /* Loop invariant: R = result so far, RP = R + P */
2588
0
    i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2589
0
    while (i-- > 0) {
2590
0
        b = mbedtls_mpi_get_bit(m, i);
2591
        /*
2592
         *  if (b) R = 2R + P else R = 2R,
2593
         * which is:
2594
         *  if (b) double_add( RP, R, RP, R )
2595
         *  else   double_add( R, RP, R, RP )
2596
         * but using safe conditional swaps to avoid leaks
2597
         */
2598
0
        MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2599
0
        MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2600
0
        MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2601
0
        MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2602
0
        MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2603
0
    }
2604
2605
    /*
2606
     * Knowledge of the projective coordinates may leak the last few bits of the
2607
     * scalar [1], and since our MPI implementation isn't constant-flow,
2608
     * inversion (used for coordinate normalization) may leak the full value
2609
     * of its input via side-channels [2].
2610
     *
2611
     * [1] https://eprint.iacr.org/2003/191
2612
     * [2] https://eprint.iacr.org/2020/055
2613
     *
2614
     * Avoid the leak by randomizing coordinates before we normalize them.
2615
     */
2616
0
    MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2617
0
    MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2618
2619
0
cleanup:
2620
0
    mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2621
2622
0
    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2623
0
    return ret;
2624
0
}
2625
2626
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2627
2628
/*
2629
 * Restartable multiplication R = m * P
2630
 *
2631
 * This internal function can be called without an RNG in case where we know
2632
 * the inputs are not sensitive.
2633
 */
2634
static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2635
                                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2636
                                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2637
                                        mbedtls_ecp_restart_ctx *rs_ctx)
2638
88
{
2639
88
    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2640
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2641
    char is_grp_capable = 0;
2642
#endif
2643
2644
#if defined(MBEDTLS_ECP_RESTARTABLE)
2645
    /* reset ops count for this call if top-level */
2646
    if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2647
        rs_ctx->ops_done = 0;
2648
    }
2649
#else
2650
88
    (void) rs_ctx;
2651
88
#endif
2652
2653
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2654
    if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2655
        MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2656
    }
2657
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2658
2659
88
    int restarting = 0;
2660
#if defined(MBEDTLS_ECP_RESTARTABLE)
2661
    restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2662
#endif
2663
    /* skip argument check when restarting */
2664
88
    if (!restarting) {
2665
        /* check_privkey is free */
2666
88
        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2667
2668
        /* Common sanity checks */
2669
88
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2670
88
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2671
88
    }
2672
2673
88
    ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2674
88
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2675
88
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2676
0
        MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2677
0
    }
2678
88
#endif
2679
88
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2680
88
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2681
88
        MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2682
88
    }
2683
88
#endif
2684
2685
88
cleanup:
2686
2687
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2688
    if (is_grp_capable) {
2689
        mbedtls_internal_ecp_free(grp);
2690
    }
2691
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2692
2693
#if defined(MBEDTLS_ECP_RESTARTABLE)
2694
    if (rs_ctx != NULL) {
2695
        rs_ctx->depth--;
2696
    }
2697
#endif
2698
2699
88
    return ret;
2700
88
}
2701
2702
/*
2703
 * Restartable multiplication R = m * P
2704
 */
2705
int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2706
                                const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2707
                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2708
                                mbedtls_ecp_restart_ctx *rs_ctx)
2709
88
{
2710
88
    if (f_rng == NULL) {
2711
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2712
0
    }
2713
2714
88
    return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2715
88
}
2716
2717
/*
2718
 * Multiplication R = m * P
2719
 */
2720
int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2721
                    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2722
                    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2723
0
{
2724
0
    return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2725
0
}
2726
2727
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2728
/*
2729
 * Check that an affine point is valid as a public key,
2730
 * short weierstrass curves (SEC1 3.2.3.1)
2731
 */
2732
static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2733
4.72k
{
2734
4.72k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2735
4.72k
    mbedtls_mpi YY, RHS;
2736
2737
    /* pt coordinates must be normalized for our checks */
2738
4.72k
    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2739
4.72k
        mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2740
4.72k
        mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2741
4.72k
        mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2742
0
        return MBEDTLS_ERR_ECP_INVALID_KEY;
2743
0
    }
2744
2745
4.72k
    mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2746
2747
    /*
2748
     * YY = Y^2
2749
     * RHS = X^3 + A X + B
2750
     */
2751
4.72k
    MPI_ECP_SQR(&YY,  &pt->Y);
2752
4.72k
    MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2753
2754
4.72k
    if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2755
806
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2756
806
    }
2757
2758
4.72k
cleanup:
2759
2760
4.72k
    mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2761
2762
4.72k
    return ret;
2763
4.72k
}
2764
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2765
2766
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2767
/*
2768
 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2769
 * NOT constant-time - ONLY for short Weierstrass!
2770
 */
2771
static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2772
                                     mbedtls_ecp_point *R,
2773
                                     const mbedtls_mpi *m,
2774
                                     const mbedtls_ecp_point *P,
2775
                                     mbedtls_ecp_restart_ctx *rs_ctx)
2776
0
{
2777
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2778
0
    mbedtls_mpi tmp;
2779
0
    mbedtls_mpi_init(&tmp);
2780
2781
0
    if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2782
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2783
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2784
0
    } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2785
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2786
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2787
0
    } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2788
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2789
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2790
0
        MPI_ECP_NEG(&R->Y);
2791
0
    } else {
2792
0
        MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2793
0
                                                     NULL, NULL, rs_ctx));
2794
0
    }
2795
2796
0
cleanup:
2797
0
    mbedtls_mpi_free(&tmp);
2798
2799
0
    return ret;
2800
0
}
2801
2802
/*
2803
 * Restartable linear combination
2804
 * NOT constant-time
2805
 */
2806
int mbedtls_ecp_muladd_restartable(
2807
    mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2808
    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2809
    const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2810
    mbedtls_ecp_restart_ctx *rs_ctx)
2811
0
{
2812
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2813
0
    mbedtls_ecp_point mP;
2814
0
    mbedtls_ecp_point *pmP = &mP;
2815
0
    mbedtls_ecp_point *pR = R;
2816
0
    mbedtls_mpi tmp[4];
2817
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2818
    char is_grp_capable = 0;
2819
#endif
2820
0
    if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2821
0
        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2822
0
    }
2823
2824
0
    mbedtls_ecp_point_init(&mP);
2825
0
    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2826
2827
0
    ECP_RS_ENTER(ma);
2828
2829
#if defined(MBEDTLS_ECP_RESTARTABLE)
2830
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2831
        /* redirect intermediate results to restart context */
2832
        pmP = &rs_ctx->ma->mP;
2833
        pR  = &rs_ctx->ma->R;
2834
2835
        /* jump to next operation */
2836
        if (rs_ctx->ma->state == ecp_rsma_mul2) {
2837
            goto mul2;
2838
        }
2839
        if (rs_ctx->ma->state == ecp_rsma_add) {
2840
            goto add;
2841
        }
2842
        if (rs_ctx->ma->state == ecp_rsma_norm) {
2843
            goto norm;
2844
        }
2845
    }
2846
#endif /* MBEDTLS_ECP_RESTARTABLE */
2847
2848
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2849
#if defined(MBEDTLS_ECP_RESTARTABLE)
2850
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2851
        rs_ctx->ma->state = ecp_rsma_mul2;
2852
    }
2853
2854
mul2:
2855
#endif
2856
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
2857
2858
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2859
    if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2860
        MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2861
    }
2862
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2863
2864
#if defined(MBEDTLS_ECP_RESTARTABLE)
2865
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2866
        rs_ctx->ma->state = ecp_rsma_add;
2867
    }
2868
2869
add:
2870
#endif
2871
0
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2872
0
    MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2873
#if defined(MBEDTLS_ECP_RESTARTABLE)
2874
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2875
        rs_ctx->ma->state = ecp_rsma_norm;
2876
    }
2877
2878
norm:
2879
#endif
2880
0
    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2881
0
    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2882
2883
#if defined(MBEDTLS_ECP_RESTARTABLE)
2884
    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2885
        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2886
    }
2887
#endif
2888
2889
0
cleanup:
2890
2891
0
    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2892
2893
#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2894
    if (is_grp_capable) {
2895
        mbedtls_internal_ecp_free(grp);
2896
    }
2897
#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2898
2899
0
    mbedtls_ecp_point_free(&mP);
2900
2901
0
    ECP_RS_LEAVE(ma);
2902
2903
0
    return ret;
2904
0
}
2905
2906
/*
2907
 * Linear combination
2908
 * NOT constant-time
2909
 */
2910
int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2911
                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2912
                       const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2913
0
{
2914
0
    return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2915
0
}
2916
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2917
2918
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2919
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2920
#define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) }
2921
#define ECP_MPI_INIT_ARRAY(x)   \
2922
    ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
2923
/*
2924
 * Constants for the two points other than 0, 1, -1 (mod p) in
2925
 * https://cr.yp.to/ecdh.html#validate
2926
 * See ecp_check_pubkey_x25519().
2927
 */
2928
static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2929
    MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2930
    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2931
    MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2932
    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2933
};
2934
static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2935
    MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2936
    MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2937
    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2938
    MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2939
};
2940
static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2941
    x25519_bad_point_1);
2942
static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2943
    x25519_bad_point_2);
2944
#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2945
2946
/*
2947
 * Check that the input point is not one of the low-order points.
2948
 * This is recommended by the "May the Fourth" paper:
2949
 * https://eprint.iacr.org/2017/806.pdf
2950
 * Those points are never sent by an honest peer.
2951
 */
2952
static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2953
                                   const mbedtls_ecp_group_id grp_id)
2954
0
{
2955
0
    int ret;
2956
0
    mbedtls_mpi XmP;
2957
2958
0
    mbedtls_mpi_init(&XmP);
2959
2960
    /* Reduce X mod P so that we only need to check values less than P.
2961
     * We know X < 2^256 so we can proceed by subtraction. */
2962
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2963
0
    while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2964
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2965
0
    }
2966
2967
    /* Check against the known bad values that are less than P. For Curve448
2968
     * these are 0, 1 and -1. For Curve25519 we check the values less than P
2969
     * from the following list: https://cr.yp.to/ecdh.html#validate */
2970
0
    if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
2971
0
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2972
0
        goto cleanup;
2973
0
    }
2974
2975
0
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2976
0
    if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2977
0
        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2978
0
            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2979
0
            goto cleanup;
2980
0
        }
2981
2982
0
        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2983
0
            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2984
0
            goto cleanup;
2985
0
        }
2986
0
    }
2987
#else
2988
    (void) grp_id;
2989
#endif
2990
2991
    /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2992
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2993
0
    if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2994
0
        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2995
0
        goto cleanup;
2996
0
    }
2997
2998
0
    ret = 0;
2999
3000
0
cleanup:
3001
0
    mbedtls_mpi_free(&XmP);
3002
3003
0
    return ret;
3004
0
}
3005
3006
/*
3007
 * Check validity of a public key for Montgomery curves with x-only schemes
3008
 */
3009
static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3010
0
{
3011
    /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3012
    /* Allow any public value, if it's too big then we'll just reduce it mod p
3013
     * (RFC 7748 sec. 5 para. 3). */
3014
0
    if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3015
0
        return MBEDTLS_ERR_ECP_INVALID_KEY;
3016
0
    }
3017
3018
    /* Implicit in all standards (as they don't consider negative numbers):
3019
     * X must be non-negative. This is normally ensured by the way it's
3020
     * encoded for transmission, but let's be extra sure. */
3021
0
    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3022
0
        return MBEDTLS_ERR_ECP_INVALID_KEY;
3023
0
    }
3024
3025
0
    return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3026
0
}
3027
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3028
3029
/*
3030
 * Check that a point is valid as a public key
3031
 */
3032
int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3033
                             const mbedtls_ecp_point *pt)
3034
4.72k
{
3035
    /* Must use affine coordinates */
3036
4.72k
    if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3037
0
        return MBEDTLS_ERR_ECP_INVALID_KEY;
3038
0
    }
3039
3040
4.72k
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3041
4.72k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3042
0
        return ecp_check_pubkey_mx(grp, pt);
3043
0
    }
3044
4.72k
#endif
3045
4.72k
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3046
4.72k
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3047
4.72k
        return ecp_check_pubkey_sw(grp, pt);
3048
4.72k
    }
3049
0
#endif
3050
0
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3051
4.72k
}
3052
3053
/*
3054
 * Check that an mbedtls_mpi is valid as a private key
3055
 */
3056
int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3057
                              const mbedtls_mpi *d)
3058
88
{
3059
88
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3060
88
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3061
        /* see RFC 7748 sec. 5 para. 5 */
3062
0
        if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3063
0
            mbedtls_mpi_get_bit(d, 1) != 0 ||
3064
0
            mbedtls_mpi_bitlen(d) - 1 != grp->nbits) {  /* mbedtls_mpi_bitlen is one-based! */
3065
0
            return MBEDTLS_ERR_ECP_INVALID_KEY;
3066
0
        }
3067
3068
        /* see [Curve25519] page 5 */
3069
0
        if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3070
0
            return MBEDTLS_ERR_ECP_INVALID_KEY;
3071
0
        }
3072
3073
0
        return 0;
3074
0
    }
3075
88
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3076
88
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3077
88
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3078
        /* see SEC1 3.2 */
3079
88
        if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3080
88
            mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3081
0
            return MBEDTLS_ERR_ECP_INVALID_KEY;
3082
88
        } else {
3083
88
            return 0;
3084
88
        }
3085
88
    }
3086
0
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3087
3088
0
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3089
88
}
3090
3091
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3092
MBEDTLS_STATIC_TESTABLE
3093
int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3094
                               mbedtls_mpi *d,
3095
                               int (*f_rng)(void *, unsigned char *, size_t),
3096
                               void *p_rng)
3097
0
{
3098
0
    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3099
0
    size_t n_random_bytes = high_bit / 8 + 1;
3100
3101
    /* [Curve25519] page 5 */
3102
    /* Generate a (high_bit+1)-bit random number by generating just enough
3103
     * random bytes, then shifting out extra bits from the top (necessary
3104
     * when (high_bit+1) is not a multiple of 8). */
3105
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3106
0
                                            f_rng, p_rng));
3107
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3108
3109
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3110
3111
    /* Make sure the last two bits are unset for Curve448, three bits for
3112
       Curve25519 */
3113
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3114
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3115
0
    if (high_bit == 254) {
3116
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3117
0
    }
3118
3119
0
cleanup:
3120
0
    return ret;
3121
0
}
3122
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3123
3124
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3125
static int mbedtls_ecp_gen_privkey_sw(
3126
    const mbedtls_mpi *N, mbedtls_mpi *d,
3127
    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3128
44
{
3129
44
    int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3130
44
    switch (ret) {
3131
0
        case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3132
0
            return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3133
44
        default:
3134
44
            return ret;
3135
44
    }
3136
44
}
3137
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3138
3139
/*
3140
 * Generate a private key
3141
 */
3142
int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3143
                            mbedtls_mpi *d,
3144
                            int (*f_rng)(void *, unsigned char *, size_t),
3145
                            void *p_rng)
3146
44
{
3147
44
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3148
44
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3149
0
        return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3150
0
    }
3151
44
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3152
3153
44
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3154
44
    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3155
44
        return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3156
44
    }
3157
0
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3158
3159
0
    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3160
44
}
3161
3162
/*
3163
 * Generate a keypair with configurable base point
3164
 */
3165
int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3166
                                 const mbedtls_ecp_point *G,
3167
                                 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3168
                                 int (*f_rng)(void *, unsigned char *, size_t),
3169
                                 void *p_rng)
3170
0
{
3171
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3172
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3173
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3174
3175
0
cleanup:
3176
0
    return ret;
3177
0
}
3178
3179
/*
3180
 * Generate key pair, wrapper for conventional base point
3181
 */
3182
int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3183
                            mbedtls_mpi *d, mbedtls_ecp_point *Q,
3184
                            int (*f_rng)(void *, unsigned char *, size_t),
3185
                            void *p_rng)
3186
0
{
3187
0
    return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3188
0
}
3189
3190
/*
3191
 * Generate a keypair, prettier wrapper
3192
 */
3193
int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3194
                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3195
0
{
3196
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3197
0
    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3198
0
        return ret;
3199
0
    }
3200
3201
0
    return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3202
0
}
3203
3204
0
#define ECP_CURVE25519_KEY_SIZE 32
3205
0
#define ECP_CURVE448_KEY_SIZE   56
3206
/*
3207
 * Read a private key.
3208
 */
3209
int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3210
                         const unsigned char *buf, size_t buflen)
3211
0
{
3212
0
    int ret = 0;
3213
3214
0
    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3215
0
        return ret;
3216
0
    }
3217
3218
0
    ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3219
3220
0
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3221
0
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3222
        /*
3223
         * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3224
         */
3225
0
        if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3226
0
            if (buflen != ECP_CURVE25519_KEY_SIZE) {
3227
0
                return MBEDTLS_ERR_ECP_INVALID_KEY;
3228
0
            }
3229
3230
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3231
3232
            /* Set the three least significant bits to 0 */
3233
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3234
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3235
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3236
3237
            /* Set the most significant bit to 0 */
3238
0
            MBEDTLS_MPI_CHK(
3239
0
                mbedtls_mpi_set_bit(&key->d,
3240
0
                                    ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3241
0
                );
3242
3243
            /* Set the second most significant bit to 1 */
3244
0
            MBEDTLS_MPI_CHK(
3245
0
                mbedtls_mpi_set_bit(&key->d,
3246
0
                                    ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3247
0
                );
3248
0
        } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3249
0
            if (buflen != ECP_CURVE448_KEY_SIZE) {
3250
0
                return MBEDTLS_ERR_ECP_INVALID_KEY;
3251
0
            }
3252
3253
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3254
3255
            /* Set the two least significant bits to 0 */
3256
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3257
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3258
3259
            /* Set the most significant bit to 1 */
3260
0
            MBEDTLS_MPI_CHK(
3261
0
                mbedtls_mpi_set_bit(&key->d,
3262
0
                                    ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3263
0
                );
3264
0
        }
3265
0
    }
3266
3267
0
#endif
3268
0
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3269
0
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3270
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3271
3272
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3273
0
    }
3274
3275
0
#endif
3276
0
cleanup:
3277
3278
0
    if (ret != 0) {
3279
0
        mbedtls_mpi_free(&key->d);
3280
0
    }
3281
3282
0
    return ret;
3283
0
}
3284
3285
/*
3286
 * Write a private key.
3287
 */
3288
int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3289
                          unsigned char *buf, size_t buflen)
3290
0
{
3291
0
    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3292
3293
0
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3294
0
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3295
0
        if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3296
0
            if (buflen < ECP_CURVE25519_KEY_SIZE) {
3297
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3298
0
            }
3299
3300
0
        } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3301
0
            if (buflen < ECP_CURVE448_KEY_SIZE) {
3302
0
                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3303
0
            }
3304
0
        }
3305
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3306
0
    }
3307
0
#endif
3308
0
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3309
0
    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3310
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3311
0
    }
3312
3313
0
#endif
3314
0
cleanup:
3315
3316
0
    return ret;
3317
0
}
3318
3319
3320
/*
3321
 * Check a public-private key pair
3322
 */
3323
int mbedtls_ecp_check_pub_priv(
3324
    const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3325
    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3326
0
{
3327
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3328
0
    mbedtls_ecp_point Q;
3329
0
    mbedtls_ecp_group grp;
3330
0
    if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3331
0
        pub->grp.id != prv->grp.id ||
3332
0
        mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3333
0
        mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3334
0
        mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3335
0
        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3336
0
    }
3337
3338
0
    mbedtls_ecp_point_init(&Q);
3339
0
    mbedtls_ecp_group_init(&grp);
3340
3341
    /* mbedtls_ecp_mul() needs a non-const group... */
3342
0
    mbedtls_ecp_group_copy(&grp, &prv->grp);
3343
3344
    /* Also checks d is valid */
3345
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3346
3347
0
    if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3348
0
        mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3349
0
        mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3350
0
        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3351
0
        goto cleanup;
3352
0
    }
3353
3354
0
cleanup:
3355
0
    mbedtls_ecp_point_free(&Q);
3356
0
    mbedtls_ecp_group_free(&grp);
3357
3358
0
    return ret;
3359
0
}
3360
3361
/*
3362
 * Export generic key-pair parameters.
3363
 */
3364
int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3365
                       mbedtls_mpi *d, mbedtls_ecp_point *Q)
3366
0
{
3367
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3368
3369
0
    if ((ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3370
0
        return ret;
3371
0
    }
3372
3373
0
    if ((ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3374
0
        return ret;
3375
0
    }
3376
3377
0
    if ((ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3378
0
        return ret;
3379
0
    }
3380
3381
0
    return 0;
3382
0
}
3383
3384
#if defined(MBEDTLS_SELF_TEST)
3385
3386
/*
3387
 * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3388
 *
3389
 * This is the linear congruential generator from numerical recipes,
3390
 * except we only use the low byte as the output. See
3391
 * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3392
 */
3393
static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3394
0
{
3395
0
    static uint32_t state = 42;
3396
3397
0
    (void) ctx;
3398
3399
0
    for (size_t i = 0; i < len; i++) {
3400
0
        state = state * 1664525u + 1013904223u;
3401
0
        out[i] = (unsigned char) state;
3402
0
    }
3403
3404
0
    return 0;
3405
0
}
3406
3407
/* Adjust the exponent to be a valid private point for the specified curve.
3408
 * This is sometimes necessary because we use a single set of exponents
3409
 * for all curves but the validity of values depends on the curve. */
3410
static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3411
                                     mbedtls_mpi *m)
3412
0
{
3413
0
    int ret = 0;
3414
0
    switch (grp->id) {
3415
    /* If Curve25519 is available, then that's what we use for the
3416
     * Montgomery test, so we don't need the adjustment code. */
3417
#if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3418
#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3419
        case MBEDTLS_ECP_DP_CURVE448:
3420
            /* Move highest bit from 254 to N-1. Setting bit N-1 is
3421
             * necessary to enforce the highest-bit-set constraint. */
3422
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3423
            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3424
            /* Copy second-highest bit from 253 to N-2. This is not
3425
             * necessary but improves the test variety a bit. */
3426
            MBEDTLS_MPI_CHK(
3427
                mbedtls_mpi_set_bit(m, grp->nbits - 1,
3428
                                    mbedtls_mpi_get_bit(m, 253)));
3429
            break;
3430
#endif
3431
#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3432
0
        default:
3433
            /* Non-Montgomery curves and Curve25519 need no adjustment. */
3434
0
            (void) grp;
3435
0
            (void) m;
3436
0
            goto cleanup;
3437
0
    }
3438
0
cleanup:
3439
0
    return ret;
3440
0
}
3441
3442
/* Calculate R = m.P for each m in exponents. Check that the number of
3443
 * basic operations doesn't depend on the value of m. */
3444
static int self_test_point(int verbose,
3445
                           mbedtls_ecp_group *grp,
3446
                           mbedtls_ecp_point *R,
3447
                           mbedtls_mpi *m,
3448
                           const mbedtls_ecp_point *P,
3449
                           const char *const *exponents,
3450
                           size_t n_exponents)
3451
0
{
3452
0
    int ret = 0;
3453
0
    size_t i = 0;
3454
0
    unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3455
0
    add_count = 0;
3456
0
    dbl_count = 0;
3457
0
    mul_count = 0;
3458
3459
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3460
0
    MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3461
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3462
3463
0
    for (i = 1; i < n_exponents; i++) {
3464
0
        add_c_prev = add_count;
3465
0
        dbl_c_prev = dbl_count;
3466
0
        mul_c_prev = mul_count;
3467
0
        add_count = 0;
3468
0
        dbl_count = 0;
3469
0
        mul_count = 0;
3470
3471
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3472
0
        MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3473
0
        MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3474
3475
0
        if (add_count != add_c_prev ||
3476
0
            dbl_count != dbl_c_prev ||
3477
0
            mul_count != mul_c_prev) {
3478
0
            ret = 1;
3479
0
            break;
3480
0
        }
3481
0
    }
3482
3483
0
cleanup:
3484
0
    if (verbose != 0) {
3485
0
        if (ret != 0) {
3486
0
            mbedtls_printf("failed (%u)\n", (unsigned int) i);
3487
0
        } else {
3488
0
            mbedtls_printf("passed\n");
3489
0
        }
3490
0
    }
3491
0
    return ret;
3492
0
}
3493
3494
/*
3495
 * Checkup routine
3496
 */
3497
int mbedtls_ecp_self_test(int verbose)
3498
0
{
3499
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3500
0
    mbedtls_ecp_group grp;
3501
0
    mbedtls_ecp_point R, P;
3502
0
    mbedtls_mpi m;
3503
3504
0
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3505
    /* Exponents especially adapted for secp192k1, which has the lowest
3506
     * order n of all supported curves (secp192r1 is in a slightly larger
3507
     * field but the order of its base point is slightly smaller). */
3508
0
    const char *sw_exponents[] =
3509
0
    {
3510
0
        "000000000000000000000000000000000000000000000001", /* one */
3511
0
        "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3512
0
        "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3513
0
        "400000000000000000000000000000000000000000000000", /* one and zeros */
3514
0
        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3515
0
        "555555555555555555555555555555555555555555555555", /* 101010... */
3516
0
    };
3517
0
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3518
0
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3519
0
    const char *m_exponents[] =
3520
0
    {
3521
        /* Valid private values for Curve25519. In a build with Curve448
3522
         * but not Curve25519, they will be adjusted in
3523
         * self_test_adjust_exponent(). */
3524
0
        "4000000000000000000000000000000000000000000000000000000000000000",
3525
0
        "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3526
0
        "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3527
0
        "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3528
0
        "5555555555555555555555555555555555555555555555555555555555555550",
3529
0
        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3530
0
    };
3531
0
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3532
3533
0
    mbedtls_ecp_group_init(&grp);
3534
0
    mbedtls_ecp_point_init(&R);
3535
0
    mbedtls_ecp_point_init(&P);
3536
0
    mbedtls_mpi_init(&m);
3537
3538
0
#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3539
    /* Use secp192r1 if available, or any available curve */
3540
0
#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3541
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3542
#else
3543
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3544
#endif
3545
3546
0
    if (verbose != 0) {
3547
0
        mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
3548
0
    }
3549
    /* Do a dummy multiplication first to trigger precomputation */
3550
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3551
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3552
0
    ret = self_test_point(verbose,
3553
0
                          &grp, &R, &m, &grp.G,
3554
0
                          sw_exponents,
3555
0
                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3556
0
    if (ret != 0) {
3557
0
        goto cleanup;
3558
0
    }
3559
3560
0
    if (verbose != 0) {
3561
0
        mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
3562
0
    }
3563
    /* We computed P = 2G last time, use it */
3564
0
    ret = self_test_point(verbose,
3565
0
                          &grp, &R, &m, &P,
3566
0
                          sw_exponents,
3567
0
                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3568
0
    if (ret != 0) {
3569
0
        goto cleanup;
3570
0
    }
3571
3572
0
    mbedtls_ecp_group_free(&grp);
3573
0
    mbedtls_ecp_point_free(&R);
3574
0
#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3575
3576
0
#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3577
0
    if (verbose != 0) {
3578
0
        mbedtls_printf("  ECP Montgomery test (constant op_count): ");
3579
0
    }
3580
0
#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3581
0
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3582
#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3583
    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3584
#else
3585
#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3586
#endif
3587
0
    ret = self_test_point(verbose,
3588
0
                          &grp, &R, &m, &grp.G,
3589
0
                          m_exponents,
3590
0
                          sizeof(m_exponents) / sizeof(m_exponents[0]));
3591
0
    if (ret != 0) {
3592
0
        goto cleanup;
3593
0
    }
3594
0
#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3595
3596
0
cleanup:
3597
3598
0
    if (ret < 0 && verbose != 0) {
3599
0
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3600
0
    }
3601
3602
0
    mbedtls_ecp_group_free(&grp);
3603
0
    mbedtls_ecp_point_free(&R);
3604
0
    mbedtls_ecp_point_free(&P);
3605
0
    mbedtls_mpi_free(&m);
3606
3607
0
    if (verbose != 0) {
3608
0
        mbedtls_printf("\n");
3609
0
    }
3610
3611
0
    return ret;
3612
0
}
3613
3614
#endif /* MBEDTLS_SELF_TEST */
3615
3616
#endif /* !MBEDTLS_ECP_ALT */
3617
3618
#endif /* MBEDTLS_ECP_C */