Coverage Report

Created: 2023-12-03 19:53

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
1.50M
{
79
1.50M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
1.50M
  int ci, blkn, dctbl, actbl;
81
1.50M
  d_derived_tbl **pdtbl;
82
1.50M
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
1.50M
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
1.50M
      cinfo->Ah != 0 || cinfo->Al != 0)
90
1.47M
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
3.07M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
1.57M
    compptr = cinfo->cur_comp_info[ci];
94
1.57M
    dctbl = compptr->dc_tbl_no;
95
1.57M
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
1.57M
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
1.57M
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
1.57M
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
1.57M
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
1.57M
    entropy->saved.last_dc_val[ci] = 0;
104
1.57M
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
3.21M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
1.71M
    ci = cinfo->MCU_membership[blkn];
109
1.71M
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
1.71M
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
1.71M
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
1.71M
    if (compptr->component_needed) {
115
1.20M
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
1.20M
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
1.20M
    } else {
119
512k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
512k
    }
121
1.71M
  }
122
123
  /* Initialize bitread state variables */
124
1.50M
  entropy->bitstate.bits_left = 0;
125
1.50M
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
1.50M
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
1.50M
  entropy->restarts_to_go = cinfo->restart_interval;
130
1.50M
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
3.60M
{
144
3.60M
  JHUFF_TBL *htbl;
145
3.60M
  d_derived_tbl *dtbl;
146
3.60M
  int p, i, l, si, numsymbols;
147
3.60M
  int lookbits, ctr;
148
3.60M
  char huffsize[257];
149
3.60M
  unsigned int huffcode[257];
150
3.60M
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
3.60M
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
3.50k
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
3.60M
  htbl =
160
3.60M
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
3.60M
  if (htbl == NULL)
162
561
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
3.60M
  if (*pdtbl == NULL)
166
228k
    *pdtbl = (d_derived_tbl *)
167
228k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
228k
                                  sizeof(d_derived_tbl));
169
3.60M
  dtbl = *pdtbl;
170
3.60M
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
3.60M
  p = 0;
175
61.2M
  for (l = 1; l <= 16; l++) {
176
57.6M
    i = (int)htbl->bits[l];
177
57.6M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
111M
    while (i--)
180
53.8M
      huffsize[p++] = (char)l;
181
57.6M
  }
182
3.60M
  huffsize[p] = 0;
183
3.60M
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
3.60M
  code = 0;
189
3.60M
  si = huffsize[0];
190
3.60M
  p = 0;
191
25.2M
  while (huffsize[p]) {
192
75.5M
    while (((int)huffsize[p]) == si) {
193
53.8M
      huffcode[p++] = code;
194
53.8M
      code++;
195
53.8M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
21.6M
    if (((JLONG)code) >= (((JLONG)1) << si))
200
724
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
21.6M
    code <<= 1;
202
21.6M
    si++;
203
21.6M
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
3.60M
  p = 0;
208
61.2M
  for (l = 1; l <= 16; l++) {
209
57.6M
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
18.3M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
18.3M
      p += htbl->bits[l];
215
18.3M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
39.3M
    } else {
217
39.3M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
39.3M
    }
219
57.6M
  }
220
3.60M
  dtbl->valoffset[17] = 0;
221
3.60M
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
925M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
921M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
3.60M
  p = 0;
234
32.4M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
72.5M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
43.7M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
838M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
795M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
795M
        lookbits++;
242
795M
      }
243
43.7M
    }
244
28.8M
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
3.60M
  if (isDC) {
253
10.8M
    for (i = 0; i < numsymbols; i++) {
254
9.18M
      int sym = htbl->huffval[i];
255
9.18M
      if (sym < 0 || sym > 15)
256
3.19k
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
9.18M
    }
258
1.69M
  }
259
3.60M
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
75.9M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
25.6M
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
25.6M
  register const JOCTET *next_input_byte = state->next_input_byte;
292
25.6M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
25.6M
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
25.6M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
63.4M
    while (bits_left < MIN_GET_BITS) {
301
56.7M
      register int c;
302
303
      /* Attempt to read a byte */
304
56.7M
      if (bytes_in_buffer == 0) {
305
20.2k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
0
          return FALSE;
307
20.2k
        next_input_byte = cinfo->src->next_input_byte;
308
20.2k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
20.2k
      }
310
56.7M
      bytes_in_buffer--;
311
56.7M
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
56.7M
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
1.97M
        do {
321
1.97M
          if (bytes_in_buffer == 0) {
322
492
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
0
              return FALSE;
324
492
            next_input_byte = cinfo->src->next_input_byte;
325
492
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
492
          }
327
1.97M
          bytes_in_buffer--;
328
1.97M
          c = *next_input_byte++;
329
1.97M
        } while (c == 0xFF);
330
331
1.80M
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
59.5k
          c = 0xFF;
334
1.74M
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
1.74M
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
1.74M
          goto no_more_bytes;
346
1.74M
        }
347
1.80M
      }
348
349
      /* OK, load c into get_buffer */
350
55.0M
      get_buffer = (get_buffer << 8) | c;
351
55.0M
      bits_left += 8;
352
55.0M
    } /* end while */
353
17.2M
  } else {
354
18.9M
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
18.9M
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
6.27M
      if (!cinfo->entropy->insufficient_data) {
366
1.85M
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
1.85M
        cinfo->entropy->insufficient_data = TRUE;
368
1.85M
      }
369
      /* Fill the buffer with zero bits */
370
6.27M
      get_buffer <<= MIN_GET_BITS - bits_left;
371
6.27M
      bits_left = MIN_GET_BITS;
372
6.27M
    }
373
18.9M
  }
374
375
  /* Unload the local registers */
376
25.6M
  state->next_input_byte = next_input_byte;
377
25.6M
  state->bytes_in_buffer = bytes_in_buffer;
378
25.6M
  state->get_buffer = get_buffer;
379
25.6M
  state->bits_left = bits_left;
380
381
25.6M
  return TRUE;
382
25.6M
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
113M
#define GET_BYTE { \
390
113M
  register int c0, c1; \
391
113M
  c0 = *buffer++; \
392
113M
  c1 = *buffer; \
393
113M
  /* Pre-execute most common case */ \
394
113M
  get_buffer = (get_buffer << 8) | c0; \
395
113M
  bits_left += 8; \
396
113M
  if (c0 == 0xFF) { \
397
12.3M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
12.3M
    buffer++; \
399
12.3M
    if (c1 != 0) { \
400
11.4M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
11.4M
      cinfo->unread_marker = c1; \
402
11.4M
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
11.4M
      buffer -= 2; \
404
11.4M
      get_buffer &= ~0xFF; \
405
11.4M
    } \
406
12.3M
  } \
407
113M
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
299M
  if (bits_left <= 16) { \
414
18.9M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
18.9M
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
13.6M
{
438
13.6M
  register int l = min_bits;
439
13.6M
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
13.6M
  CHECK_BIT_BUFFER(*state, l, return -1);
445
13.6M
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
47.1M
  while (code > htbl->maxcode[l]) {
451
33.5M
    code <<= 1;
452
33.5M
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
33.5M
    code |= GET_BITS(1);
454
33.5M
    l++;
455
33.5M
  }
456
457
  /* Unload the local registers */
458
13.6M
  state->get_buffer = get_buffer;
459
13.6M
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
13.6M
  if (l > 16) {
464
2.18M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
2.18M
    return 0;                   /* fake a zero as the safest result */
466
2.18M
  }
467
468
11.4M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
13.6M
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
168M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
168M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
5.10M
{
512
5.10M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
5.10M
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
5.10M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
5.10M
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
5.10M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
0
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
10.3M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
5.27M
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
5.10M
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
5.10M
  if (cinfo->unread_marker == 0)
537
141k
    entropy->pub.insufficient_data = FALSE;
538
539
5.10M
  return TRUE;
540
5.10M
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
3.16M
{
552
3.16M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
3.16M
  BITREAD_STATE_VARS;
554
3.16M
  int blkn;
555
3.16M
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
3.16M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
3.16M
  state = entropy->saved;
561
562
7.43M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
4.26M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
4.26M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
4.26M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
4.26M
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
4.26M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
4.26M
    if (s) {
573
3.32M
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
3.32M
      r = GET_BITS(s);
575
3.32M
      s = HUFF_EXTEND(r, s);
576
3.32M
    }
577
578
4.26M
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
3.12M
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
3.12M
      s += state.last_dc_val[ci];
590
3.12M
      state.last_dc_val[ci] = s;
591
3.12M
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
3.12M
        (*block)[0] = (JCOEF)s;
594
3.12M
      }
595
3.12M
    }
596
597
4.26M
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
69.5M
      for (k = 1; k < DCTSIZE2; k++) {
602
68.4M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
68.4M
        r = s >> 4;
605
68.4M
        s &= 15;
606
607
68.4M
        if (s) {
608
66.0M
          k += r;
609
66.0M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
66.0M
          r = GET_BITS(s);
611
66.0M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
66.0M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
66.0M
        } else {
618
2.35M
          if (r != 15)
619
2.05M
            break;
620
301k
          k += 15;
621
301k
        }
622
68.4M
      }
623
624
3.12M
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
29.0M
      for (k = 1; k < DCTSIZE2; k++) {
629
28.5M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
28.5M
        r = s >> 4;
632
28.5M
        s &= 15;
633
634
28.5M
        if (s) {
635
27.8M
          k += r;
636
27.8M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
27.8M
          DROP_BITS(s);
638
27.8M
        } else {
639
702k
          if (r != 15)
640
676k
            break;
641
26.0k
          k += 15;
642
26.0k
        }
643
28.5M
      }
644
1.13M
    }
645
4.26M
  }
646
647
  /* Completed MCU, so update state */
648
3.16M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
3.16M
  entropy->saved = state;
650
3.16M
  return TRUE;
651
3.16M
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
20.5M
{
663
20.5M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
20.5M
  BITREAD_STATE_VARS;
665
20.5M
  JOCTET *buffer;
666
20.5M
  int blkn;
667
20.5M
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
20.5M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
20.5M
  buffer = (JOCTET *)br_state.next_input_byte;
673
20.5M
  state = entropy->saved;
674
675
41.3M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
20.7M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
20.7M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
20.7M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
20.7M
    register int s, k, r, l;
680
681
20.7M
    HUFF_DECODE_FAST(s, l, dctbl);
682
20.7M
    if (s) {
683
16.4M
      FILL_BIT_BUFFER_FAST
684
16.4M
      r = GET_BITS(s);
685
16.4M
      s = HUFF_EXTEND(r, s);
686
16.4M
    }
687
688
20.7M
    if (entropy->dc_needed[blkn]) {
689
13.9M
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
13.9M
      s += state.last_dc_val[ci];
694
13.9M
      state.last_dc_val[ci] = s;
695
13.9M
      if (block)
696
13.9M
        (*block)[0] = (JCOEF)s;
697
13.9M
    }
698
699
20.7M
    if (entropy->ac_needed[blkn] && block) {
700
701
96.9M
      for (k = 1; k < DCTSIZE2; k++) {
702
95.0M
        HUFF_DECODE_FAST(s, l, actbl);
703
95.0M
        r = s >> 4;
704
95.0M
        s &= 15;
705
706
95.0M
        if (s) {
707
82.8M
          k += r;
708
82.8M
          FILL_BIT_BUFFER_FAST
709
82.8M
          r = GET_BITS(s);
710
82.8M
          s = HUFF_EXTEND(r, s);
711
82.8M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
82.8M
        } else {
713
12.2M
          if (r != 15) break;
714
137k
          k += 15;
715
137k
        }
716
95.0M
      }
717
718
13.9M
    } else {
719
720
45.9M
      for (k = 1; k < DCTSIZE2; k++) {
721
45.0M
        HUFF_DECODE_FAST(s, l, actbl);
722
45.0M
        r = s >> 4;
723
45.0M
        s &= 15;
724
725
45.0M
        if (s) {
726
39.1M
          k += r;
727
39.1M
          FILL_BIT_BUFFER_FAST
728
39.1M
          DROP_BITS(s);
729
39.1M
        } else {
730
5.99M
          if (r != 15) break;
731
70.5k
          k += 15;
732
70.5k
        }
733
45.0M
      }
734
6.80M
    }
735
20.7M
  }
736
737
20.5M
  if (cinfo->unread_marker != 0) {
738
1.03M
    cinfo->unread_marker = 0;
739
1.03M
    return FALSE;
740
1.03M
  }
741
742
19.5M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
19.5M
  br_state.next_input_byte = buffer;
744
19.5M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
19.5M
  entropy->saved = state;
746
19.5M
  return TRUE;
747
20.5M
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
144M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
144M
{
770
144M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
144M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
144M
  if (cinfo->restart_interval) {
775
17.1M
    if (entropy->restarts_to_go == 0)
776
5.10M
      if (!process_restart(cinfo))
777
0
        return FALSE;
778
17.1M
    usefast = 0;
779
17.1M
  }
780
781
144M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
144M
      cinfo->unread_marker != 0)
783
123M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
144M
  if (!entropy->pub.insufficient_data) {
789
790
22.7M
    if (usefast) {
791
20.5M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
20.5M
    } else {
793
3.16M
use_slow:
794
3.16M
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
3.16M
    }
796
797
22.7M
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
144M
  if (cinfo->restart_interval)
801
17.1M
    entropy->restarts_to_go--;
802
803
144M
  return TRUE;
804
144M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
62.8k
{
814
62.8k
  huff_entropy_ptr entropy;
815
62.8k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
62.8k
  std_huff_tables((j_common_ptr)cinfo);
822
823
62.8k
  entropy = (huff_entropy_ptr)
824
62.8k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
62.8k
                                sizeof(huff_entropy_decoder));
826
62.8k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
62.8k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
62.8k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
314k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
251k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
251k
  }
834
62.8k
}