Coverage Report

Created: 2023-12-13 08:16

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
150k
{
81
150k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
150k
  int ci, blkn, dctbl, actbl;
83
150k
  d_derived_tbl **pdtbl;
84
150k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
150k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
150k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
119k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
365k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
214k
    compptr = cinfo->cur_comp_info[ci];
96
214k
    dctbl = compptr->dc_tbl_no;
97
214k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
214k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
214k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
214k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
214k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
214k
    entropy->saved.last_dc_val[ci] = 0;
106
214k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
489k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
338k
    ci = cinfo->MCU_membership[blkn];
111
338k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
338k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
338k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
338k
    if (compptr->component_needed) {
117
326k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
326k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
326k
    } else {
121
12.0k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
12.0k
    }
123
338k
  }
124
125
  /* Initialize bitread state variables */
126
150k
  entropy->bitstate.bits_left = 0;
127
150k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
150k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
150k
  entropy->restarts_to_go = cinfo->restart_interval;
132
150k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
715k
{
146
715k
  JHUFF_TBL *htbl;
147
715k
  d_derived_tbl *dtbl;
148
715k
  int p, i, l, si, numsymbols;
149
715k
  int lookbits, ctr;
150
715k
  char huffsize[257];
151
715k
  unsigned int huffcode[257];
152
715k
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
715k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
433
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
715k
  htbl =
162
715k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
715k
  if (htbl == NULL)
164
233
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
715k
  if (*pdtbl == NULL)
168
192k
    *pdtbl = (d_derived_tbl *)
169
192k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
192k
                                  sizeof(d_derived_tbl));
171
715k
  dtbl = *pdtbl;
172
715k
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
715k
  p = 0;
177
12.1M
  for (l = 1; l <= 16; l++) {
178
11.4M
    i = (int)htbl->bits[l];
179
11.4M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
20.2M
    while (i--)
182
8.77M
      huffsize[p++] = (char)l;
183
11.4M
  }
184
715k
  huffsize[p] = 0;
185
715k
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
715k
  code = 0;
191
715k
  si = huffsize[0];
192
715k
  p = 0;
193
4.88M
  while (huffsize[p]) {
194
12.9M
    while (((int)huffsize[p]) == si) {
195
8.77M
      huffcode[p++] = code;
196
8.77M
      code++;
197
8.77M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
4.16M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
65
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
4.16M
    code <<= 1;
204
4.16M
    si++;
205
4.16M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
715k
  p = 0;
210
12.1M
  for (l = 1; l <= 16; l++) {
211
11.4M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
3.73M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
3.73M
      p += htbl->bits[l];
217
3.73M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
7.70M
    } else {
219
7.70M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
7.70M
    }
221
11.4M
  }
222
715k
  dtbl->valoffset[17] = 0;
223
715k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
183M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
183M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
715k
  p = 0;
236
6.43M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
11.9M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
6.19M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
173M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
167M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
167M
        lookbits++;
244
167M
      }
245
6.19M
    }
246
5.72M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
715k
  if (isDC) {
255
3.09M
    for (i = 0; i < numsymbols; i++) {
256
2.64M
      int sym = htbl->huffval[i];
257
2.64M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
622
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
2.64M
    }
260
452k
  }
261
715k
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
199M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
57.2M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
57.2M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
57.2M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
57.2M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
57.2M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
161M
    while (bits_left < MIN_GET_BITS) {
303
141M
      register int c;
304
305
      /* Attempt to read a byte */
306
141M
      if (bytes_in_buffer == 0) {
307
9.43k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
9.43k
        next_input_byte = cinfo->src->next_input_byte;
310
9.43k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
9.43k
      }
312
141M
      bytes_in_buffer--;
313
141M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
141M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
3.72M
        do {
323
3.72M
          if (bytes_in_buffer == 0) {
324
943
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
943
            next_input_byte = cinfo->src->next_input_byte;
327
943
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
943
          }
329
3.72M
          bytes_in_buffer--;
330
3.72M
          c = *next_input_byte++;
331
3.72M
        } while (c == 0xFF);
332
333
744k
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
472k
          c = 0xFF;
336
472k
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
271k
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
271k
          goto no_more_bytes;
348
271k
        }
349
744k
      }
350
351
      /* OK, load c into get_buffer */
352
141M
      get_buffer = (get_buffer << 8) | c;
353
141M
      bits_left += 8;
354
141M
    } /* end while */
355
36.9M
  } else {
356
37.2M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
37.2M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
18.8M
      if (!cinfo->entropy->insufficient_data) {
368
246k
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
246k
        cinfo->entropy->insufficient_data = TRUE;
370
246k
      }
371
      /* Fill the buffer with zero bits */
372
18.8M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
18.8M
      bits_left = MIN_GET_BITS;
374
18.8M
    }
375
37.2M
  }
376
377
  /* Unload the local registers */
378
57.2M
  state->next_input_byte = next_input_byte;
379
57.2M
  state->bytes_in_buffer = bytes_in_buffer;
380
57.2M
  state->get_buffer = get_buffer;
381
57.2M
  state->bits_left = bits_left;
382
383
57.2M
  return TRUE;
384
57.2M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
89.1M
#define GET_BYTE { \
392
89.1M
  register int c0, c1; \
393
89.1M
  c0 = *buffer++; \
394
89.1M
  c1 = *buffer; \
395
89.1M
  /* Pre-execute most common case */ \
396
89.1M
  get_buffer = (get_buffer << 8) | c0; \
397
89.1M
  bits_left += 8; \
398
89.1M
  if (c0 == 0xFF) { \
399
1.67M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
1.67M
    buffer++; \
401
1.67M
    if (c1 != 0) { \
402
1.36M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
1.36M
      cinfo->unread_marker = c1; \
404
1.36M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
1.36M
      buffer -= 2; \
406
1.36M
      get_buffer &= ~0xFF; \
407
1.36M
    } \
408
1.67M
  } \
409
89.1M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
166M
  if (bits_left <= 16) { \
416
14.8M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
14.8M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
19.1M
{
440
19.1M
  register int l = min_bits;
441
19.1M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
19.1M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
19.1M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
34.6M
  while (code > htbl->maxcode[l]) {
453
15.4M
    code <<= 1;
454
15.4M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
15.4M
    code |= GET_BITS(1);
456
15.4M
    l++;
457
15.4M
  }
458
459
  /* Unload the local registers */
460
19.1M
  state->get_buffer = get_buffer;
461
19.1M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
19.1M
  if (l > 16) {
466
622k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
622k
    return 0;                   /* fake a zero as the safest result */
468
622k
  }
469
470
18.5M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
19.1M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
119M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
119M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
1.18M
{
514
1.18M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
1.18M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
1.18M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
1.18M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
1.18M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
2.42M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
1.24M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
1.18M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
1.18M
  if (cinfo->unread_marker == 0)
539
18.8k
    entropy->pub.insufficient_data = FALSE;
540
541
1.18M
  return TRUE;
542
1.18M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
437k
{
554
437k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
437k
  BITREAD_STATE_VARS;
556
437k
  int blkn;
557
437k
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
437k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
437k
  state = entropy->saved;
563
564
1.85M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
1.41M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
1.41M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
1.41M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
1.41M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
1.41M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
1.41M
    if (s) {
575
1.05M
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
1.05M
      r = GET_BITS(s);
577
1.05M
      s = HUFF_EXTEND(r, s);
578
1.05M
    }
579
580
1.41M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
1.35M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
1.35M
      s += state.last_dc_val[ci];
592
1.35M
      state.last_dc_val[ci] = s;
593
1.35M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
1.35M
        (*block)[0] = (JCOEF)s;
596
1.35M
      }
597
1.35M
    }
598
599
1.41M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
39.7M
      for (k = 1; k < DCTSIZE2; k++) {
604
39.1M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
39.1M
        r = s >> 4;
607
39.1M
        s &= 15;
608
609
39.1M
        if (s) {
610
38.2M
          k += r;
611
38.2M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
38.2M
          r = GET_BITS(s);
613
38.2M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
38.2M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
38.2M
        } else {
620
849k
          if (r != 15)
621
738k
            break;
622
110k
          k += 15;
623
110k
        }
624
39.1M
      }
625
626
1.35M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
2.82M
      for (k = 1; k < DCTSIZE2; k++) {
631
2.78M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
2.78M
        r = s >> 4;
634
2.78M
        s &= 15;
635
636
2.78M
        if (s) {
637
2.76M
          k += r;
638
2.76M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
2.76M
          DROP_BITS(s);
640
2.76M
        } else {
641
22.5k
          if (r != 15)
642
20.4k
            break;
643
2.08k
          k += 15;
644
2.08k
        }
645
2.78M
      }
646
64.6k
    }
647
1.41M
  }
648
649
  /* Completed MCU, so update state */
650
437k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
437k
  entropy->saved = state;
652
437k
  return TRUE;
653
437k
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
1.11M
{
665
1.11M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
1.11M
  BITREAD_STATE_VARS;
667
1.11M
  JOCTET *buffer;
668
1.11M
  int blkn;
669
1.11M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
1.11M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
1.11M
  buffer = (JOCTET *)br_state.next_input_byte;
675
1.11M
  state = entropy->saved;
676
677
3.72M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
2.60M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
2.60M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
2.60M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
2.60M
    register int s, k, r, l;
682
683
2.60M
    HUFF_DECODE_FAST(s, l, dctbl);
684
2.60M
    if (s) {
685
2.02M
      FILL_BIT_BUFFER_FAST
686
2.02M
      r = GET_BITS(s);
687
2.02M
      s = HUFF_EXTEND(r, s);
688
2.02M
    }
689
690
2.60M
    if (entropy->dc_needed[blkn]) {
691
2.55M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
2.55M
      s += state.last_dc_val[ci];
696
2.55M
      state.last_dc_val[ci] = s;
697
2.55M
      if (block)
698
2.55M
        (*block)[0] = (JCOEF)s;
699
2.55M
    }
700
701
2.60M
    if (entropy->ac_needed[blkn] && block) {
702
703
80.8M
      for (k = 1; k < DCTSIZE2; k++) {
704
79.5M
        HUFF_DECODE_FAST(s, l, actbl);
705
79.5M
        r = s >> 4;
706
79.5M
        s &= 15;
707
708
79.5M
        if (s) {
709
78.2M
          k += r;
710
78.2M
          FILL_BIT_BUFFER_FAST
711
78.2M
          r = GET_BITS(s);
712
78.2M
          s = HUFF_EXTEND(r, s);
713
78.2M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
78.2M
        } else {
715
1.31M
          if (r != 15) break;
716
45.1k
          k += 15;
717
45.1k
        }
718
79.5M
      }
719
720
2.55M
    } else {
721
722
1.85M
      for (k = 1; k < DCTSIZE2; k++) {
723
1.82M
        HUFF_DECODE_FAST(s, l, actbl);
724
1.82M
        r = s >> 4;
725
1.82M
        s &= 15;
726
727
1.82M
        if (s) {
728
1.80M
          k += r;
729
1.80M
          FILL_BIT_BUFFER_FAST
730
1.80M
          DROP_BITS(s);
731
1.80M
        } else {
732
21.4k
          if (r != 15) break;
733
2.37k
          k += 15;
734
2.37k
        }
735
1.82M
      }
736
48.0k
    }
737
2.60M
  }
738
739
1.11M
  if (cinfo->unread_marker != 0) {
740
95.2k
    cinfo->unread_marker = 0;
741
95.2k
    return FALSE;
742
95.2k
  }
743
744
1.02M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
1.02M
  br_state.next_input_byte = buffer;
746
1.02M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
1.02M
  entropy->saved = state;
748
1.02M
  return TRUE;
749
1.11M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
26.9M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
26.9M
{
772
26.9M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
26.9M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
26.9M
  if (cinfo->restart_interval) {
777
4.43M
    if (entropy->restarts_to_go == 0)
778
1.18M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
4.43M
    usefast = 0;
781
4.43M
  }
782
783
26.9M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
26.9M
      cinfo->unread_marker != 0)
785
25.7M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
26.9M
  if (!entropy->pub.insufficient_data) {
791
792
1.45M
    if (usefast) {
793
1.11M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
1.11M
    } else {
795
437k
use_slow:
796
437k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
437k
    }
798
799
1.45M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
26.9M
  if (cinfo->restart_interval)
803
4.43M
    entropy->restarts_to_go--;
804
805
26.9M
  return TRUE;
806
26.9M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
37.7k
{
816
37.7k
  huff_entropy_ptr entropy;
817
37.7k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
37.7k
  std_huff_tables((j_common_ptr)cinfo);
824
825
37.7k
  entropy = (huff_entropy_ptr)
826
37.7k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
37.7k
                                sizeof(huff_entropy_decoder));
828
37.7k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
37.7k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
37.7k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
188k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
151k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
151k
  }
836
37.7k
}