Coverage Report

Created: 2024-04-25 11:52

/src/libpcap/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
#include <limits.h> /* for SIZE_MAX */
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
#include "diag-control.h"
43
44
#ifdef HAVE_OS_PROTO_H
45
#include "os-proto.h"
46
#endif
47
48
#ifdef BDEBUG
49
/*
50
 * The internal "debug printout" flag for the filter expression optimizer.
51
 * The code to print that stuff is present only if BDEBUG is defined, so
52
 * the flag, and the routine to set it, are defined only if BDEBUG is
53
 * defined.
54
 */
55
static int pcap_optimizer_debug;
56
57
/*
58
 * Routine to set that flag.
59
 *
60
 * This is intended for libpcap developers, not for general use.
61
 * If you want to set these in a program, you'll have to declare this
62
 * routine yourself, with the appropriate DLL import attribute on Windows;
63
 * it's not declared in any header file, and won't be declared in any
64
 * header file provided by libpcap.
65
 */
66
PCAP_API void pcap_set_optimizer_debug(int value);
67
68
PCAP_API_DEF void
69
pcap_set_optimizer_debug(int value)
70
{
71
  pcap_optimizer_debug = value;
72
}
73
74
/*
75
 * The internal "print dot graph" flag for the filter expression optimizer.
76
 * The code to print that stuff is present only if BDEBUG is defined, so
77
 * the flag, and the routine to set it, are defined only if BDEBUG is
78
 * defined.
79
 */
80
static int pcap_print_dot_graph;
81
82
/*
83
 * Routine to set that flag.
84
 *
85
 * This is intended for libpcap developers, not for general use.
86
 * If you want to set these in a program, you'll have to declare this
87
 * routine yourself, with the appropriate DLL import attribute on Windows;
88
 * it's not declared in any header file, and won't be declared in any
89
 * header file provided by libpcap.
90
 */
91
PCAP_API void pcap_set_print_dot_graph(int value);
92
93
PCAP_API_DEF void
94
pcap_set_print_dot_graph(int value)
95
{
96
  pcap_print_dot_graph = value;
97
}
98
99
#endif
100
101
/*
102
 * lowest_set_bit().
103
 *
104
 * Takes a 32-bit integer as an argument.
105
 *
106
 * If handed a non-zero value, returns the index of the lowest set bit,
107
 * counting upwards from zero.
108
 *
109
 * If handed zero, the results are platform- and compiler-dependent.
110
 * Keep it out of the light, don't give it any water, don't feed it
111
 * after midnight, and don't pass zero to it.
112
 *
113
 * This is the same as the count of trailing zeroes in the word.
114
 */
115
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116
  /*
117
   * GCC 3.4 and later; we have __builtin_ctz().
118
   */
119
20.2M
  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120
#elif defined(_MSC_VER)
121
  /*
122
   * Visual Studio; we support only 2005 and later, so use
123
   * _BitScanForward().
124
   */
125
#include <intrin.h>
126
127
#ifndef __clang__
128
#pragma intrinsic(_BitScanForward)
129
#endif
130
131
static __forceinline u_int
132
lowest_set_bit(int mask)
133
{
134
  unsigned long bit;
135
136
  /*
137
   * Don't sign-extend mask if long is longer than int.
138
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139
   */
140
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141
    abort();  /* mask is zero */
142
  return (u_int)bit;
143
}
144
#elif defined(MSDOS) && defined(__DJGPP__)
145
  /*
146
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147
   * we've already included.
148
   */
149
  #define lowest_set_bit(mask)  ((u_int)(ffs((mask)) - 1))
150
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151
  /*
152
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153
   * or some other platform (UN*X conforming to a sufficient recent version
154
   * of the Single UNIX Specification).
155
   */
156
  #include <strings.h>
157
  #define lowest_set_bit(mask)  (u_int)((ffs((mask)) - 1))
158
#else
159
/*
160
 * None of the above.
161
 * Use a perfect-hash-function-based function.
162
 */
163
static u_int
164
lowest_set_bit(int mask)
165
{
166
  unsigned int v = (unsigned int)mask;
167
168
  static const u_int MultiplyDeBruijnBitPosition[32] = {
169
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171
  };
172
173
  /*
174
   * We strip off all but the lowermost set bit (v & ~v),
175
   * and perform a minimal perfect hash on it to look up the
176
   * number of low-order zero bits in a table.
177
   *
178
   * See:
179
   *
180
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181
   *
182
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
183
   */
184
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185
}
186
#endif
187
188
/*
189
 * Represents a deleted instruction.
190
 */
191
337M
#define NOP -1
192
193
/*
194
 * Register numbers for use-def values.
195
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196
 * location.  A_ATOM is the accumulator and X_ATOM is the index
197
 * register.
198
 */
199
174M
#define A_ATOM BPF_MEMWORDS
200
38.8M
#define X_ATOM (BPF_MEMWORDS+1)
201
202
/*
203
 * This define is used to represent *both* the accumulator and
204
 * x register in use-def computations.
205
 * Currently, the use-def code assumes only one definition per instruction.
206
 */
207
60.2M
#define AX_ATOM N_ATOMS
208
209
/*
210
 * These data structures are used in a Cocke and Shwarz style
211
 * value numbering scheme.  Since the flowgraph is acyclic,
212
 * exit values can be propagated from a node's predecessors
213
 * provided it is uniquely defined.
214
 */
215
struct valnode {
216
  int code;
217
  bpf_u_int32 v0, v1;
218
  int val;    /* the value number */
219
  struct valnode *next;
220
};
221
222
/* Integer constants mapped with the load immediate opcode. */
223
17.2M
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225
struct vmapinfo {
226
  int is_const;
227
  bpf_u_int32 const_val;
228
};
229
230
typedef struct {
231
  /*
232
   * Place to longjmp to on an error.
233
   */
234
  jmp_buf top_ctx;
235
236
  /*
237
   * The buffer into which to put error message.
238
   */
239
  char *errbuf;
240
241
  /*
242
   * A flag to indicate that further optimization is needed.
243
   * Iterative passes are continued until a given pass yields no
244
   * code simplification or branch movement.
245
   */
246
  int done;
247
248
  /*
249
   * XXX - detect loops that do nothing but repeated AND/OR pullups
250
   * and edge moves.
251
   * If 100 passes in a row do nothing but that, treat that as a
252
   * sign that we're in a loop that just shuffles in a cycle in
253
   * which each pass just shuffles the code and we eventually
254
   * get back to the original configuration.
255
   *
256
   * XXX - we need a non-heuristic way of detecting, or preventing,
257
   * such a cycle.
258
   */
259
  int non_branch_movement_performed;
260
261
  u_int n_blocks;   /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262
  struct block **blocks;
263
  u_int n_edges;    /* twice n_blocks, so guaranteed to be > 0 */
264
  struct edge **edges;
265
266
  /*
267
   * A bit vector set representation of the dominators.
268
   * We round up the set size to the next power of two.
269
   */
270
  u_int nodewords;  /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271
  u_int edgewords;  /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272
  struct block **levels;
273
  bpf_u_int32 *space;
274
275
110M
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276
/*
277
 * True if a is in uset {p}
278
 */
279
7.24M
#define SET_MEMBER(p, a) \
280
7.24M
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282
/*
283
 * Add 'a' to uset p.
284
 */
285
37.6M
#define SET_INSERT(p, a) \
286
37.6M
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288
/*
289
 * Delete 'a' from uset p.
290
 */
291
#define SET_DELETE(p, a) \
292
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294
/*
295
 * a := a intersect b
296
 * n must be guaranteed to be > 0
297
 */
298
42.5M
#define SET_INTERSECT(a, b, n)\
299
42.5M
{\
300
42.5M
  register bpf_u_int32 *_x = a, *_y = b;\
301
42.5M
  register u_int _n = n;\
302
82.4M
  do *_x++ &= *_y++; while (--_n != 0);\
303
42.5M
}
304
305
/*
306
 * a := a - b
307
 * n must be guaranteed to be > 0
308
 */
309
#define SET_SUBTRACT(a, b, n)\
310
{\
311
  register bpf_u_int32 *_x = a, *_y = b;\
312
  register u_int _n = n;\
313
  do *_x++ &=~ *_y++; while (--_n != 0);\
314
}
315
316
/*
317
 * a := a union b
318
 * n must be guaranteed to be > 0
319
 */
320
14.1M
#define SET_UNION(a, b, n)\
321
14.1M
{\
322
14.1M
  register bpf_u_int32 *_x = a, *_y = b;\
323
14.1M
  register u_int _n = n;\
324
20.0M
  do *_x++ |= *_y++; while (--_n != 0);\
325
14.1M
}
326
327
  uset all_dom_sets;
328
  uset all_closure_sets;
329
  uset all_edge_sets;
330
331
26.9M
#define MODULUS 213
332
  struct valnode *hashtbl[MODULUS];
333
  bpf_u_int32 curval;
334
  bpf_u_int32 maxval;
335
336
  struct vmapinfo *vmap;
337
  struct valnode *vnode_base;
338
  struct valnode *next_vnode;
339
} opt_state_t;
340
341
typedef struct {
342
  /*
343
   * Place to longjmp to on an error.
344
   */
345
  jmp_buf top_ctx;
346
347
  /*
348
   * The buffer into which to put error message.
349
   */
350
  char *errbuf;
351
352
  /*
353
   * Some pointers used to convert the basic block form of the code,
354
   * into the array form that BPF requires.  'fstart' will point to
355
   * the malloc'd array while 'ftail' is used during the recursive
356
   * traversal.
357
   */
358
  struct bpf_insn *fstart;
359
  struct bpf_insn *ftail;
360
} conv_state_t;
361
362
static void opt_init(opt_state_t *, struct icode *);
363
static void opt_cleanup(opt_state_t *);
364
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365
    PCAP_PRINTFLIKE(2, 3);
366
367
static void intern_blocks(opt_state_t *, struct icode *);
368
369
static void find_inedges(opt_state_t *, struct block *);
370
#ifdef BDEBUG
371
static void opt_dump(opt_state_t *, struct icode *);
372
#endif
373
374
#ifndef MAX
375
7.08M
#define MAX(a,b) ((a)>(b)?(a):(b))
376
#endif
377
378
static void
379
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380
15.6M
{
381
15.6M
  int level;
382
383
15.6M
  if (isMarked(ic, b))
384
6.18M
    return;
385
386
9.41M
  Mark(ic, b);
387
9.41M
  b->link = 0;
388
389
9.41M
  if (JT(b)) {
390
7.08M
    find_levels_r(opt_state, ic, JT(b));
391
7.08M
    find_levels_r(opt_state, ic, JF(b));
392
7.08M
    level = MAX(JT(b)->level, JF(b)->level) + 1;
393
7.08M
  } else
394
2.32M
    level = 0;
395
9.41M
  b->level = level;
396
9.41M
  b->link = opt_state->levels[level];
397
9.41M
  opt_state->levels[level] = b;
398
9.41M
}
399
400
/*
401
 * Level graph.  The levels go from 0 at the leaves to
402
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403
 * first node of the level list, whose elements are linked
404
 * with the 'link' field of the struct block.
405
 */
406
static void
407
find_levels(opt_state_t *opt_state, struct icode *ic)
408
1.42M
{
409
1.42M
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410
1.42M
  unMarkAll(ic);
411
1.42M
  find_levels_r(opt_state, ic, ic->root);
412
1.42M
}
413
414
/*
415
 * Find dominator relationships.
416
 * Assumes graph has been leveled.
417
 */
418
static void
419
find_dom(opt_state_t *opt_state, struct block *root)
420
1.42M
{
421
1.42M
  u_int i;
422
1.42M
  int level;
423
1.42M
  struct block *b;
424
1.42M
  bpf_u_int32 *x;
425
426
  /*
427
   * Initialize sets to contain all nodes.
428
   */
429
1.42M
  x = opt_state->all_dom_sets;
430
  /*
431
   * In opt_init(), we've made sure the product doesn't overflow.
432
   */
433
1.42M
  i = opt_state->n_blocks * opt_state->nodewords;
434
24.7M
  while (i != 0) {
435
23.2M
    --i;
436
23.2M
    *x++ = 0xFFFFFFFFU;
437
23.2M
  }
438
  /* Root starts off empty. */
439
2.96M
  for (i = opt_state->nodewords; i != 0;) {
440
1.54M
    --i;
441
1.54M
    root->dom[i] = 0;
442
1.54M
  }
443
444
  /* root->level is the highest level no found. */
445
9.55M
  for (level = root->level; level >= 0; --level) {
446
17.5M
    for (b = opt_state->levels[level]; b; b = b->link) {
447
9.41M
      SET_INSERT(b->dom, b->id);
448
9.41M
      if (JT(b) == 0)
449
2.32M
        continue;
450
7.08M
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451
7.08M
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452
7.08M
    }
453
8.13M
  }
454
1.42M
}
455
456
static void
457
propedom(opt_state_t *opt_state, struct edge *ep)
458
18.8M
{
459
18.8M
  SET_INSERT(ep->edom, ep->id);
460
18.8M
  if (ep->succ) {
461
14.1M
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462
14.1M
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463
14.1M
  }
464
18.8M
}
465
466
/*
467
 * Compute edge dominators.
468
 * Assumes graph has been leveled and predecessors established.
469
 */
470
static void
471
find_edom(opt_state_t *opt_state, struct block *root)
472
1.42M
{
473
1.42M
  u_int i;
474
1.42M
  uset x;
475
1.42M
  int level;
476
1.42M
  struct block *b;
477
478
1.42M
  x = opt_state->all_edge_sets;
479
  /*
480
   * In opt_init(), we've made sure the product doesn't overflow.
481
   */
482
74.7M
  for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483
73.3M
    --i;
484
73.3M
    x[i] = 0xFFFFFFFFU;
485
73.3M
  }
486
487
  /* root->level is the highest level no found. */
488
1.42M
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489
1.42M
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490
9.55M
  for (level = root->level; level >= 0; --level) {
491
17.5M
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
492
9.41M
      propedom(opt_state, &b->et);
493
9.41M
      propedom(opt_state, &b->ef);
494
9.41M
    }
495
8.13M
  }
496
1.42M
}
497
498
/*
499
 * Find the backwards transitive closure of the flow graph.  These sets
500
 * are backwards in the sense that we find the set of nodes that reach
501
 * a given node, not the set of nodes that can be reached by a node.
502
 *
503
 * Assumes graph has been leveled.
504
 */
505
static void
506
find_closure(opt_state_t *opt_state, struct block *root)
507
1.42M
{
508
1.42M
  int level;
509
1.42M
  struct block *b;
510
511
  /*
512
   * Initialize sets to contain no nodes.
513
   */
514
1.42M
  memset((char *)opt_state->all_closure_sets, 0,
515
1.42M
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517
  /* root->level is the highest level no found. */
518
9.55M
  for (level = root->level; level >= 0; --level) {
519
17.5M
    for (b = opt_state->levels[level]; b; b = b->link) {
520
9.41M
      SET_INSERT(b->closure, b->id);
521
9.41M
      if (JT(b) == 0)
522
2.32M
        continue;
523
7.08M
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524
7.08M
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525
7.08M
    }
526
8.13M
  }
527
1.42M
}
528
529
/*
530
 * Return the register number that is used by s.
531
 *
532
 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533
 * are used, the scratch memory location's number if a scratch memory
534
 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535
 *
536
 * The implementation should probably change to an array access.
537
 */
538
static int
539
atomuse(struct stmt *s)
540
94.0M
{
541
94.0M
  register int c = s->code;
542
543
94.0M
  if (c == NOP)
544
15.5M
    return -1;
545
546
78.4M
  switch (BPF_CLASS(c)) {
547
548
1.45M
  case BPF_RET:
549
1.45M
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550
1.45M
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552
31.0M
  case BPF_LD:
553
36.0M
  case BPF_LDX:
554
    /*
555
     * As there are fewer than 2^31 memory locations,
556
     * s->k should be convertible to int without problems.
557
     */
558
36.0M
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559
36.0M
      (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561
12.9M
  case BPF_ST:
562
12.9M
    return A_ATOM;
563
564
0
  case BPF_STX:
565
0
    return X_ATOM;
566
567
14.0M
  case BPF_JMP:
568
23.6M
  case BPF_ALU:
569
23.6M
    if (BPF_SRC(c) == BPF_X)
570
6.14M
      return AX_ATOM;
571
17.5M
    return A_ATOM;
572
573
4.34M
  case BPF_MISC:
574
4.34M
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575
78.4M
  }
576
0
  abort();
577
  /* NOTREACHED */
578
78.4M
}
579
580
/*
581
 * Return the register number that is defined by 's'.  We assume that
582
 * a single stmt cannot define more than one register.  If no register
583
 * is defined, return -1.
584
 *
585
 * The implementation should probably change to an array access.
586
 */
587
static int
588
atomdef(struct stmt *s)
589
86.9M
{
590
86.9M
  if (s->code == NOP)
591
15.5M
    return -1;
592
593
71.3M
  switch (BPF_CLASS(s->code)) {
594
595
31.0M
  case BPF_LD:
596
40.6M
  case BPF_ALU:
597
40.6M
    return A_ATOM;
598
599
4.98M
  case BPF_LDX:
600
4.98M
    return X_ATOM;
601
602
12.9M
  case BPF_ST:
603
12.9M
  case BPF_STX:
604
12.9M
    return s->k;
605
606
4.34M
  case BPF_MISC:
607
4.34M
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608
71.3M
  }
609
8.40M
  return -1;
610
71.3M
}
611
612
/*
613
 * Compute the sets of registers used, defined, and killed by 'b'.
614
 *
615
 * "Used" means that a statement in 'b' uses the register before any
616
 * statement in 'b' defines it, i.e. it uses the value left in
617
 * that register by a predecessor block of this block.
618
 * "Defined" means that a statement in 'b' defines it.
619
 * "Killed" means that a statement in 'b' defines it before any
620
 * statement in 'b' uses it, i.e. it kills the value left in that
621
 * register by a predecessor block of this block.
622
 */
623
static void
624
compute_local_ud(struct block *b)
625
9.41M
{
626
9.41M
  struct slist *s;
627
9.41M
  atomset def = 0, use = 0, killed = 0;
628
9.41M
  int atom;
629
630
56.6M
  for (s = b->stmts; s; s = s->next) {
631
47.1M
    if (s->s.code == NOP)
632
14.5M
      continue;
633
32.6M
    atom = atomuse(&s->s);
634
32.6M
    if (atom >= 0) {
635
21.5M
      if (atom == AX_ATOM) {
636
3.01M
        if (!ATOMELEM(def, X_ATOM))
637
0
          use |= ATOMMASK(X_ATOM);
638
3.01M
        if (!ATOMELEM(def, A_ATOM))
639
0
          use |= ATOMMASK(A_ATOM);
640
3.01M
      }
641
18.4M
      else if (atom < N_ATOMS) {
642
18.4M
        if (!ATOMELEM(def, atom))
643
654k
          use |= ATOMMASK(atom);
644
18.4M
      }
645
0
      else
646
0
        abort();
647
21.5M
    }
648
32.6M
    atom = atomdef(&s->s);
649
32.6M
    if (atom >= 0) {
650
32.6M
      if (!ATOMELEM(use, atom))
651
32.6M
        killed |= ATOMMASK(atom);
652
32.6M
      def |= ATOMMASK(atom);
653
32.6M
    }
654
32.6M
  }
655
9.41M
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
656
    /*
657
     * XXX - what about RET?
658
     */
659
7.08M
    atom = atomuse(&b->s);
660
7.08M
    if (atom >= 0) {
661
7.08M
      if (atom == AX_ATOM) {
662
528k
        if (!ATOMELEM(def, X_ATOM))
663
6.59k
          use |= ATOMMASK(X_ATOM);
664
528k
        if (!ATOMELEM(def, A_ATOM))
665
6.59k
          use |= ATOMMASK(A_ATOM);
666
528k
      }
667
6.55M
      else if (atom < N_ATOMS) {
668
6.55M
        if (!ATOMELEM(def, atom))
669
167k
          use |= ATOMMASK(atom);
670
6.55M
      }
671
0
      else
672
0
        abort();
673
7.08M
    }
674
7.08M
  }
675
676
9.41M
  b->def = def;
677
9.41M
  b->kill = killed;
678
9.41M
  b->in_use = use;
679
9.41M
}
680
681
/*
682
 * Assume graph is already leveled.
683
 */
684
static void
685
find_ud(opt_state_t *opt_state, struct block *root)
686
1.42M
{
687
1.42M
  int i, maxlevel;
688
1.42M
  struct block *p;
689
690
  /*
691
   * root->level is the highest level no found;
692
   * count down from there.
693
   */
694
1.42M
  maxlevel = root->level;
695
9.55M
  for (i = maxlevel; i >= 0; --i)
696
17.5M
    for (p = opt_state->levels[i]; p; p = p->link) {
697
9.41M
      compute_local_ud(p);
698
9.41M
      p->out_use = 0;
699
9.41M
    }
700
701
8.13M
  for (i = 1; i <= maxlevel; ++i) {
702
13.7M
    for (p = opt_state->levels[i]; p; p = p->link) {
703
7.08M
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
704
7.08M
      p->in_use |= p->out_use &~ p->kill;
705
7.08M
    }
706
6.71M
  }
707
1.42M
}
708
static void
709
init_val(opt_state_t *opt_state)
710
1.42M
{
711
1.42M
  opt_state->curval = 0;
712
1.42M
  opt_state->next_vnode = opt_state->vnode_base;
713
1.42M
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714
1.42M
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715
1.42M
}
716
717
/*
718
 * Because we really don't have an IR, this stuff is a little messy.
719
 *
720
 * This routine looks in the table of existing value number for a value
721
 * with generated from an operation with the specified opcode and
722
 * the specified values.  If it finds it, it returns its value number,
723
 * otherwise it makes a new entry in the table and returns the
724
 * value number of that entry.
725
 */
726
static bpf_u_int32
727
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728
26.9M
{
729
26.9M
  u_int hash;
730
26.9M
  bpf_u_int32 val;
731
26.9M
  struct valnode *p;
732
733
26.9M
  hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734
26.9M
  hash %= MODULUS;
735
736
28.6M
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
737
13.0M
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
738
11.4M
      return p->val;
739
740
  /*
741
   * Not found.  Allocate a new value, and assign it a new
742
   * value number.
743
   *
744
   * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745
   * increment it before using it as the new value number, which
746
   * means we never assign VAL_UNKNOWN.
747
   *
748
   * XXX - unless we overflow, but we probably won't have 2^32-1
749
   * values; we treat 32 bits as effectively infinite.
750
   */
751
15.5M
  val = ++opt_state->curval;
752
15.5M
  if (BPF_MODE(code) == BPF_IMM &&
753
15.5M
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754
9.46M
    opt_state->vmap[val].const_val = v0;
755
9.46M
    opt_state->vmap[val].is_const = 1;
756
9.46M
  }
757
15.5M
  p = opt_state->next_vnode++;
758
15.5M
  p->val = val;
759
15.5M
  p->code = code;
760
15.5M
  p->v0 = v0;
761
15.5M
  p->v1 = v1;
762
15.5M
  p->next = opt_state->hashtbl[hash];
763
15.5M
  opt_state->hashtbl[hash] = p;
764
765
15.5M
  return val;
766
26.9M
}
767
768
static inline void
769
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770
27.1M
{
771
27.1M
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
772
1.43M
    s->code = NOP;
773
25.6M
  else
774
25.6M
    *valp = newval;
775
27.1M
}
776
777
/*
778
 * Do constant-folding on binary operators.
779
 * (Unary operators are handled elsewhere.)
780
 */
781
static void
782
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783
599k
{
784
599k
  bpf_u_int32 a, b;
785
786
599k
  a = opt_state->vmap[v0].const_val;
787
599k
  b = opt_state->vmap[v1].const_val;
788
789
599k
  switch (BPF_OP(s->code)) {
790
93.3k
  case BPF_ADD:
791
93.3k
    a += b;
792
93.3k
    break;
793
794
48.1k
  case BPF_SUB:
795
48.1k
    a -= b;
796
48.1k
    break;
797
798
138k
  case BPF_MUL:
799
138k
    a *= b;
800
138k
    break;
801
802
67.9k
  case BPF_DIV:
803
67.9k
    if (b == 0)
804
1.85k
      opt_error(opt_state, "division by zero");
805
66.1k
    a /= b;
806
66.1k
    break;
807
808
103k
  case BPF_MOD:
809
103k
    if (b == 0)
810
13.3k
      opt_error(opt_state, "modulus by zero");
811
90.6k
    a %= b;
812
90.6k
    break;
813
814
89.5k
  case BPF_AND:
815
89.5k
    a &= b;
816
89.5k
    break;
817
818
13.3k
  case BPF_OR:
819
13.3k
    a |= b;
820
13.3k
    break;
821
822
29.2k
  case BPF_XOR:
823
29.2k
    a ^= b;
824
29.2k
    break;
825
826
12.5k
  case BPF_LSH:
827
    /*
828
     * A left shift of more than the width of the type
829
     * is undefined in C; we'll just treat it as shifting
830
     * all the bits out.
831
     *
832
     * XXX - the BPF interpreter doesn't check for this,
833
     * so its behavior is dependent on the behavior of
834
     * the processor on which it's running.  There are
835
     * processors on which it shifts all the bits out
836
     * and processors on which it does no shift.
837
     */
838
12.5k
    if (b < 32)
839
11.7k
      a <<= b;
840
760
    else
841
760
      a = 0;
842
12.5k
    break;
843
844
3.42k
  case BPF_RSH:
845
    /*
846
     * A right shift of more than the width of the type
847
     * is undefined in C; we'll just treat it as shifting
848
     * all the bits out.
849
     *
850
     * XXX - the BPF interpreter doesn't check for this,
851
     * so its behavior is dependent on the behavior of
852
     * the processor on which it's running.  There are
853
     * processors on which it shifts all the bits out
854
     * and processors on which it does no shift.
855
     */
856
3.42k
    if (b < 32)
857
2.90k
      a >>= b;
858
521
    else
859
521
      a = 0;
860
3.42k
    break;
861
862
0
  default:
863
0
    abort();
864
599k
  }
865
584k
  s->k = a;
866
584k
  s->code = BPF_LD|BPF_IMM;
867
  /*
868
   * XXX - optimizer loop detection.
869
   */
870
584k
  opt_state->non_branch_movement_performed = 1;
871
584k
  opt_state->done = 0;
872
584k
}
873
874
static inline struct slist *
875
this_op(struct slist *s)
876
61.1M
{
877
76.5M
  while (s != 0 && s->s.code == NOP)
878
15.4M
    s = s->next;
879
61.1M
  return s;
880
61.1M
}
881
882
static void
883
opt_not(struct block *b)
884
1.89k
{
885
1.89k
  struct block *tmp = JT(b);
886
887
1.89k
  JT(b) = JF(b);
888
1.89k
  JF(b) = tmp;
889
1.89k
}
890
891
static void
892
opt_peep(opt_state_t *opt_state, struct block *b)
893
8.40M
{
894
8.40M
  struct slist *s;
895
8.40M
  struct slist *next, *last;
896
8.40M
  bpf_u_int32 val;
897
898
8.40M
  s = b->stmts;
899
8.40M
  if (s == 0)
900
1.52M
    return;
901
902
6.87M
  last = s;
903
30.6M
  for (/*empty*/; /*empty*/; s = next) {
904
    /*
905
     * Skip over nops.
906
     */
907
30.6M
    s = this_op(s);
908
30.6M
    if (s == 0)
909
254k
      break;  /* nothing left in the block */
910
911
    /*
912
     * Find the next real instruction after that one
913
     * (skipping nops).
914
     */
915
30.4M
    next = this_op(s->next);
916
30.4M
    if (next == 0)
917
6.62M
      break;  /* no next instruction */
918
23.8M
    last = next;
919
920
    /*
921
     * st  M[k] --> st  M[k]
922
     * ldx M[k]   tax
923
     */
924
23.8M
    if (s->s.code == BPF_ST &&
925
23.8M
        next->s.code == (BPF_LDX|BPF_MEM) &&
926
23.8M
        s->s.k == next->s.k) {
927
      /*
928
       * XXX - optimizer loop detection.
929
       */
930
1.01M
      opt_state->non_branch_movement_performed = 1;
931
1.01M
      opt_state->done = 0;
932
1.01M
      next->s.code = BPF_MISC|BPF_TAX;
933
1.01M
    }
934
    /*
935
     * ld  #k --> ldx  #k
936
     * tax      txa
937
     */
938
23.8M
    if (s->s.code == (BPF_LD|BPF_IMM) &&
939
23.8M
        next->s.code == (BPF_MISC|BPF_TAX)) {
940
620k
      s->s.code = BPF_LDX|BPF_IMM;
941
620k
      next->s.code = BPF_MISC|BPF_TXA;
942
      /*
943
       * XXX - optimizer loop detection.
944
       */
945
620k
      opt_state->non_branch_movement_performed = 1;
946
620k
      opt_state->done = 0;
947
620k
    }
948
    /*
949
     * This is an ugly special case, but it happens
950
     * when you say tcp[k] or udp[k] where k is a constant.
951
     */
952
23.8M
    if (s->s.code == (BPF_LD|BPF_IMM)) {
953
4.89M
      struct slist *add, *tax, *ild;
954
955
      /*
956
       * Check that X isn't used on exit from this
957
       * block (which the optimizer might cause).
958
       * We know the code generator won't generate
959
       * any local dependencies.
960
       */
961
4.89M
      if (ATOMELEM(b->out_use, X_ATOM))
962
11.3k
        continue;
963
964
      /*
965
       * Check that the instruction following the ldi
966
       * is an addx, or it's an ldxms with an addx
967
       * following it (with 0 or more nops between the
968
       * ldxms and addx).
969
       */
970
4.88M
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971
4.88M
        add = next;
972
0
      else
973
0
        add = this_op(next->next);
974
4.88M
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975
4.88M
        continue;
976
977
      /*
978
       * Check that a tax follows that (with 0 or more
979
       * nops between them).
980
       */
981
451
      tax = this_op(add->next);
982
451
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983
335
        continue;
984
985
      /*
986
       * Check that an ild follows that (with 0 or more
987
       * nops between them).
988
       */
989
116
      ild = this_op(tax->next);
990
116
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991
116
          BPF_MODE(ild->s.code) != BPF_IND)
992
116
        continue;
993
      /*
994
       * We want to turn this sequence:
995
       *
996
       * (004) ldi     #0x2   {s}
997
       * (005) ldxms   [14]   {next}  -- optional
998
       * (006) addx     {add}
999
       * (007) tax      {tax}
1000
       * (008) ild     [x+0]    {ild}
1001
       *
1002
       * into this sequence:
1003
       *
1004
       * (004) nop
1005
       * (005) ldxms   [14]
1006
       * (006) nop
1007
       * (007) nop
1008
       * (008) ild     [x+2]
1009
       *
1010
       * XXX We need to check that X is not
1011
       * subsequently used, because we want to change
1012
       * what'll be in it after this sequence.
1013
       *
1014
       * We know we can eliminate the accumulator
1015
       * modifications earlier in the sequence since
1016
       * it is defined by the last stmt of this sequence
1017
       * (i.e., the last statement of the sequence loads
1018
       * a value into the accumulator, so we can eliminate
1019
       * earlier operations on the accumulator).
1020
       */
1021
0
      ild->s.k += s->s.k;
1022
0
      s->s.code = NOP;
1023
0
      add->s.code = NOP;
1024
0
      tax->s.code = NOP;
1025
      /*
1026
       * XXX - optimizer loop detection.
1027
       */
1028
0
      opt_state->non_branch_movement_performed = 1;
1029
0
      opt_state->done = 0;
1030
0
    }
1031
23.8M
  }
1032
  /*
1033
   * If the comparison at the end of a block is an equality
1034
   * comparison against a constant, and nobody uses the value
1035
   * we leave in the A register at the end of a block, and
1036
   * the operation preceding the comparison is an arithmetic
1037
   * operation, we can sometime optimize it away.
1038
   */
1039
6.87M
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040
6.87M
      !ATOMELEM(b->out_use, A_ATOM)) {
1041
    /*
1042
     * We can optimize away certain subtractions of the
1043
     * X register.
1044
     */
1045
5.59M
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046
116k
      val = b->val[X_ATOM];
1047
116k
      if (opt_state->vmap[val].is_const) {
1048
        /*
1049
         * If we have a subtract to do a comparison,
1050
         * and the X register is a known constant,
1051
         * we can merge this value into the
1052
         * comparison:
1053
         *
1054
         * sub x  ->  nop
1055
         * jeq #y jeq #(x+y)
1056
         */
1057
72.5k
        b->s.k += opt_state->vmap[val].const_val;
1058
72.5k
        last->s.code = NOP;
1059
        /*
1060
         * XXX - optimizer loop detection.
1061
         */
1062
72.5k
        opt_state->non_branch_movement_performed = 1;
1063
72.5k
        opt_state->done = 0;
1064
72.5k
      } else if (b->s.k == 0) {
1065
        /*
1066
         * If the X register isn't a constant,
1067
         * and the comparison in the test is
1068
         * against 0, we can compare with the
1069
         * X register, instead:
1070
         *
1071
         * sub x  ->  nop
1072
         * jeq #0 jeq x
1073
         */
1074
43.6k
        last->s.code = NOP;
1075
43.6k
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076
        /*
1077
         * XXX - optimizer loop detection.
1078
         */
1079
43.6k
        opt_state->non_branch_movement_performed = 1;
1080
43.6k
        opt_state->done = 0;
1081
43.6k
      }
1082
116k
    }
1083
    /*
1084
     * Likewise, a constant subtract can be simplified:
1085
     *
1086
     * sub #x ->  nop
1087
     * jeq #y ->  jeq #(x+y)
1088
     */
1089
5.47M
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090
45
      last->s.code = NOP;
1091
45
      b->s.k += last->s.k;
1092
      /*
1093
       * XXX - optimizer loop detection.
1094
       */
1095
45
      opt_state->non_branch_movement_performed = 1;
1096
45
      opt_state->done = 0;
1097
45
    }
1098
    /*
1099
     * And, similarly, a constant AND can be simplified
1100
     * if we're testing against 0, i.e.:
1101
     *
1102
     * and #k nop
1103
     * jeq #0  -> jset #k
1104
     */
1105
5.47M
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106
5.47M
        b->s.k == 0) {
1107
1.89k
      b->s.k = last->s.k;
1108
1.89k
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109
1.89k
      last->s.code = NOP;
1110
      /*
1111
       * XXX - optimizer loop detection.
1112
       */
1113
1.89k
      opt_state->non_branch_movement_performed = 1;
1114
1.89k
      opt_state->done = 0;
1115
1.89k
      opt_not(b);
1116
1.89k
    }
1117
5.59M
  }
1118
  /*
1119
   * jset #0        ->   never
1120
   * jset #ffffffff ->   always
1121
   */
1122
6.87M
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123
3.02k
    if (b->s.k == 0)
1124
1.26k
      JT(b) = JF(b);
1125
3.02k
    if (b->s.k == 0xffffffffU)
1126
0
      JF(b) = JT(b);
1127
3.02k
  }
1128
  /*
1129
   * If we're comparing against the index register, and the index
1130
   * register is a known constant, we can just compare against that
1131
   * constant.
1132
   */
1133
6.87M
  val = b->val[X_ATOM];
1134
6.87M
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135
211k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1136
211k
    b->s.code &= ~BPF_X;
1137
211k
    b->s.k = v;
1138
211k
  }
1139
  /*
1140
   * If the accumulator is a known constant, we can compute the
1141
   * comparison result.
1142
   */
1143
6.87M
  val = b->val[A_ATOM];
1144
6.87M
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145
975k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1146
975k
    switch (BPF_OP(b->s.code)) {
1147
1148
452k
    case BPF_JEQ:
1149
452k
      v = v == b->s.k;
1150
452k
      break;
1151
1152
213k
    case BPF_JGT:
1153
213k
      v = v > b->s.k;
1154
213k
      break;
1155
1156
309k
    case BPF_JGE:
1157
309k
      v = v >= b->s.k;
1158
309k
      break;
1159
1160
0
    case BPF_JSET:
1161
0
      v &= b->s.k;
1162
0
      break;
1163
1164
0
    default:
1165
0
      abort();
1166
975k
    }
1167
975k
    if (JF(b) != JT(b)) {
1168
      /*
1169
       * XXX - optimizer loop detection.
1170
       */
1171
390k
      opt_state->non_branch_movement_performed = 1;
1172
390k
      opt_state->done = 0;
1173
390k
    }
1174
975k
    if (v)
1175
371k
      JF(b) = JT(b);
1176
604k
    else
1177
604k
      JT(b) = JF(b);
1178
975k
  }
1179
6.87M
}
1180
1181
/*
1182
 * Compute the symbolic value of expression of 's', and update
1183
 * anything it defines in the value table 'val'.  If 'alter' is true,
1184
 * do various optimizations.  This code would be cleaner if symbolic
1185
 * evaluation and code transformations weren't folded together.
1186
 */
1187
static void
1188
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189
46.8M
{
1190
46.8M
  int op;
1191
46.8M
  bpf_u_int32 v;
1192
1193
46.8M
  switch (s->code) {
1194
1195
1.03M
  case BPF_LD|BPF_ABS|BPF_W:
1196
1.89M
  case BPF_LD|BPF_ABS|BPF_H:
1197
4.72M
  case BPF_LD|BPF_ABS|BPF_B:
1198
4.72M
    v = F(opt_state, s->code, s->k, 0L);
1199
4.72M
    vstore(s, &val[A_ATOM], v, alter);
1200
4.72M
    break;
1201
1202
54.5k
  case BPF_LD|BPF_IND|BPF_W:
1203
54.5k
  case BPF_LD|BPF_IND|BPF_H:
1204
646k
  case BPF_LD|BPF_IND|BPF_B:
1205
646k
    v = val[X_ATOM];
1206
646k
    if (alter && opt_state->vmap[v].is_const) {
1207
64.7k
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208
64.7k
      s->k += opt_state->vmap[v].const_val;
1209
64.7k
      v = F(opt_state, s->code, s->k, 0L);
1210
      /*
1211
       * XXX - optimizer loop detection.
1212
       */
1213
64.7k
      opt_state->non_branch_movement_performed = 1;
1214
64.7k
      opt_state->done = 0;
1215
64.7k
    }
1216
581k
    else
1217
581k
      v = F(opt_state, s->code, s->k, v);
1218
646k
    vstore(s, &val[A_ATOM], v, alter);
1219
646k
    break;
1220
1221
15.0k
  case BPF_LD|BPF_LEN:
1222
15.0k
    v = F(opt_state, s->code, 0L, 0L);
1223
15.0k
    vstore(s, &val[A_ATOM], v, alter);
1224
15.0k
    break;
1225
1226
5.30M
  case BPF_LD|BPF_IMM:
1227
5.30M
    v = K(s->k);
1228
5.30M
    vstore(s, &val[A_ATOM], v, alter);
1229
5.30M
    break;
1230
1231
1.08M
  case BPF_LDX|BPF_IMM:
1232
1.08M
    v = K(s->k);
1233
1.08M
    vstore(s, &val[X_ATOM], v, alter);
1234
1.08M
    break;
1235
1236
0
  case BPF_LDX|BPF_MSH|BPF_B:
1237
0
    v = F(opt_state, s->code, s->k, 0L);
1238
0
    vstore(s, &val[X_ATOM], v, alter);
1239
0
    break;
1240
1241
1.42M
  case BPF_ALU|BPF_NEG:
1242
1.42M
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243
323k
      s->code = BPF_LD|BPF_IMM;
1244
      /*
1245
       * Do this negation as unsigned arithmetic; that's
1246
       * what modern BPF engines do, and it guarantees
1247
       * that all possible values can be negated.  (Yeah,
1248
       * negating 0x80000000, the minimum signed 32-bit
1249
       * two's-complement value, results in 0x80000000,
1250
       * so it's still negative, but we *should* be doing
1251
       * all unsigned arithmetic here, to match what
1252
       * modern BPF engines do.)
1253
       *
1254
       * Express it as 0U - (unsigned value) so that we
1255
       * don't get compiler warnings about negating an
1256
       * unsigned value and don't get UBSan warnings
1257
       * about the result of negating 0x80000000 being
1258
       * undefined.
1259
       */
1260
323k
      s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261
323k
      val[A_ATOM] = K(s->k);
1262
323k
    }
1263
1.10M
    else
1264
1.10M
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265
1.42M
    break;
1266
1267
118k
  case BPF_ALU|BPF_ADD|BPF_K:
1268
120k
  case BPF_ALU|BPF_SUB|BPF_K:
1269
121k
  case BPF_ALU|BPF_MUL|BPF_K:
1270
121k
  case BPF_ALU|BPF_DIV|BPF_K:
1271
121k
  case BPF_ALU|BPF_MOD|BPF_K:
1272
908k
  case BPF_ALU|BPF_AND|BPF_K:
1273
908k
  case BPF_ALU|BPF_OR|BPF_K:
1274
908k
  case BPF_ALU|BPF_XOR|BPF_K:
1275
908k
  case BPF_ALU|BPF_LSH|BPF_K:
1276
908k
  case BPF_ALU|BPF_RSH|BPF_K:
1277
908k
    op = BPF_OP(s->code);
1278
908k
    if (alter) {
1279
146k
      if (s->k == 0) {
1280
        /*
1281
         * Optimize operations where the constant
1282
         * is zero.
1283
         *
1284
         * Don't optimize away "sub #0"
1285
         * as it may be needed later to
1286
         * fixup the generated math code.
1287
         *
1288
         * Fail if we're dividing by zero or taking
1289
         * a modulus by zero.
1290
         */
1291
1.39k
        if (op == BPF_ADD ||
1292
1.39k
            op == BPF_LSH || op == BPF_RSH ||
1293
1.39k
            op == BPF_OR || op == BPF_XOR) {
1294
174
          s->code = NOP;
1295
174
          break;
1296
174
        }
1297
1.21k
        if (op == BPF_MUL || op == BPF_AND) {
1298
723
          s->code = BPF_LD|BPF_IMM;
1299
723
          val[A_ATOM] = K(s->k);
1300
723
          break;
1301
723
        }
1302
493
        if (op == BPF_DIV)
1303
102
          opt_error(opt_state,
1304
102
              "division by zero");
1305
391
        if (op == BPF_MOD)
1306
50
          opt_error(opt_state,
1307
50
              "modulus by zero");
1308
391
      }
1309
145k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1310
551
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311
551
        val[A_ATOM] = K(s->k);
1312
551
        break;
1313
551
      }
1314
145k
    }
1315
907k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316
907k
    break;
1317
1318
431k
  case BPF_ALU|BPF_ADD|BPF_X:
1319
761k
  case BPF_ALU|BPF_SUB|BPF_X:
1320
1.42M
  case BPF_ALU|BPF_MUL|BPF_X:
1321
1.73M
  case BPF_ALU|BPF_DIV|BPF_X:
1322
2.25M
  case BPF_ALU|BPF_MOD|BPF_X:
1323
2.71M
  case BPF_ALU|BPF_AND|BPF_X:
1324
2.77M
  case BPF_ALU|BPF_OR|BPF_X:
1325
2.90M
  case BPF_ALU|BPF_XOR|BPF_X:
1326
2.96M
  case BPF_ALU|BPF_LSH|BPF_X:
1327
2.97M
  case BPF_ALU|BPF_RSH|BPF_X:
1328
2.97M
    op = BPF_OP(s->code);
1329
2.97M
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330
602k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1331
599k
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332
599k
        val[A_ATOM] = K(s->k);
1333
599k
      }
1334
3.38k
      else {
1335
3.38k
        s->code = BPF_ALU|BPF_K|op;
1336
3.38k
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337
3.38k
        if ((op == BPF_LSH || op == BPF_RSH) &&
1338
3.38k
            s->k > 31)
1339
0
          opt_error(opt_state,
1340
0
              "shift by more than 31 bits");
1341
        /*
1342
         * XXX - optimizer loop detection.
1343
         */
1344
3.38k
        opt_state->non_branch_movement_performed = 1;
1345
3.38k
        opt_state->done = 0;
1346
3.38k
        val[A_ATOM] =
1347
3.38k
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1348
3.38k
      }
1349
602k
      break;
1350
602k
    }
1351
    /*
1352
     * Check if we're doing something to an accumulator
1353
     * that is 0, and simplify.  This may not seem like
1354
     * much of a simplification but it could open up further
1355
     * optimizations.
1356
     * XXX We could also check for mul by 1, etc.
1357
     */
1358
2.37M
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359
2.37M
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360
438
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361
19
        s->code = BPF_MISC|BPF_TXA;
1362
19
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363
19
        break;
1364
19
      }
1365
419
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366
419
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367
87
        s->code = BPF_LD|BPF_IMM;
1368
87
        s->k = 0;
1369
87
        vstore(s, &val[A_ATOM], K(s->k), alter);
1370
87
        break;
1371
87
      }
1372
332
      else if (op == BPF_NEG) {
1373
0
        s->code = NOP;
1374
0
        break;
1375
0
      }
1376
438
    }
1377
2.37M
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378
2.37M
    break;
1379
1380
17.3k
  case BPF_MISC|BPF_TXA:
1381
17.3k
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382
17.3k
    break;
1383
1384
5.38M
  case BPF_LD|BPF_MEM:
1385
5.38M
    v = val[s->k];
1386
5.38M
    if (alter && opt_state->vmap[v].is_const) {
1387
1.13M
      s->code = BPF_LD|BPF_IMM;
1388
1.13M
      s->k = opt_state->vmap[v].const_val;
1389
      /*
1390
       * XXX - optimizer loop detection.
1391
       */
1392
1.13M
      opt_state->non_branch_movement_performed = 1;
1393
1.13M
      opt_state->done = 0;
1394
1.13M
    }
1395
5.38M
    vstore(s, &val[A_ATOM], v, alter);
1396
5.38M
    break;
1397
1398
1.66M
  case BPF_MISC|BPF_TAX:
1399
1.66M
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400
1.66M
    break;
1401
1402
1.66M
  case BPF_LDX|BPF_MEM:
1403
1.66M
    v = val[s->k];
1404
1.66M
    if (alter && opt_state->vmap[v].is_const) {
1405
64.7k
      s->code = BPF_LDX|BPF_IMM;
1406
64.7k
      s->k = opt_state->vmap[v].const_val;
1407
      /*
1408
       * XXX - optimizer loop detection.
1409
       */
1410
64.7k
      opt_state->non_branch_movement_performed = 1;
1411
64.7k
      opt_state->done = 0;
1412
64.7k
    }
1413
1.66M
    vstore(s, &val[X_ATOM], v, alter);
1414
1.66M
    break;
1415
1416
6.60M
  case BPF_ST:
1417
6.60M
    vstore(s, &val[s->k], val[A_ATOM], alter);
1418
6.60M
    break;
1419
1420
0
  case BPF_STX:
1421
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1422
0
    break;
1423
46.8M
  }
1424
46.8M
}
1425
1426
static void
1427
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428
54.2M
{
1429
54.2M
  register int atom;
1430
1431
54.2M
  atom = atomuse(s);
1432
54.2M
  if (atom >= 0) {
1433
25.5M
    if (atom == AX_ATOM) {
1434
2.59M
      last[X_ATOM] = 0;
1435
2.59M
      last[A_ATOM] = 0;
1436
2.59M
    }
1437
22.9M
    else
1438
22.9M
      last[atom] = 0;
1439
25.5M
  }
1440
54.2M
  atom = atomdef(s);
1441
54.2M
  if (atom >= 0) {
1442
30.3M
    if (last[atom]) {
1443
      /*
1444
       * XXX - optimizer loop detection.
1445
       */
1446
3.12M
      opt_state->non_branch_movement_performed = 1;
1447
3.12M
      opt_state->done = 0;
1448
3.12M
      last[atom]->code = NOP;
1449
3.12M
    }
1450
30.3M
    last[atom] = s;
1451
30.3M
  }
1452
54.2M
}
1453
1454
static void
1455
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456
8.40M
{
1457
8.40M
  register struct slist *s;
1458
8.40M
  register int atom;
1459
8.40M
  struct stmt *last[N_ATOMS];
1460
1461
8.40M
  memset((char *)last, 0, sizeof last);
1462
1463
54.2M
  for (s = b->stmts; s != 0; s = s->next)
1464
45.8M
    deadstmt(opt_state, &s->s, last);
1465
8.40M
  deadstmt(opt_state, &b->s, last);
1466
1467
159M
  for (atom = 0; atom < N_ATOMS; ++atom)
1468
151M
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469
1.40M
      last[atom]->code = NOP;
1470
      /*
1471
       * XXX - optimizer loop detection.
1472
       */
1473
1.40M
      opt_state->non_branch_movement_performed = 1;
1474
1.40M
      opt_state->done = 0;
1475
1.40M
    }
1476
8.40M
}
1477
1478
static void
1479
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480
9.36M
{
1481
9.36M
  struct slist *s;
1482
9.36M
  struct edge *p;
1483
9.36M
  int i;
1484
9.36M
  bpf_u_int32 aval, xval;
1485
1486
#if 0
1487
  for (s = b->stmts; s && s->next; s = s->next)
1488
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489
      do_stmts = 0;
1490
      break;
1491
    }
1492
#endif
1493
1494
  /*
1495
   * Initialize the atom values.
1496
   */
1497
9.36M
  p = b->in_edges;
1498
9.36M
  if (p == 0) {
1499
    /*
1500
     * We have no predecessors, so everything is undefined
1501
     * upon entry to this block.
1502
     */
1503
1.42M
    memset((char *)b->val, 0, sizeof(b->val));
1504
7.93M
  } else {
1505
    /*
1506
     * Inherit values from our predecessors.
1507
     *
1508
     * First, get the values from the predecessor along the
1509
     * first edge leading to this node.
1510
     */
1511
7.93M
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512
    /*
1513
     * Now look at all the other nodes leading to this node.
1514
     * If, for the predecessor along that edge, a register
1515
     * has a different value from the one we have (i.e.,
1516
     * control paths are merging, and the merging paths
1517
     * assign different values to that register), give the
1518
     * register the undefined value of 0.
1519
     */
1520
14.0M
    while ((p = p->next) != NULL) {
1521
116M
      for (i = 0; i < N_ATOMS; ++i)
1522
110M
        if (b->val[i] != p->pred->val[i])
1523
7.33M
          b->val[i] = 0;
1524
6.15M
    }
1525
7.93M
  }
1526
9.36M
  aval = b->val[A_ATOM];
1527
9.36M
  xval = b->val[X_ATOM];
1528
56.2M
  for (s = b->stmts; s; s = s->next)
1529
46.8M
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531
  /*
1532
   * This is a special case: if we don't use anything from this
1533
   * block, and we load the accumulator or index register with a
1534
   * value that is already there, or if this block is a return,
1535
   * eliminate all the statements.
1536
   *
1537
   * XXX - what if it does a store?  Presumably that falls under
1538
   * the heading of "if we don't use anything from this block",
1539
   * i.e., if we use any memory location set to a different
1540
   * value by this block, then we use something from this block.
1541
   *
1542
   * XXX - why does it matter whether we use anything from this
1543
   * block?  If the accumulator or index register doesn't change
1544
   * its value, isn't that OK even if we use that value?
1545
   *
1546
   * XXX - if we load the accumulator with a different value,
1547
   * and the block ends with a conditional branch, we obviously
1548
   * can't eliminate it, as the branch depends on that value.
1549
   * For the index register, the conditional branch only depends
1550
   * on the index register value if the test is against the index
1551
   * register value rather than a constant; if nothing uses the
1552
   * value we put into the index register, and we're not testing
1553
   * against the index register's value, and there aren't any
1554
   * other problems that would keep us from eliminating this
1555
   * block, can we eliminate it?
1556
   */
1557
9.36M
  if (do_stmts &&
1558
9.36M
      ((b->out_use == 0 &&
1559
2.71M
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560
2.71M
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561
2.71M
       BPF_CLASS(b->s.code) == BPF_RET)) {
1562
943k
    if (b->stmts != 0) {
1563
79.6k
      b->stmts = 0;
1564
      /*
1565
       * XXX - optimizer loop detection.
1566
       */
1567
79.6k
      opt_state->non_branch_movement_performed = 1;
1568
79.6k
      opt_state->done = 0;
1569
79.6k
    }
1570
8.41M
  } else {
1571
8.41M
    opt_peep(opt_state, b);
1572
8.41M
    opt_deadstores(opt_state, b);
1573
8.41M
  }
1574
  /*
1575
   * Set up values for branch optimizer.
1576
   */
1577
9.36M
  if (BPF_SRC(b->s.code) == BPF_K)
1578
8.99M
    b->oval = K(b->s.k);
1579
363k
  else
1580
363k
    b->oval = b->val[X_ATOM];
1581
9.36M
  b->et.code = b->s.code;
1582
9.36M
  b->ef.code = -b->s.code;
1583
9.36M
}
1584
1585
/*
1586
 * Return true if any register that is used on exit from 'succ', has
1587
 * an exit value that is different from the corresponding exit value
1588
 * from 'b'.
1589
 */
1590
static int
1591
use_conflict(struct block *b, struct block *succ)
1592
3.15M
{
1593
3.15M
  int atom;
1594
3.15M
  atomset use = succ->out_use;
1595
1596
3.15M
  if (use == 0)
1597
2.99M
    return 0;
1598
1599
2.18M
  for (atom = 0; atom < N_ATOMS; ++atom)
1600
2.10M
    if (ATOMELEM(use, atom))
1601
162k
      if (b->val[atom] != succ->val[atom])
1602
78.6k
        return 1;
1603
83.6k
  return 0;
1604
162k
}
1605
1606
/*
1607
 * Given a block that is the successor of an edge, and an edge that
1608
 * dominates that edge, return either a pointer to a child of that
1609
 * block (a block to which that block jumps) if that block is a
1610
 * candidate to replace the successor of the latter edge or NULL
1611
 * if neither of the children of the first block are candidates.
1612
 */
1613
static struct block *
1614
fold_edge(struct block *child, struct edge *ep)
1615
20.2M
{
1616
20.2M
  int sense;
1617
20.2M
  bpf_u_int32 aval0, aval1, oval0, oval1;
1618
20.2M
  int code = ep->code;
1619
1620
20.2M
  if (code < 0) {
1621
    /*
1622
     * This edge is a "branch if false" edge.
1623
     */
1624
7.83M
    code = -code;
1625
7.83M
    sense = 0;
1626
12.4M
  } else {
1627
    /*
1628
     * This edge is a "branch if true" edge.
1629
     */
1630
12.4M
    sense = 1;
1631
12.4M
  }
1632
1633
  /*
1634
   * If the opcode for the branch at the end of the block we
1635
   * were handed isn't the same as the opcode for the branch
1636
   * to which the edge we were handed corresponds, the tests
1637
   * for those branches aren't testing the same conditions,
1638
   * so the blocks to which the first block branches aren't
1639
   * candidates to replace the successor of the edge.
1640
   */
1641
20.2M
  if (child->s.code != code)
1642
6.81M
    return 0;
1643
1644
13.4M
  aval0 = child->val[A_ATOM];
1645
13.4M
  oval0 = child->oval;
1646
13.4M
  aval1 = ep->pred->val[A_ATOM];
1647
13.4M
  oval1 = ep->pred->oval;
1648
1649
  /*
1650
   * If the A register value on exit from the successor block
1651
   * isn't the same as the A register value on exit from the
1652
   * predecessor of the edge, the blocks to which the first
1653
   * block branches aren't candidates to replace the successor
1654
   * of the edge.
1655
   */
1656
13.4M
  if (aval0 != aval1)
1657
9.52M
    return 0;
1658
1659
3.94M
  if (oval0 == oval1)
1660
    /*
1661
     * The operands of the branch instructions are
1662
     * identical, so the branches are testing the
1663
     * same condition, and the result is true if a true
1664
     * branch was taken to get here, otherwise false.
1665
     */
1666
1.75M
    return sense ? JT(child) : JF(child);
1667
1668
2.19M
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669
    /*
1670
     * At this point, we only know the comparison if we
1671
     * came down the true branch, and it was an equality
1672
     * comparison with a constant.
1673
     *
1674
     * I.e., if we came down the true branch, and the branch
1675
     * was an equality comparison with a constant, we know the
1676
     * accumulator contains that constant.  If we came down
1677
     * the false branch, or the comparison wasn't with a
1678
     * constant, we don't know what was in the accumulator.
1679
     *
1680
     * We rely on the fact that distinct constants have distinct
1681
     * value numbers.
1682
     */
1683
438k
    return JF(child);
1684
1685
1.75M
  return 0;
1686
2.19M
}
1687
1688
/*
1689
 * If we can make this edge go directly to a child of the edge's current
1690
 * successor, do so.
1691
 */
1692
static void
1693
opt_j(opt_state_t *opt_state, struct edge *ep)
1694
10.3M
{
1695
10.3M
  register u_int i, k;
1696
10.3M
  register struct block *target;
1697
1698
  /*
1699
   * Does this edge go to a block where, if the test
1700
   * at the end of it succeeds, it goes to a block
1701
   * that's a leaf node of the DAG, i.e. a return
1702
   * statement?
1703
   * If so, there's nothing to optimize.
1704
   */
1705
10.3M
  if (JT(ep->succ) == 0)
1706
4.35M
    return;
1707
1708
  /*
1709
   * Does this edge go to a block that goes, in turn, to
1710
   * the same block regardless of whether the test at the
1711
   * end succeeds or fails?
1712
   */
1713
6.00M
  if (JT(ep->succ) == JF(ep->succ)) {
1714
    /*
1715
     * Common branch targets can be eliminated, provided
1716
     * there is no data dependency.
1717
     *
1718
     * Check whether any register used on exit from the
1719
     * block to which the successor of this edge goes
1720
     * has a value at that point that's different from
1721
     * the value it has on exit from the predecessor of
1722
     * this edge.  If not, the predecessor of this edge
1723
     * can just go to the block to which the successor
1724
     * of this edge goes, bypassing the successor of this
1725
     * edge, as the successor of this edge isn't doing
1726
     * any calculations whose results are different
1727
     * from what the blocks before it did and isn't
1728
     * doing any tests the results of which matter.
1729
     */
1730
965k
    if (!use_conflict(ep->pred, JT(ep->succ))) {
1731
      /*
1732
       * No, there isn't.
1733
       * Make this edge go to the block to
1734
       * which the successor of that edge
1735
       * goes.
1736
       *
1737
       * XXX - optimizer loop detection.
1738
       */
1739
904k
      opt_state->non_branch_movement_performed = 1;
1740
904k
      opt_state->done = 0;
1741
904k
      ep->succ = JT(ep->succ);
1742
904k
    }
1743
965k
  }
1744
  /*
1745
   * For each edge dominator that matches the successor of this
1746
   * edge, promote the edge successor to the its grandchild.
1747
   *
1748
   * XXX We violate the set abstraction here in favor a reasonably
1749
   * efficient loop.
1750
   */
1751
7.46M
 top:
1752
23.0M
  for (i = 0; i < opt_state->edgewords; ++i) {
1753
    /* i'th word in the bitset of dominators */
1754
17.7M
    register bpf_u_int32 x = ep->edom[i];
1755
1756
35.8M
    while (x != 0) {
1757
      /* Find the next dominator in that word and mark it as found */
1758
20.2M
      k = lowest_set_bit(x);
1759
20.2M
      x &=~ ((bpf_u_int32)1 << k);
1760
20.2M
      k += i * BITS_PER_WORD;
1761
1762
20.2M
      target = fold_edge(ep->succ, opt_state->edges[k]);
1763
      /*
1764
       * We have a candidate to replace the successor
1765
       * of ep.
1766
       *
1767
       * Check that there is no data dependency between
1768
       * nodes that will be violated if we move the edge;
1769
       * i.e., if any register used on exit from the
1770
       * candidate has a value at that point different
1771
       * from the value it has when we exit the
1772
       * predecessor of that edge, there's a data
1773
       * dependency that will be violated.
1774
       */
1775
20.2M
      if (target != 0 && !use_conflict(ep->pred, target)) {
1776
        /*
1777
         * It's safe to replace the successor of
1778
         * ep; do so, and note that we've made
1779
         * at least one change.
1780
         *
1781
         * XXX - this is one of the operations that
1782
         * happens when the optimizer gets into
1783
         * one of those infinite loops.
1784
         */
1785
2.17M
        opt_state->done = 0;
1786
2.17M
        ep->succ = target;
1787
2.17M
        if (JT(target) != 0)
1788
          /*
1789
           * Start over unless we hit a leaf.
1790
           */
1791
1.46M
          goto top;
1792
711k
        return;
1793
2.17M
      }
1794
20.2M
    }
1795
17.7M
  }
1796
7.46M
}
1797
1798
/*
1799
 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800
 * "Predicate Assertion Propagation" in the BPF+ paper?
1801
 *
1802
 * Note that this looks at block dominators, not edge dominators.
1803
 * Don't think so.
1804
 *
1805
 * "A or B" compiles into
1806
 *
1807
 *          A
1808
 *       t / \ f
1809
 *        /   B
1810
 *       / t / \ f
1811
 *      \   /
1812
 *       \ /
1813
 *        X
1814
 *
1815
 *
1816
 */
1817
static void
1818
or_pullup(opt_state_t *opt_state, struct block *b)
1819
5.17M
{
1820
5.17M
  bpf_u_int32 val;
1821
5.17M
  int at_top;
1822
5.17M
  struct block *pull;
1823
5.17M
  struct block **diffp, **samep;
1824
5.17M
  struct edge *ep;
1825
1826
5.17M
  ep = b->in_edges;
1827
5.17M
  if (ep == 0)
1828
1.79M
    return;
1829
1830
  /*
1831
   * Make sure each predecessor loads the same value.
1832
   * XXX why?
1833
   */
1834
3.38M
  val = ep->pred->val[A_ATOM];
1835
3.74M
  for (ep = ep->next; ep != 0; ep = ep->next)
1836
793k
    if (val != ep->pred->val[A_ATOM])
1837
432k
      return;
1838
1839
  /*
1840
   * For the first edge in the list of edges coming into this block,
1841
   * see whether the predecessor of that edge comes here via a true
1842
   * branch or a false branch.
1843
   */
1844
2.95M
  if (JT(b->in_edges->pred) == b)
1845
1.78M
    diffp = &JT(b->in_edges->pred); /* jt */
1846
1.17M
  else
1847
1.17M
    diffp = &JF(b->in_edges->pred);  /* jf */
1848
1849
  /*
1850
   * diffp is a pointer to a pointer to the block.
1851
   *
1852
   * Go down the false chain looking as far as you can,
1853
   * making sure that each jump-compare is doing the
1854
   * same as the original block.
1855
   *
1856
   * If you reach the bottom before you reach a
1857
   * different jump-compare, just exit.  There's nothing
1858
   * to do here.  XXX - no, this version is checking for
1859
   * the value leaving the block; that's from the BPF+
1860
   * pullup routine.
1861
   */
1862
2.95M
  at_top = 1;
1863
4.10M
  for (;;) {
1864
    /*
1865
     * Done if that's not going anywhere XXX
1866
     */
1867
4.10M
    if (*diffp == 0)
1868
0
      return;
1869
1870
    /*
1871
     * Done if that predecessor blah blah blah isn't
1872
     * going the same place we're going XXX
1873
     *
1874
     * Does the true edge of this block point to the same
1875
     * location as the true edge of b?
1876
     */
1877
4.10M
    if (JT(*diffp) != JT(b))
1878
861k
      return;
1879
1880
    /*
1881
     * Done if this node isn't a dominator of that
1882
     * node blah blah blah XXX
1883
     *
1884
     * Does b dominate diffp?
1885
     */
1886
3.24M
    if (!SET_MEMBER((*diffp)->dom, b->id))
1887
2.23k
      return;
1888
1889
    /*
1890
     * Break out of the loop if that node's value of A
1891
     * isn't the value of A above XXX
1892
     */
1893
3.24M
    if ((*diffp)->val[A_ATOM] != val)
1894
2.09M
      break;
1895
1896
    /*
1897
     * Get the JF for that node XXX
1898
     * Go down the false path.
1899
     */
1900
1.15M
    diffp = &JF(*diffp);
1901
1.15M
    at_top = 0;
1902
1.15M
  }
1903
1904
  /*
1905
   * Now that we've found a different jump-compare in a chain
1906
   * below b, search further down until we find another
1907
   * jump-compare that looks at the original value.  This
1908
   * jump-compare should get pulled up.  XXX again we're
1909
   * comparing values not jump-compares.
1910
   */
1911
2.09M
  samep = &JF(*diffp);
1912
2.36M
  for (;;) {
1913
    /*
1914
     * Done if that's not going anywhere XXX
1915
     */
1916
2.36M
    if (*samep == 0)
1917
0
      return;
1918
1919
    /*
1920
     * Done if that predecessor blah blah blah isn't
1921
     * going the same place we're going XXX
1922
     */
1923
2.36M
    if (JT(*samep) != JT(b))
1924
2.00M
      return;
1925
1926
    /*
1927
     * Done if this node isn't a dominator of that
1928
     * node blah blah blah XXX
1929
     *
1930
     * Does b dominate samep?
1931
     */
1932
362k
    if (!SET_MEMBER((*samep)->dom, b->id))
1933
80.4k
      return;
1934
1935
    /*
1936
     * Break out of the loop if that node's value of A
1937
     * is the value of A above XXX
1938
     */
1939
282k
    if ((*samep)->val[A_ATOM] == val)
1940
7.22k
      break;
1941
1942
    /* XXX Need to check that there are no data dependencies
1943
       between dp0 and dp1.  Currently, the code generator
1944
       will not produce such dependencies. */
1945
274k
    samep = &JF(*samep);
1946
274k
  }
1947
#ifdef notdef
1948
  /* XXX This doesn't cover everything. */
1949
  for (i = 0; i < N_ATOMS; ++i)
1950
    if ((*samep)->val[i] != pred->val[i])
1951
      return;
1952
#endif
1953
  /* Pull up the node. */
1954
7.22k
  pull = *samep;
1955
7.22k
  *samep = JF(pull);
1956
7.22k
  JF(pull) = *diffp;
1957
1958
  /*
1959
   * At the top of the chain, each predecessor needs to point at the
1960
   * pulled up node.  Inside the chain, there is only one predecessor
1961
   * to worry about.
1962
   */
1963
7.22k
  if (at_top) {
1964
18.6k
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965
11.5k
      if (JT(ep->pred) == b)
1966
5.58k
        JT(ep->pred) = pull;
1967
5.95k
      else
1968
5.95k
        JF(ep->pred) = pull;
1969
11.5k
    }
1970
7.06k
  }
1971
162
  else
1972
162
    *diffp = pull;
1973
1974
  /*
1975
   * XXX - this is one of the operations that happens when the
1976
   * optimizer gets into one of those infinite loops.
1977
   */
1978
7.22k
  opt_state->done = 0;
1979
7.22k
}
1980
1981
static void
1982
and_pullup(opt_state_t *opt_state, struct block *b)
1983
5.17M
{
1984
5.17M
  bpf_u_int32 val;
1985
5.17M
  int at_top;
1986
5.17M
  struct block *pull;
1987
5.17M
  struct block **diffp, **samep;
1988
5.17M
  struct edge *ep;
1989
1990
5.17M
  ep = b->in_edges;
1991
5.17M
  if (ep == 0)
1992
1.79M
    return;
1993
1994
  /*
1995
   * Make sure each predecessor loads the same value.
1996
   */
1997
3.38M
  val = ep->pred->val[A_ATOM];
1998
3.74M
  for (ep = ep->next; ep != 0; ep = ep->next)
1999
793k
    if (val != ep->pred->val[A_ATOM])
2000
432k
      return;
2001
2002
2.95M
  if (JT(b->in_edges->pred) == b)
2003
1.78M
    diffp = &JT(b->in_edges->pred);
2004
1.17M
  else
2005
1.17M
    diffp = &JF(b->in_edges->pred);
2006
2007
2.95M
  at_top = 1;
2008
3.82M
  for (;;) {
2009
3.82M
    if (*diffp == 0)
2010
0
      return;
2011
2012
3.82M
    if (JF(*diffp) != JF(b))
2013
551k
      return;
2014
2015
3.27M
    if (!SET_MEMBER((*diffp)->dom, b->id))
2016
41.7k
      return;
2017
2018
3.23M
    if ((*diffp)->val[A_ATOM] != val)
2019
2.36M
      break;
2020
2021
871k
    diffp = &JT(*diffp);
2022
871k
    at_top = 0;
2023
871k
  }
2024
2.36M
  samep = &JT(*diffp);
2025
2.62M
  for (;;) {
2026
2.62M
    if (*samep == 0)
2027
0
      return;
2028
2029
2.62M
    if (JF(*samep) != JF(b))
2030
2.26M
      return;
2031
2032
359k
    if (!SET_MEMBER((*samep)->dom, b->id))
2033
89.9k
      return;
2034
2035
269k
    if ((*samep)->val[A_ATOM] == val)
2036
4.13k
      break;
2037
2038
    /* XXX Need to check that there are no data dependencies
2039
       between diffp and samep.  Currently, the code generator
2040
       will not produce such dependencies. */
2041
265k
    samep = &JT(*samep);
2042
265k
  }
2043
#ifdef notdef
2044
  /* XXX This doesn't cover everything. */
2045
  for (i = 0; i < N_ATOMS; ++i)
2046
    if ((*samep)->val[i] != pred->val[i])
2047
      return;
2048
#endif
2049
  /* Pull up the node. */
2050
4.13k
  pull = *samep;
2051
4.13k
  *samep = JT(pull);
2052
4.13k
  JT(pull) = *diffp;
2053
2054
  /*
2055
   * At the top of the chain, each predecessor needs to point at the
2056
   * pulled up node.  Inside the chain, there is only one predecessor
2057
   * to worry about.
2058
   */
2059
4.13k
  if (at_top) {
2060
8.77k
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061
4.64k
      if (JT(ep->pred) == b)
2062
1.94k
        JT(ep->pred) = pull;
2063
2.70k
      else
2064
2.70k
        JF(ep->pred) = pull;
2065
4.64k
    }
2066
4.13k
  }
2067
0
  else
2068
0
    *diffp = pull;
2069
2070
  /*
2071
   * XXX - this is one of the operations that happens when the
2072
   * optimizer gets into one of those infinite loops.
2073
   */
2074
4.13k
  opt_state->done = 0;
2075
4.13k
}
2076
2077
static void
2078
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079
1.42M
{
2080
1.42M
  int i, maxlevel;
2081
1.42M
  struct block *p;
2082
2083
1.42M
  init_val(opt_state);
2084
1.42M
  maxlevel = ic->root->level;
2085
2086
1.42M
  find_inedges(opt_state, ic->root);
2087
9.52M
  for (i = maxlevel; i >= 0; --i)
2088
17.4M
    for (p = opt_state->levels[i]; p; p = p->link)
2089
9.36M
      opt_blk(opt_state, p, do_stmts);
2090
2091
1.42M
  if (do_stmts)
2092
    /*
2093
     * No point trying to move branches; it can't possibly
2094
     * make a difference at this point.
2095
     *
2096
     * XXX - this might be after we detect a loop where
2097
     * we were just looping infinitely moving branches
2098
     * in such a fashion that we went through two or more
2099
     * versions of the machine code, eventually returning
2100
     * to the first version.  (We're really not doing a
2101
     * full loop detection, we're just testing for two
2102
     * passes in a row where we do nothing but
2103
     * move branches.)
2104
     */
2105
586k
    return;
2106
2107
  /*
2108
   * Is this what the BPF+ paper describes in sections 6.1.1,
2109
   * 6.1.2, and 6.1.3?
2110
   */
2111
5.77M
  for (i = 1; i <= maxlevel; ++i) {
2112
10.1M
    for (p = opt_state->levels[i]; p; p = p->link) {
2113
5.17M
      opt_j(opt_state, &p->et);
2114
5.17M
      opt_j(opt_state, &p->ef);
2115
5.17M
    }
2116
4.93M
  }
2117
2118
836k
  find_inedges(opt_state, ic->root);
2119
5.77M
  for (i = 1; i <= maxlevel; ++i) {
2120
10.1M
    for (p = opt_state->levels[i]; p; p = p->link) {
2121
5.17M
      or_pullup(opt_state, p);
2122
5.17M
      and_pullup(opt_state, p);
2123
5.17M
    }
2124
4.93M
  }
2125
836k
}
2126
2127
static inline void
2128
link_inedge(struct edge *parent, struct block *child)
2129
24.5M
{
2130
24.5M
  parent->next = child->in_edges;
2131
24.5M
  child->in_edges = parent;
2132
24.5M
}
2133
2134
static void
2135
find_inedges(opt_state_t *opt_state, struct block *root)
2136
2.24M
{
2137
2.24M
  u_int i;
2138
2.24M
  int level;
2139
2.24M
  struct block *b;
2140
2141
28.3M
  for (i = 0; i < opt_state->n_blocks; ++i)
2142
26.1M
    opt_state->blocks[i]->in_edges = 0;
2143
2144
  /*
2145
   * Traverse the graph, adding each edge to the predecessor
2146
   * list of its successors.  Skip the leaves (i.e. level 0).
2147
   */
2148
13.8M
  for (level = root->level; level > 0; --level) {
2149
23.9M
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150
12.2M
      link_inedge(&b->et, JT(b));
2151
12.2M
      link_inedge(&b->ef, JF(b));
2152
12.2M
    }
2153
11.6M
  }
2154
2.24M
}
2155
2156
static void
2157
opt_root(struct block **b)
2158
306k
{
2159
306k
  struct slist *tmp, *s;
2160
2161
306k
  s = (*b)->stmts;
2162
306k
  (*b)->stmts = 0;
2163
484k
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164
177k
    *b = JT(*b);
2165
2166
306k
  tmp = (*b)->stmts;
2167
306k
  if (tmp != 0)
2168
25.9k
    sappend(s, tmp);
2169
306k
  (*b)->stmts = s;
2170
2171
  /*
2172
   * If the root node is a return, then there is no
2173
   * point executing any statements (since the bpf machine
2174
   * has no side effects).
2175
   */
2176
306k
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177
180k
    (*b)->stmts = 0;
2178
306k
}
2179
2180
static void
2181
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182
643k
{
2183
2184
#ifdef BDEBUG
2185
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186
    printf("opt_loop(root, %d) begin\n", do_stmts);
2187
    opt_dump(opt_state, ic);
2188
  }
2189
#endif
2190
2191
  /*
2192
   * XXX - optimizer loop detection.
2193
   */
2194
643k
  int loop_count = 0;
2195
1.42M
  for (;;) {
2196
1.42M
    opt_state->done = 1;
2197
    /*
2198
     * XXX - optimizer loop detection.
2199
     */
2200
1.42M
    opt_state->non_branch_movement_performed = 0;
2201
1.42M
    find_levels(opt_state, ic);
2202
1.42M
    find_dom(opt_state, ic->root);
2203
1.42M
    find_closure(opt_state, ic->root);
2204
1.42M
    find_ud(opt_state, ic->root);
2205
1.42M
    find_edom(opt_state, ic->root);
2206
1.42M
    opt_blks(opt_state, ic, do_stmts);
2207
#ifdef BDEBUG
2208
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210
      opt_dump(opt_state, ic);
2211
    }
2212
#endif
2213
2214
    /*
2215
     * Was anything done in this optimizer pass?
2216
     */
2217
1.42M
    if (opt_state->done) {
2218
      /*
2219
       * No, so we've reached a fixed point.
2220
       * We're done.
2221
       */
2222
628k
      break;
2223
628k
    }
2224
2225
    /*
2226
     * XXX - was anything done other than branch movement
2227
     * in this pass?
2228
     */
2229
795k
    if (opt_state->non_branch_movement_performed) {
2230
      /*
2231
       * Yes.  Clear any loop-detection counter;
2232
       * we're making some form of progress (assuming
2233
       * we can't get into a cycle doing *other*
2234
       * optimizations...).
2235
       */
2236
733k
      loop_count = 0;
2237
733k
    } else {
2238
      /*
2239
       * No - increment the counter, and quit if
2240
       * it's up to 100.
2241
       */
2242
61.9k
      loop_count++;
2243
61.9k
      if (loop_count >= 100) {
2244
        /*
2245
         * We've done nothing but branch movement
2246
         * for 100 passes; we're probably
2247
         * in a cycle and will never reach a
2248
         * fixed point.
2249
         *
2250
         * XXX - yes, we really need a non-
2251
         * heuristic way of detecting a cycle.
2252
         */
2253
0
        opt_state->done = 1;
2254
0
        break;
2255
0
      }
2256
61.9k
    }
2257
795k
  }
2258
643k
}
2259
2260
/*
2261
 * Optimize the filter code in its dag representation.
2262
 * Return 0 on success, -1 on error.
2263
 */
2264
int
2265
bpf_optimize(struct icode *ic, char *errbuf)
2266
321k
{
2267
321k
  opt_state_t opt_state;
2268
2269
321k
  memset(&opt_state, 0, sizeof(opt_state));
2270
321k
  opt_state.errbuf = errbuf;
2271
321k
  opt_state.non_branch_movement_performed = 0;
2272
321k
  if (setjmp(opt_state.top_ctx)) {
2273
15.3k
    opt_cleanup(&opt_state);
2274
15.3k
    return -1;
2275
15.3k
  }
2276
306k
  opt_init(&opt_state, ic);
2277
306k
  opt_loop(&opt_state, ic, 0);
2278
306k
  opt_loop(&opt_state, ic, 1);
2279
306k
  intern_blocks(&opt_state, ic);
2280
#ifdef BDEBUG
2281
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282
    printf("after intern_blocks()\n");
2283
    opt_dump(&opt_state, ic);
2284
  }
2285
#endif
2286
306k
  opt_root(&ic->root);
2287
#ifdef BDEBUG
2288
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289
    printf("after opt_root()\n");
2290
    opt_dump(&opt_state, ic);
2291
  }
2292
#endif
2293
306k
  opt_cleanup(&opt_state);
2294
306k
  return 0;
2295
321k
}
2296
2297
static void
2298
make_marks(struct icode *ic, struct block *p)
2299
2.67M
{
2300
2.67M
  if (!isMarked(ic, p)) {
2301
1.61M
    Mark(ic, p);
2302
1.61M
    if (BPF_CLASS(p->s.code) != BPF_RET) {
2303
1.18M
      make_marks(ic, JT(p));
2304
1.18M
      make_marks(ic, JF(p));
2305
1.18M
    }
2306
1.61M
  }
2307
2.67M
}
2308
2309
/*
2310
 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311
 * only for nodes that are alive.
2312
 */
2313
static void
2314
mark_code(struct icode *ic)
2315
318k
{
2316
318k
  ic->cur_mark += 1;
2317
318k
  make_marks(ic, ic->root);
2318
318k
}
2319
2320
/*
2321
 * True iff the two stmt lists load the same value from the packet into
2322
 * the accumulator.
2323
 */
2324
static int
2325
eq_slist(struct slist *x, struct slist *y)
2326
59.7k
{
2327
84.2k
  for (;;) {
2328
94.2k
    while (x && x->s.code == NOP)
2329
10.0k
      x = x->next;
2330
95.4k
    while (y && y->s.code == NOP)
2331
11.1k
      y = y->next;
2332
84.2k
    if (x == 0)
2333
18.6k
      return y == 0;
2334
65.6k
    if (y == 0)
2335
185
      return x == 0;
2336
65.4k
    if (x->s.code != y->s.code || x->s.k != y->s.k)
2337
40.9k
      return 0;
2338
24.5k
    x = x->next;
2339
24.5k
    y = y->next;
2340
24.5k
  }
2341
59.7k
}
2342
2343
static inline int
2344
eq_blk(struct block *b0, struct block *b1)
2345
14.9M
{
2346
14.9M
  if (b0->s.code == b1->s.code &&
2347
14.9M
      b0->s.k == b1->s.k &&
2348
14.9M
      b0->et.succ == b1->et.succ &&
2349
14.9M
      b0->ef.succ == b1->ef.succ)
2350
59.7k
    return eq_slist(b0->stmts, b1->stmts);
2351
14.8M
  return 0;
2352
14.9M
}
2353
2354
static void
2355
intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356
306k
{
2357
306k
  struct block *p;
2358
306k
  u_int i, j;
2359
306k
  int done1; /* don't shadow global */
2360
318k
 top:
2361
318k
  done1 = 1;
2362
4.12M
  for (i = 0; i < opt_state->n_blocks; ++i)
2363
3.80M
    opt_state->blocks[i]->link = 0;
2364
2365
318k
  mark_code(ic);
2366
2367
3.80M
  for (i = opt_state->n_blocks - 1; i != 0; ) {
2368
3.48M
    --i;
2369
3.48M
    if (!isMarked(ic, opt_state->blocks[i]))
2370
2.09M
      continue;
2371
27.3M
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372
25.9M
      if (!isMarked(ic, opt_state->blocks[j]))
2373
11.0M
        continue;
2374
14.9M
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375
17.1k
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376
13.8k
          opt_state->blocks[j]->link : opt_state->blocks[j];
2377
17.1k
        break;
2378
17.1k
      }
2379
14.9M
    }
2380
1.39M
  }
2381
4.12M
  for (i = 0; i < opt_state->n_blocks; ++i) {
2382
3.80M
    p = opt_state->blocks[i];
2383
3.80M
    if (JT(p) == 0)
2384
582k
      continue;
2385
3.22M
    if (JT(p)->link) {
2386
19.4k
      done1 = 0;
2387
19.4k
      JT(p) = JT(p)->link;
2388
19.4k
    }
2389
3.22M
    if (JF(p)->link) {
2390
11.7k
      done1 = 0;
2391
11.7k
      JF(p) = JF(p)->link;
2392
11.7k
    }
2393
3.22M
  }
2394
318k
  if (!done1)
2395
12.1k
    goto top;
2396
318k
}
2397
2398
static void
2399
opt_cleanup(opt_state_t *opt_state)
2400
321k
{
2401
321k
  free((void *)opt_state->vnode_base);
2402
321k
  free((void *)opt_state->vmap);
2403
321k
  free((void *)opt_state->edges);
2404
321k
  free((void *)opt_state->space);
2405
321k
  free((void *)opt_state->levels);
2406
321k
  free((void *)opt_state->blocks);
2407
321k
}
2408
2409
/*
2410
 * For optimizer errors.
2411
 */
2412
static void PCAP_NORETURN
2413
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414
15.3k
{
2415
15.3k
  va_list ap;
2416
2417
15.3k
  if (opt_state->errbuf != NULL) {
2418
15.3k
    va_start(ap, fmt);
2419
15.3k
    (void)vsnprintf(opt_state->errbuf,
2420
15.3k
        PCAP_ERRBUF_SIZE, fmt, ap);
2421
15.3k
    va_end(ap);
2422
15.3k
  }
2423
15.3k
  longjmp(opt_state->top_ctx, 1);
2424
  /* NOTREACHED */
2425
#ifdef _AIX
2426
  PCAP_UNREACHABLE
2427
#endif /* _AIX */
2428
15.3k
}
2429
2430
/*
2431
 * Return the number of stmts in 's'.
2432
 */
2433
static u_int
2434
slength(struct slist *s)
2435
9.05M
{
2436
9.05M
  u_int n = 0;
2437
2438
34.9M
  for (; s; s = s->next)
2439
25.8M
    if (s->s.code != NOP)
2440
21.6M
      ++n;
2441
9.05M
  return n;
2442
9.05M
}
2443
2444
/*
2445
 * Return the number of nodes reachable by 'p'.
2446
 * All nodes should be initially unmarked.
2447
 */
2448
static int
2449
count_blocks(struct icode *ic, struct block *p)
2450
6.95M
{
2451
6.95M
  if (p == 0 || isMarked(ic, p))
2452
3.63M
    return 0;
2453
3.31M
  Mark(ic, p);
2454
3.31M
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455
6.95M
}
2456
2457
/*
2458
 * Do a depth first search on the flow graph, numbering the
2459
 * the basic blocks, and entering them into the 'blocks' array.`
2460
 */
2461
static void
2462
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463
6.95M
{
2464
6.95M
  u_int n;
2465
2466
6.95M
  if (p == 0 || isMarked(ic, p))
2467
3.63M
    return;
2468
2469
3.31M
  Mark(ic, p);
2470
3.31M
  n = opt_state->n_blocks++;
2471
3.31M
  if (opt_state->n_blocks == 0) {
2472
    /*
2473
     * Overflow.
2474
     */
2475
0
    opt_error(opt_state, "filter is too complex to optimize");
2476
0
  }
2477
3.31M
  p->id = n;
2478
3.31M
  opt_state->blocks[n] = p;
2479
2480
3.31M
  number_blks_r(opt_state, ic, JT(p));
2481
3.31M
  number_blks_r(opt_state, ic, JF(p));
2482
3.31M
}
2483
2484
/*
2485
 * Return the number of stmts in the flowgraph reachable by 'p'.
2486
 * The nodes should be unmarked before calling.
2487
 *
2488
 * Note that "stmts" means "instructions", and that this includes
2489
 *
2490
 *  side-effect statements in 'p' (slength(p->stmts));
2491
 *
2492
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2493
 *
2494
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2495
 *
2496
 *  the conditional jump itself (1);
2497
 *
2498
 *  an extra long jump if the true branch requires it (p->longjt);
2499
 *
2500
 *  an extra long jump if the false branch requires it (p->longjf).
2501
 */
2502
static u_int
2503
count_stmts(struct icode *ic, struct block *p)
2504
6.27M
{
2505
6.27M
  u_int n;
2506
2507
6.27M
  if (p == 0 || isMarked(ic, p))
2508
3.27M
    return 0;
2509
2.99M
  Mark(ic, p);
2510
2.99M
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511
2.99M
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512
6.27M
}
2513
2514
/*
2515
 * Allocate memory.  All allocation is done before optimization
2516
 * is begun.  A linear bound on the size of all data structures is computed
2517
 * from the total number of blocks and/or statements.
2518
 */
2519
static void
2520
opt_init(opt_state_t *opt_state, struct icode *ic)
2521
321k
{
2522
321k
  bpf_u_int32 *p;
2523
321k
  int i, n, max_stmts;
2524
321k
  u_int product;
2525
321k
  size_t block_memsize, edge_memsize;
2526
2527
  /*
2528
   * First, count the blocks, so we can malloc an array to map
2529
   * block number to block.  Then, put the blocks into the array.
2530
   */
2531
321k
  unMarkAll(ic);
2532
321k
  n = count_blocks(ic, ic->root);
2533
321k
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534
321k
  if (opt_state->blocks == NULL)
2535
0
    opt_error(opt_state, "malloc");
2536
321k
  unMarkAll(ic);
2537
321k
  opt_state->n_blocks = 0;
2538
321k
  number_blks_r(opt_state, ic, ic->root);
2539
2540
  /*
2541
   * This "should not happen".
2542
   */
2543
321k
  if (opt_state->n_blocks == 0)
2544
0
    opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546
321k
  opt_state->n_edges = 2 * opt_state->n_blocks;
2547
321k
  if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548
    /*
2549
     * Overflow.
2550
     */
2551
0
    opt_error(opt_state, "filter is too complex to optimize");
2552
0
  }
2553
321k
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554
321k
  if (opt_state->edges == NULL) {
2555
0
    opt_error(opt_state, "malloc");
2556
0
  }
2557
2558
  /*
2559
   * The number of levels is bounded by the number of nodes.
2560
   */
2561
321k
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562
321k
  if (opt_state->levels == NULL) {
2563
0
    opt_error(opt_state, "malloc");
2564
0
  }
2565
2566
321k
  opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567
321k
  opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569
  /*
2570
   * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571
   * in a u_int; we use it as a u_int number-of-iterations
2572
   * value.
2573
   */
2574
321k
  product = opt_state->n_blocks * opt_state->nodewords;
2575
321k
  if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576
    /*
2577
     * XXX - just punt and don't try to optimize?
2578
     * In practice, this is unlikely to happen with
2579
     * a normal filter.
2580
     */
2581
0
    opt_error(opt_state, "filter is too complex to optimize");
2582
0
  }
2583
2584
  /*
2585
   * Make sure the total memory required for that doesn't
2586
   * overflow.
2587
   */
2588
321k
  block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589
321k
  if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590
0
    opt_error(opt_state, "filter is too complex to optimize");
2591
0
  }
2592
2593
  /*
2594
   * Make sure opt_state->n_edges * opt_state->edgewords fits
2595
   * in a u_int; we use it as a u_int number-of-iterations
2596
   * value.
2597
   */
2598
321k
  product = opt_state->n_edges * opt_state->edgewords;
2599
321k
  if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600
0
    opt_error(opt_state, "filter is too complex to optimize");
2601
0
  }
2602
2603
  /*
2604
   * Make sure the total memory required for that doesn't
2605
   * overflow.
2606
   */
2607
321k
  edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608
321k
  if (edge_memsize / product != sizeof(*opt_state->space)) {
2609
0
    opt_error(opt_state, "filter is too complex to optimize");
2610
0
  }
2611
2612
  /*
2613
   * Make sure the total memory required for both of them doesn't
2614
   * overflow.
2615
   */
2616
321k
  if (block_memsize > SIZE_MAX - edge_memsize) {
2617
0
    opt_error(opt_state, "filter is too complex to optimize");
2618
0
  }
2619
2620
  /* XXX */
2621
321k
  opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622
321k
  if (opt_state->space == NULL) {
2623
0
    opt_error(opt_state, "malloc");
2624
0
  }
2625
321k
  p = opt_state->space;
2626
321k
  opt_state->all_dom_sets = p;
2627
3.63M
  for (i = 0; i < n; ++i) {
2628
3.31M
    opt_state->blocks[i]->dom = p;
2629
3.31M
    p += opt_state->nodewords;
2630
3.31M
  }
2631
321k
  opt_state->all_closure_sets = p;
2632
3.63M
  for (i = 0; i < n; ++i) {
2633
3.31M
    opt_state->blocks[i]->closure = p;
2634
3.31M
    p += opt_state->nodewords;
2635
3.31M
  }
2636
321k
  opt_state->all_edge_sets = p;
2637
3.63M
  for (i = 0; i < n; ++i) {
2638
3.31M
    register struct block *b = opt_state->blocks[i];
2639
2640
3.31M
    b->et.edom = p;
2641
3.31M
    p += opt_state->edgewords;
2642
3.31M
    b->ef.edom = p;
2643
3.31M
    p += opt_state->edgewords;
2644
3.31M
    b->et.id = i;
2645
3.31M
    opt_state->edges[i] = &b->et;
2646
3.31M
    b->ef.id = opt_state->n_blocks + i;
2647
3.31M
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648
3.31M
    b->et.pred = b;
2649
3.31M
    b->ef.pred = b;
2650
3.31M
  }
2651
321k
  max_stmts = 0;
2652
3.63M
  for (i = 0; i < n; ++i)
2653
3.31M
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654
  /*
2655
   * We allocate at most 3 value numbers per statement,
2656
   * so this is an upper bound on the number of valnodes
2657
   * we'll need.
2658
   */
2659
321k
  opt_state->maxval = 3 * max_stmts;
2660
321k
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661
321k
  if (opt_state->vmap == NULL) {
2662
0
    opt_error(opt_state, "malloc");
2663
0
  }
2664
321k
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665
321k
  if (opt_state->vnode_base == NULL) {
2666
0
    opt_error(opt_state, "malloc");
2667
0
  }
2668
321k
}
2669
2670
/*
2671
 * This is only used when supporting optimizer debugging.  It is
2672
 * global state, so do *not* do more than one compile in parallel
2673
 * and expect it to provide meaningful information.
2674
 */
2675
#ifdef BDEBUG
2676
int bids[NBIDS];
2677
#endif
2678
2679
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680
    PCAP_PRINTFLIKE(2, 3);
2681
2682
/*
2683
 * Returns true if successful.  Returns false if a branch has
2684
 * an offset that is too large.  If so, we have marked that
2685
 * branch so that on a subsequent iteration, it will be treated
2686
 * properly.
2687
 */
2688
static int
2689
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690
5.93M
{
2691
5.93M
  struct bpf_insn *dst;
2692
5.93M
  struct slist *src;
2693
5.93M
  u_int slen;
2694
5.93M
  u_int off;
2695
5.93M
  struct slist **offset = NULL;
2696
2697
5.93M
  if (p == 0 || isMarked(ic, p))
2698
3.05M
    return (1);
2699
2.88M
  Mark(ic, p);
2700
2701
2.88M
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702
109k
    return (0);
2703
2.77M
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704
31.5k
    return (0);
2705
2706
2.74M
  slen = slength(p->stmts);
2707
2.74M
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708
    /* inflate length by any extra jumps */
2709
2710
2.74M
  p->offset = (int)(dst - conv_state->fstart);
2711
2712
  /* generate offset[] for convenience  */
2713
2.74M
  if (slen) {
2714
2.09M
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715
2.09M
    if (!offset) {
2716
0
      conv_error(conv_state, "not enough core");
2717
      /*NOTREACHED*/
2718
0
    }
2719
2.09M
  }
2720
2.74M
  src = p->stmts;
2721
8.00M
  for (off = 0; off < slen && src; off++) {
2722
#if 0
2723
    printf("off=%d src=%x\n", off, src);
2724
#endif
2725
5.26M
    offset[off] = src;
2726
5.26M
    src = src->next;
2727
5.26M
  }
2728
2729
2.74M
  off = 0;
2730
10.1M
  for (src = p->stmts; src; src = src->next) {
2731
7.36M
    if (src->s.code == NOP)
2732
2.10M
      continue;
2733
5.26M
    dst->code = (u_short)src->s.code;
2734
5.26M
    dst->k = src->s.k;
2735
2736
    /* fill block-local relative jump */
2737
5.26M
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738
#if 0
2739
      if (src->s.jt || src->s.jf) {
2740
        free(offset);
2741
        conv_error(conv_state, "illegal jmp destination");
2742
        /*NOTREACHED*/
2743
      }
2744
#endif
2745
5.09M
      goto filled;
2746
5.09M
    }
2747
162k
    if (off == slen - 2)  /*???*/
2748
0
      goto filled;
2749
2750
162k
      {
2751
162k
    u_int i;
2752
162k
    int jt, jf;
2753
162k
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755
#if 0
2756
    printf("code=%x off=%d %x %x\n", src->s.code,
2757
      off, src->s.jt, src->s.jf);
2758
#endif
2759
2760
162k
    if (!src->s.jt || !src->s.jf) {
2761
0
      free(offset);
2762
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2763
      /*NOTREACHED*/
2764
0
    }
2765
2766
162k
    jt = jf = 0;
2767
4.89M
    for (i = 0; i < slen; i++) {
2768
4.72M
      if (offset[i] == src->s.jt) {
2769
162k
        if (jt) {
2770
0
          free(offset);
2771
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2772
          /*NOTREACHED*/
2773
0
        }
2774
2775
162k
        if (i - off - 1 >= 256) {
2776
0
          free(offset);
2777
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2778
          /*NOTREACHED*/
2779
0
        }
2780
162k
        dst->jt = (u_char)(i - off - 1);
2781
162k
        jt++;
2782
162k
      }
2783
4.72M
      if (offset[i] == src->s.jf) {
2784
162k
        if (jf) {
2785
0
          free(offset);
2786
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2787
          /*NOTREACHED*/
2788
0
        }
2789
162k
        if (i - off - 1 >= 256) {
2790
0
          free(offset);
2791
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2792
          /*NOTREACHED*/
2793
0
        }
2794
162k
        dst->jf = (u_char)(i - off - 1);
2795
162k
        jf++;
2796
162k
      }
2797
4.72M
    }
2798
162k
    if (!jt || !jf) {
2799
0
      free(offset);
2800
0
      conv_error(conv_state, ljerr, "no destination found", off);
2801
      /*NOTREACHED*/
2802
0
    }
2803
162k
      }
2804
5.26M
filled:
2805
5.26M
    ++dst;
2806
5.26M
    ++off;
2807
5.26M
  }
2808
2.74M
  if (offset)
2809
2.09M
    free(offset);
2810
2811
#ifdef BDEBUG
2812
  if (dst - conv_state->fstart < NBIDS)
2813
    bids[dst - conv_state->fstart] = p->id + 1;
2814
#endif
2815
2.74M
  dst->code = (u_short)p->s.code;
2816
2.74M
  dst->k = p->s.k;
2817
2.74M
  if (JT(p)) {
2818
    /* number of extra jumps inserted */
2819
2.28M
    u_char extrajmps = 0;
2820
2.28M
    off = JT(p)->offset - (p->offset + slen) - 1;
2821
2.28M
    if (off >= 256) {
2822
        /* offset too large for branch, must add a jump */
2823
21.5k
        if (p->longjt == 0) {
2824
      /* mark this instruction and retry */
2825
3.34k
      p->longjt++;
2826
3.34k
      return(0);
2827
3.34k
        }
2828
18.1k
        dst->jt = extrajmps;
2829
18.1k
        extrajmps++;
2830
18.1k
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2831
18.1k
        dst[extrajmps].k = off - extrajmps;
2832
18.1k
    }
2833
2.26M
    else
2834
2.26M
        dst->jt = (u_char)off;
2835
2.28M
    off = JF(p)->offset - (p->offset + slen) - 1;
2836
2.28M
    if (off >= 256) {
2837
        /* offset too large for branch, must add a jump */
2838
41.2k
        if (p->longjf == 0) {
2839
      /* mark this instruction and retry */
2840
5.56k
      p->longjf++;
2841
5.56k
      return(0);
2842
5.56k
        }
2843
        /* branch if F to following jump */
2844
        /* if two jumps are inserted, F goes to second one */
2845
35.6k
        dst->jf = extrajmps;
2846
35.6k
        extrajmps++;
2847
35.6k
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2848
35.6k
        dst[extrajmps].k = off - extrajmps;
2849
35.6k
    }
2850
2.24M
    else
2851
2.24M
        dst->jf = (u_char)off;
2852
2.28M
  }
2853
2.73M
  return (1);
2854
2.74M
}
2855
2856
2857
/*
2858
 * Convert flowgraph intermediate representation to the
2859
 * BPF array representation.  Set *lenp to the number of instructions.
2860
 *
2861
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862
 * not* do free(fp) before returning fp; doing so would make no sense,
2863
 * as the BPF array pointed to by the return value of icode_to_fcode()
2864
 * must be valid - it's being returned for use in a bpf_program structure.
2865
 *
2866
 * If it appears that icode_to_fcode() is leaking, the problem is that
2867
 * the program using pcap_compile() is failing to free the memory in
2868
 * the BPF program when it's done - the leak is in the program, not in
2869
 * the routine that happens to be allocating the memory.  (By analogy, if
2870
 * a program calls fopen() without ever calling fclose() on the FILE *,
2871
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872
 * the program.)  Change the program to use pcap_freecode() when it's
2873
 * done with the filter program.  See the pcap man page.
2874
 */
2875
struct bpf_insn *
2876
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877
    char *errbuf)
2878
270k
{
2879
270k
  u_int n;
2880
270k
  struct bpf_insn *fp;
2881
270k
  conv_state_t conv_state;
2882
2883
270k
  conv_state.fstart = NULL;
2884
270k
  conv_state.errbuf = errbuf;
2885
270k
  if (setjmp(conv_state.top_ctx) != 0) {
2886
0
    free(conv_state.fstart);
2887
0
    return NULL;
2888
0
  }
2889
2890
  /*
2891
   * Loop doing convert_code_r() until no branches remain
2892
   * with too-large offsets.
2893
   */
2894
279k
  for (;;) {
2895
279k
      unMarkAll(ic);
2896
279k
      n = *lenp = count_stmts(ic, root);
2897
2898
279k
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899
279k
      if (fp == NULL) {
2900
0
    (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901
0
        "malloc");
2902
0
    return NULL;
2903
0
      }
2904
279k
      memset((char *)fp, 0, sizeof(*fp) * n);
2905
279k
      conv_state.fstart = fp;
2906
279k
      conv_state.ftail = fp + n;
2907
2908
279k
      unMarkAll(ic);
2909
279k
      if (convert_code_r(&conv_state, ic, root))
2910
270k
    break;
2911
8.90k
      free(fp);
2912
8.90k
  }
2913
2914
270k
  return fp;
2915
270k
}
2916
2917
/*
2918
 * For iconv_to_fconv() errors.
2919
 */
2920
static void PCAP_NORETURN
2921
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922
0
{
2923
0
  va_list ap;
2924
2925
0
  va_start(ap, fmt);
2926
0
  (void)vsnprintf(conv_state->errbuf,
2927
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2928
0
  va_end(ap);
2929
0
  longjmp(conv_state->top_ctx, 1);
2930
  /* NOTREACHED */
2931
#ifdef _AIX
2932
  PCAP_UNREACHABLE
2933
#endif /* _AIX */
2934
0
}
2935
2936
/*
2937
 * Make a copy of a BPF program and put it in the "fcode" member of
2938
 * a "pcap_t".
2939
 *
2940
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941
 * member of the "pcap_t" with an error message, and return -1;
2942
 * otherwise, return 0.
2943
 */
2944
int
2945
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946
0
{
2947
0
  size_t prog_size;
2948
2949
  /*
2950
   * Validate the program.
2951
   */
2952
0
  if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953
0
    snprintf(p->errbuf, sizeof(p->errbuf),
2954
0
      "BPF program is not valid");
2955
0
    return (-1);
2956
0
  }
2957
2958
  /*
2959
   * Free up any already installed program.
2960
   */
2961
0
  pcap_freecode(&p->fcode);
2962
2963
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964
0
  p->fcode.bf_len = fp->bf_len;
2965
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966
0
  if (p->fcode.bf_insns == NULL) {
2967
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968
0
        errno, "malloc");
2969
0
    return (-1);
2970
0
  }
2971
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972
0
  return (0);
2973
0
}
2974
2975
#ifdef BDEBUG
2976
static void
2977
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978
    FILE *out)
2979
{
2980
  int icount, noffset;
2981
  int i;
2982
2983
  if (block == NULL || isMarked(ic, block))
2984
    return;
2985
  Mark(ic, block);
2986
2987
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988
  noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990
  fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991
  for (i = block->offset; i < noffset; i++) {
2992
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993
  }
2994
  fprintf(out, "\" tooltip=\"");
2995
  for (i = 0; i < BPF_MEMWORDS; i++)
2996
    if (block->val[i] != VAL_UNKNOWN)
2997
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000
  fprintf(out, "\"");
3001
  if (JT(block) == NULL)
3002
    fprintf(out, ", peripheries=2");
3003
  fprintf(out, "];\n");
3004
3005
  dot_dump_node(ic, JT(block), prog, out);
3006
  dot_dump_node(ic, JF(block), prog, out);
3007
}
3008
3009
static void
3010
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011
{
3012
  if (block == NULL || isMarked(ic, block))
3013
    return;
3014
  Mark(ic, block);
3015
3016
  if (JT(block)) {
3017
    fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018
        block->id, JT(block)->id);
3019
    fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020
         block->id, JF(block)->id);
3021
  }
3022
  dot_dump_edge(ic, JT(block), out);
3023
  dot_dump_edge(ic, JF(block), out);
3024
}
3025
3026
/* Output the block CFG using graphviz/DOT language
3027
 * In the CFG, block's code, value index for each registers at EXIT,
3028
 * and the jump relationship is show.
3029
 *
3030
 * example DOT for BPF `ip src host 1.1.1.1' is:
3031
    digraph BPF {
3032
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
3033
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
3034
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036
      "block0":se -> "block1":n [label="T"];
3037
      "block0":sw -> "block3":n [label="F"];
3038
      "block1":se -> "block2":n [label="T"];
3039
      "block1":sw -> "block3":n [label="F"];
3040
    }
3041
 *
3042
 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044
 */
3045
static int
3046
dot_dump(struct icode *ic, char *errbuf)
3047
{
3048
  struct bpf_program f;
3049
  FILE *out = stdout;
3050
3051
  memset(bids, 0, sizeof bids);
3052
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053
  if (f.bf_insns == NULL)
3054
    return -1;
3055
3056
  fprintf(out, "digraph BPF {\n");
3057
  unMarkAll(ic);
3058
  dot_dump_node(ic, ic->root, &f, out);
3059
  unMarkAll(ic);
3060
  dot_dump_edge(ic, ic->root, out);
3061
  fprintf(out, "}\n");
3062
3063
  free((char *)f.bf_insns);
3064
  return 0;
3065
}
3066
3067
static int
3068
plain_dump(struct icode *ic, char *errbuf)
3069
{
3070
  struct bpf_program f;
3071
3072
  memset(bids, 0, sizeof bids);
3073
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074
  if (f.bf_insns == NULL)
3075
    return -1;
3076
  bpf_dump(&f, 1);
3077
  putchar('\n');
3078
  free((char *)f.bf_insns);
3079
  return 0;
3080
}
3081
3082
static void
3083
opt_dump(opt_state_t *opt_state, struct icode *ic)
3084
{
3085
  int status;
3086
  char errbuf[PCAP_ERRBUF_SIZE];
3087
3088
  /*
3089
   * If the CFG, in DOT format, is requested, output it rather than
3090
   * the code that would be generated from that graph.
3091
   */
3092
  if (pcap_print_dot_graph)
3093
    status = dot_dump(ic, errbuf);
3094
  else
3095
    status = plain_dump(ic, errbuf);
3096
  if (status == -1)
3097
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098
}
3099
#endif