/src/openssl/crypto/sparse_array.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. |
4 | | * |
5 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | | * this file except in compliance with the License. You can obtain a copy |
7 | | * in the file LICENSE in the source distribution or at |
8 | | * https://www.openssl.org/source/license.html |
9 | | */ |
10 | | |
11 | | #include <openssl/crypto.h> |
12 | | #include <openssl/bn.h> |
13 | | #include "crypto/sparse_array.h" |
14 | | |
15 | | /* |
16 | | * How many bits are used to index each level in the tree structure? |
17 | | * This setting determines the number of pointers stored in each node of the |
18 | | * tree used to represent the sparse array. Having more pointers reduces the |
19 | | * depth of the tree but potentially wastes more memory. That is, this is a |
20 | | * direct space versus time tradeoff. |
21 | | * |
22 | | * The large memory model uses twelve bits which means that the are 4096 |
23 | | * pointers in each tree node. This is more than sufficient to hold the |
24 | | * largest defined NID (as of Feb 2019). This means that using a NID to |
25 | | * index a sparse array becomes a constant time single array look up. |
26 | | * |
27 | | * The small memory model uses four bits which means the tree nodes contain |
28 | | * sixteen pointers. This reduces the amount of unused space significantly |
29 | | * at a cost in time. |
30 | | * |
31 | | * The library builder is also permitted to define other sizes in the closed |
32 | | * interval [2, sizeof(ossl_uintmax_t) * 8]. |
33 | | */ |
34 | | #ifndef OPENSSL_SA_BLOCK_BITS |
35 | | # ifdef OPENSSL_SMALL_FOOTPRINT |
36 | | # define OPENSSL_SA_BLOCK_BITS 4 |
37 | | # else |
38 | 0 | # define OPENSSL_SA_BLOCK_BITS 12 |
39 | | # endif |
40 | | #elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1) |
41 | | # error OPENSSL_SA_BLOCK_BITS is out of range |
42 | | #endif |
43 | | |
44 | | /* |
45 | | * From the number of bits, work out: |
46 | | * the number of pointers in a tree node; |
47 | | * a bit mask to quickly extract an index and |
48 | | * the maximum depth of the tree structure. |
49 | | */ |
50 | 0 | #define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS) |
51 | 0 | #define SA_BLOCK_MASK (SA_BLOCK_MAX - 1) |
52 | 0 | #define SA_BLOCK_MAX_LEVELS (((int)sizeof(ossl_uintmax_t) * 8 \ |
53 | 0 | + OPENSSL_SA_BLOCK_BITS - 1) \ |
54 | 0 | / OPENSSL_SA_BLOCK_BITS) |
55 | | |
56 | | struct sparse_array_st { |
57 | | int levels; |
58 | | ossl_uintmax_t top; |
59 | | size_t nelem; |
60 | | void **nodes; |
61 | | }; |
62 | | |
63 | | OPENSSL_SA *OPENSSL_SA_new(void) |
64 | 0 | { |
65 | 0 | OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res)); |
66 | |
|
67 | 0 | return res; |
68 | 0 | } |
69 | | |
70 | | static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **), |
71 | | void (*leaf)(ossl_uintmax_t, void *, void *), void *arg) |
72 | 0 | { |
73 | 0 | int i[SA_BLOCK_MAX_LEVELS]; |
74 | 0 | void *nodes[SA_BLOCK_MAX_LEVELS]; |
75 | 0 | ossl_uintmax_t idx = 0; |
76 | 0 | int l = 0; |
77 | |
|
78 | 0 | i[0] = 0; |
79 | 0 | nodes[0] = sa->nodes; |
80 | 0 | while (l >= 0) { |
81 | 0 | const int n = i[l]; |
82 | 0 | void ** const p = nodes[l]; |
83 | |
|
84 | 0 | if (n >= SA_BLOCK_MAX) { |
85 | 0 | if (p != NULL && node != NULL) |
86 | 0 | (*node)(p); |
87 | 0 | l--; |
88 | 0 | idx >>= OPENSSL_SA_BLOCK_BITS; |
89 | 0 | } else { |
90 | 0 | i[l] = n + 1; |
91 | 0 | if (p != NULL && p[n] != NULL) { |
92 | 0 | idx = (idx & ~SA_BLOCK_MASK) | n; |
93 | 0 | if (l < sa->levels - 1) { |
94 | 0 | i[++l] = 0; |
95 | 0 | nodes[l] = p[n]; |
96 | 0 | idx <<= OPENSSL_SA_BLOCK_BITS; |
97 | 0 | } else if (leaf != NULL) { |
98 | 0 | (*leaf)(idx, p[n], arg); |
99 | 0 | } |
100 | 0 | } |
101 | 0 | } |
102 | 0 | } |
103 | 0 | } |
104 | | |
105 | | static void sa_free_node(void **p) |
106 | 0 | { |
107 | 0 | OPENSSL_free(p); |
108 | 0 | } |
109 | | |
110 | | static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg) |
111 | 0 | { |
112 | 0 | OPENSSL_free(p); |
113 | 0 | } |
114 | | |
115 | | void OPENSSL_SA_free(OPENSSL_SA *sa) |
116 | 0 | { |
117 | 0 | sa_doall(sa, &sa_free_node, NULL, NULL); |
118 | 0 | OPENSSL_free(sa); |
119 | 0 | } |
120 | | |
121 | | void OPENSSL_SA_free_leaves(OPENSSL_SA *sa) |
122 | 0 | { |
123 | 0 | sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL); |
124 | 0 | OPENSSL_free(sa); |
125 | 0 | } |
126 | | |
127 | | /* Wrap this in a structure to avoid compiler warnings */ |
128 | | struct trampoline_st { |
129 | | void (*func)(ossl_uintmax_t, void *); |
130 | | }; |
131 | | |
132 | | static void trampoline(ossl_uintmax_t n, void *l, void *arg) |
133 | 0 | { |
134 | 0 | ((const struct trampoline_st *)arg)->func(n, l); |
135 | 0 | } |
136 | | |
137 | | void OPENSSL_SA_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, |
138 | | void *)) |
139 | 0 | { |
140 | 0 | struct trampoline_st tramp; |
141 | |
|
142 | 0 | tramp.func = leaf; |
143 | 0 | if (sa != NULL) |
144 | 0 | sa_doall(sa, NULL, &trampoline, &tramp); |
145 | 0 | } |
146 | | |
147 | | void OPENSSL_SA_doall_arg(const OPENSSL_SA *sa, |
148 | | void (*leaf)(ossl_uintmax_t, void *, void *), |
149 | | void *arg) |
150 | 0 | { |
151 | 0 | if (sa != NULL) |
152 | 0 | sa_doall(sa, NULL, leaf, arg); |
153 | 0 | } |
154 | | |
155 | | size_t OPENSSL_SA_num(const OPENSSL_SA *sa) |
156 | 0 | { |
157 | 0 | return sa == NULL ? 0 : sa->nelem; |
158 | 0 | } |
159 | | |
160 | | void *OPENSSL_SA_get(const OPENSSL_SA *sa, ossl_uintmax_t n) |
161 | 0 | { |
162 | 0 | int level; |
163 | 0 | void **p, *r = NULL; |
164 | |
|
165 | 0 | if (sa == NULL) |
166 | 0 | return NULL; |
167 | | |
168 | 0 | if (n <= sa->top) { |
169 | 0 | p = sa->nodes; |
170 | 0 | for (level = sa->levels - 1; p != NULL && level > 0; level--) |
171 | 0 | p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level)) |
172 | 0 | & SA_BLOCK_MASK]; |
173 | 0 | r = p == NULL ? NULL : p[n & SA_BLOCK_MASK]; |
174 | 0 | } |
175 | 0 | return r; |
176 | 0 | } |
177 | | |
178 | | static ossl_inline void **alloc_node(void) |
179 | 0 | { |
180 | 0 | return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *)); |
181 | 0 | } |
182 | | |
183 | | int OPENSSL_SA_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val) |
184 | 0 | { |
185 | 0 | int i, level = 1; |
186 | 0 | ossl_uintmax_t n = posn; |
187 | 0 | void **p; |
188 | |
|
189 | 0 | if (sa == NULL) |
190 | 0 | return 0; |
191 | | |
192 | 0 | for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++) |
193 | 0 | if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0) |
194 | 0 | break; |
195 | |
|
196 | 0 | for (;sa->levels < level; sa->levels++) { |
197 | 0 | p = alloc_node(); |
198 | 0 | if (p == NULL) |
199 | 0 | return 0; |
200 | 0 | p[0] = sa->nodes; |
201 | 0 | sa->nodes = p; |
202 | 0 | } |
203 | 0 | if (sa->top < posn) |
204 | 0 | sa->top = posn; |
205 | |
|
206 | 0 | p = sa->nodes; |
207 | 0 | for (level = sa->levels - 1; level > 0; level--) { |
208 | 0 | i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK; |
209 | 0 | if (p[i] == NULL && (p[i] = alloc_node()) == NULL) |
210 | 0 | return 0; |
211 | 0 | p = p[i]; |
212 | 0 | } |
213 | 0 | p += posn & SA_BLOCK_MASK; |
214 | 0 | if (val == NULL && *p != NULL) |
215 | 0 | sa->nelem--; |
216 | 0 | else if (val != NULL && *p == NULL) |
217 | 0 | sa->nelem++; |
218 | 0 | *p = val; |
219 | 0 | return 1; |
220 | 0 | } |