Coverage Report

Created: 2024-05-16 11:01

/src/mbedtls/library/bignum.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  Multi-precision integer library
3
 *
4
 *  Copyright The Mbed TLS Contributors
5
 *  SPDX-License-Identifier: Apache-2.0
6
 *
7
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8
 *  not use this file except in compliance with the License.
9
 *  You may obtain a copy of the License at
10
 *
11
 *  http://www.apache.org/licenses/LICENSE-2.0
12
 *
13
 *  Unless required by applicable law or agreed to in writing, software
14
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
 *  See the License for the specific language governing permissions and
17
 *  limitations under the License.
18
 */
19
20
/*
21
 *  The following sources were referenced in the design of this Multi-precision
22
 *  Integer library:
23
 *
24
 *  [1] Handbook of Applied Cryptography - 1997
25
 *      Menezes, van Oorschot and Vanstone
26
 *
27
 *  [2] Multi-Precision Math
28
 *      Tom St Denis
29
 *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30
 *
31
 *  [3] GNU Multi-Precision Arithmetic Library
32
 *      https://gmplib.org/manual/index.html
33
 *
34
 */
35
36
#include "common.h"
37
38
#if defined(MBEDTLS_BIGNUM_C)
39
40
#include "mbedtls/bignum.h"
41
#include "bignum_core.h"
42
#include "bn_mul.h"
43
#include "mbedtls/platform_util.h"
44
#include "mbedtls/error.h"
45
#include "constant_time_internal.h"
46
47
#include <limits.h>
48
#include <string.h>
49
50
#include "mbedtls/platform.h"
51
52
#define MPI_VALIDATE_RET(cond)                                       \
53
46.8M
    MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54
#define MPI_VALIDATE(cond)                                           \
55
2.24M
    MBEDTLS_INTERNAL_VALIDATE(cond)
56
57
0
#define MPI_SIZE_T_MAX  ((size_t) -1)   /* SIZE_T_MAX is not standard */
58
59
/* Implementation that should never be optimized out by the compiler */
60
static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
61
427k
{
62
427k
    mbedtls_platform_zeroize(v, ciL * n);
63
427k
}
64
65
/*
66
 * Initialize one MPI
67
 */
68
void mbedtls_mpi_init(mbedtls_mpi *X)
69
2.24M
{
70
2.24M
    MPI_VALIDATE(X != NULL);
71
72
2.24M
    X->s = 1;
73
2.24M
    X->n = 0;
74
2.24M
    X->p = NULL;
75
2.24M
}
76
77
/*
78
 * Unallocate one MPI
79
 */
80
void mbedtls_mpi_free(mbedtls_mpi *X)
81
2.60M
{
82
2.60M
    if (X == NULL) {
83
0
        return;
84
0
    }
85
86
2.60M
    if (X->p != NULL) {
87
391k
        mbedtls_mpi_zeroize(X->p, X->n);
88
391k
        mbedtls_free(X->p);
89
391k
    }
90
91
2.60M
    X->s = 1;
92
2.60M
    X->n = 0;
93
2.60M
    X->p = NULL;
94
2.60M
}
95
96
/*
97
 * Enlarge to the specified number of limbs
98
 */
99
int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
100
8.37M
{
101
8.37M
    mbedtls_mpi_uint *p;
102
8.37M
    MPI_VALIDATE_RET(X != NULL);
103
104
8.37M
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
105
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
106
0
    }
107
108
8.37M
    if (X->n < nblimbs) {
109
429k
        if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
110
0
            return MBEDTLS_ERR_MPI_ALLOC_FAILED;
111
0
        }
112
113
429k
        if (X->p != NULL) {
114
32.5k
            memcpy(p, X->p, X->n * ciL);
115
32.5k
            mbedtls_mpi_zeroize(X->p, X->n);
116
32.5k
            mbedtls_free(X->p);
117
32.5k
        }
118
119
429k
        X->n = nblimbs;
120
429k
        X->p = p;
121
429k
    }
122
123
8.37M
    return 0;
124
8.37M
}
125
126
/*
127
 * Resize down as much as possible,
128
 * while keeping at least the specified number of limbs
129
 */
130
int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
131
3.74k
{
132
3.74k
    mbedtls_mpi_uint *p;
133
3.74k
    size_t i;
134
3.74k
    MPI_VALIDATE_RET(X != NULL);
135
136
3.74k
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
137
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
138
0
    }
139
140
    /* Actually resize up if there are currently fewer than nblimbs limbs. */
141
3.74k
    if (X->n <= nblimbs) {
142
0
        return mbedtls_mpi_grow(X, nblimbs);
143
0
    }
144
    /* After this point, then X->n > nblimbs and in particular X->n > 0. */
145
146
29.9k
    for (i = X->n - 1; i > 0; i--) {
147
29.9k
        if (X->p[i] != 0) {
148
3.74k
            break;
149
3.74k
        }
150
29.9k
    }
151
3.74k
    i++;
152
153
3.74k
    if (i < nblimbs) {
154
0
        i = nblimbs;
155
0
    }
156
157
3.74k
    if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
158
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
159
0
    }
160
161
3.74k
    if (X->p != NULL) {
162
3.74k
        memcpy(p, X->p, i * ciL);
163
3.74k
        mbedtls_mpi_zeroize(X->p, X->n);
164
3.74k
        mbedtls_free(X->p);
165
3.74k
    }
166
167
3.74k
    X->n = i;
168
3.74k
    X->p = p;
169
170
3.74k
    return 0;
171
3.74k
}
172
173
/* Resize X to have exactly n limbs and set it to 0. */
174
static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
175
35.1k
{
176
35.1k
    if (limbs == 0) {
177
164
        mbedtls_mpi_free(X);
178
164
        return 0;
179
34.9k
    } else if (X->n == limbs) {
180
0
        memset(X->p, 0, limbs * ciL);
181
0
        X->s = 1;
182
0
        return 0;
183
34.9k
    } else {
184
34.9k
        mbedtls_mpi_free(X);
185
34.9k
        return mbedtls_mpi_grow(X, limbs);
186
34.9k
    }
187
35.1k
}
188
189
/*
190
 * Copy the contents of Y into X.
191
 *
192
 * This function is not constant-time. Leading zeros in Y may be removed.
193
 *
194
 * Ensure that X does not shrink. This is not guaranteed by the public API,
195
 * but some code in the bignum module relies on this property, for example
196
 * in mbedtls_mpi_exp_mod().
197
 */
198
int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
199
848k
{
200
848k
    int ret = 0;
201
848k
    size_t i;
202
848k
    MPI_VALIDATE_RET(X != NULL);
203
848k
    MPI_VALIDATE_RET(Y != NULL);
204
205
848k
    if (X == Y) {
206
58.4k
        return 0;
207
58.4k
    }
208
209
789k
    if (Y->n == 0) {
210
24
        if (X->n != 0) {
211
0
            X->s = 1;
212
0
            memset(X->p, 0, X->n * ciL);
213
0
        }
214
24
        return 0;
215
24
    }
216
217
6.78M
    for (i = Y->n - 1; i > 0; i--) {
218
6.78M
        if (Y->p[i] != 0) {
219
787k
            break;
220
787k
        }
221
6.78M
    }
222
789k
    i++;
223
224
789k
    X->s = Y->s;
225
226
789k
    if (X->n < i) {
227
302k
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
228
487k
    } else {
229
487k
        memset(X->p + i, 0, (X->n - i) * ciL);
230
487k
    }
231
232
789k
    memcpy(X->p, Y->p, i * ciL);
233
234
789k
cleanup:
235
236
789k
    return ret;
237
789k
}
238
239
/*
240
 * Swap the contents of X and Y
241
 */
242
void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
243
0
{
244
0
    mbedtls_mpi T;
245
0
    MPI_VALIDATE(X != NULL);
246
0
    MPI_VALIDATE(Y != NULL);
247
248
0
    memcpy(&T,  X, sizeof(mbedtls_mpi));
249
0
    memcpy(X,  Y, sizeof(mbedtls_mpi));
250
0
    memcpy(Y, &T, sizeof(mbedtls_mpi));
251
0
}
252
253
static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
254
2.23M
{
255
2.23M
    if (z >= 0) {
256
2.23M
        return z;
257
2.23M
    }
258
    /* Take care to handle the most negative value (-2^(biL-1)) correctly.
259
     * A naive -z would have undefined behavior.
260
     * Write this in a way that makes popular compilers happy (GCC, Clang,
261
     * MSVC). */
262
0
    return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
263
2.23M
}
264
265
/*
266
 * Set value from integer
267
 */
268
int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
269
1.14M
{
270
1.14M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
271
1.14M
    MPI_VALIDATE_RET(X != NULL);
272
273
1.14M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
274
1.14M
    memset(X->p, 0, X->n * ciL);
275
276
1.14M
    X->p[0] = mpi_sint_abs(z);
277
1.14M
    X->s    = (z < 0) ? -1 : 1;
278
279
1.14M
cleanup:
280
281
1.14M
    return ret;
282
1.14M
}
283
284
/*
285
 * Get a specific bit
286
 */
287
int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
288
183k
{
289
183k
    MPI_VALIDATE_RET(X != NULL);
290
291
183k
    if (X->n * biL <= pos) {
292
0
        return 0;
293
0
    }
294
295
183k
    return (X->p[pos / biL] >> (pos % biL)) & 0x01;
296
183k
}
297
298
/*
299
 * Set a bit to a specific value of 0 or 1
300
 */
301
int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
302
6
{
303
6
    int ret = 0;
304
6
    size_t off = pos / biL;
305
6
    size_t idx = pos % biL;
306
6
    MPI_VALIDATE_RET(X != NULL);
307
308
6
    if (val != 0 && val != 1) {
309
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
310
0
    }
311
312
6
    if (X->n * biL <= pos) {
313
0
        if (val == 0) {
314
0
            return 0;
315
0
        }
316
317
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
318
0
    }
319
320
6
    X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
321
6
    X->p[off] |= (mbedtls_mpi_uint) val << idx;
322
323
6
cleanup:
324
325
6
    return ret;
326
6
}
327
328
/*
329
 * Return the number of less significant zero-bits
330
 */
331
size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
332
406k
{
333
406k
    size_t i, j, count = 0;
334
406k
    MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
335
336
406k
    for (i = 0; i < X->n; i++) {
337
610k
        for (j = 0; j < biL; j++, count++) {
338
610k
            if (((X->p[i] >> j) & 1) != 0) {
339
406k
                return count;
340
406k
            }
341
610k
        }
342
406k
    }
343
344
0
    return 0;
345
406k
}
346
347
/*
348
 * Return the number of bits
349
 */
350
size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
351
1.52M
{
352
1.52M
    return mbedtls_mpi_core_bitlen(X->p, X->n);
353
1.52M
}
354
355
/*
356
 * Return the total size in bytes
357
 */
358
size_t mbedtls_mpi_size(const mbedtls_mpi *X)
359
42.7k
{
360
42.7k
    return (mbedtls_mpi_bitlen(X) + 7) >> 3;
361
42.7k
}
362
363
/*
364
 * Convert an ASCII character to digit value
365
 */
366
static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
367
0
{
368
0
    *d = 255;
369
370
0
    if (c >= 0x30 && c <= 0x39) {
371
0
        *d = c - 0x30;
372
0
    }
373
0
    if (c >= 0x41 && c <= 0x46) {
374
0
        *d = c - 0x37;
375
0
    }
376
0
    if (c >= 0x61 && c <= 0x66) {
377
0
        *d = c - 0x57;
378
0
    }
379
380
0
    if (*d >= (mbedtls_mpi_uint) radix) {
381
0
        return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
382
0
    }
383
384
0
    return 0;
385
0
}
386
387
/*
388
 * Import from an ASCII string
389
 */
390
int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
391
0
{
392
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
393
0
    size_t i, j, slen, n;
394
0
    int sign = 1;
395
0
    mbedtls_mpi_uint d;
396
0
    mbedtls_mpi T;
397
0
    MPI_VALIDATE_RET(X != NULL);
398
0
    MPI_VALIDATE_RET(s != NULL);
399
400
0
    if (radix < 2 || radix > 16) {
401
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
402
0
    }
403
404
0
    mbedtls_mpi_init(&T);
405
406
0
    if (s[0] == 0) {
407
0
        mbedtls_mpi_free(X);
408
0
        return 0;
409
0
    }
410
411
0
    if (s[0] == '-') {
412
0
        ++s;
413
0
        sign = -1;
414
0
    }
415
416
0
    slen = strlen(s);
417
418
0
    if (radix == 16) {
419
0
        if (slen > MPI_SIZE_T_MAX >> 2) {
420
0
            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
421
0
        }
422
423
0
        n = BITS_TO_LIMBS(slen << 2);
424
425
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
426
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
427
428
0
        for (i = slen, j = 0; i > 0; i--, j++) {
429
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
430
0
            X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
431
0
        }
432
0
    } else {
433
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
434
435
0
        for (i = 0; i < slen; i++) {
436
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
437
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
438
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
439
0
        }
440
0
    }
441
442
0
    if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
443
0
        X->s = -1;
444
0
    }
445
446
0
cleanup:
447
448
0
    mbedtls_mpi_free(&T);
449
450
0
    return ret;
451
0
}
452
453
/*
454
 * Helper to write the digits high-order first.
455
 */
456
static int mpi_write_hlp(mbedtls_mpi *X, int radix,
457
                         char **p, const size_t buflen)
458
0
{
459
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
460
0
    mbedtls_mpi_uint r;
461
0
    size_t length = 0;
462
0
    char *p_end = *p + buflen;
463
464
0
    do {
465
0
        if (length >= buflen) {
466
0
            return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
467
0
        }
468
469
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
470
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
471
        /*
472
         * Write the residue in the current position, as an ASCII character.
473
         */
474
0
        if (r < 0xA) {
475
0
            *(--p_end) = (char) ('0' + r);
476
0
        } else {
477
0
            *(--p_end) = (char) ('A' + (r - 0xA));
478
0
        }
479
480
0
        length++;
481
0
    } while (mbedtls_mpi_cmp_int(X, 0) != 0);
482
483
0
    memmove(*p, p_end, length);
484
0
    *p += length;
485
486
0
cleanup:
487
488
0
    return ret;
489
0
}
490
491
/*
492
 * Export into an ASCII string
493
 */
494
int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
495
                             char *buf, size_t buflen, size_t *olen)
496
0
{
497
0
    int ret = 0;
498
0
    size_t n;
499
0
    char *p;
500
0
    mbedtls_mpi T;
501
0
    MPI_VALIDATE_RET(X    != NULL);
502
0
    MPI_VALIDATE_RET(olen != NULL);
503
0
    MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
504
505
0
    if (radix < 2 || radix > 16) {
506
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
507
0
    }
508
509
0
    n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */
510
0
    if (radix >=  4) {
511
0
        n >>= 1;                 /* Number of 4-adic digits necessary to present
512
                                  * `n`. If radix > 4, this might be a strict
513
                                  * overapproximation of the number of
514
                                  * radix-adic digits needed to present `n`. */
515
0
    }
516
0
    if (radix >= 16) {
517
0
        n >>= 1;                 /* Number of hexadecimal digits necessary to
518
                                  * present `n`. */
519
520
0
    }
521
0
    n += 1; /* Terminating null byte */
522
0
    n += 1; /* Compensate for the divisions above, which round down `n`
523
             * in case it's not even. */
524
0
    n += 1; /* Potential '-'-sign. */
525
0
    n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,
526
                     * which always uses an even number of hex-digits. */
527
528
0
    if (buflen < n) {
529
0
        *olen = n;
530
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
531
0
    }
532
533
0
    p = buf;
534
0
    mbedtls_mpi_init(&T);
535
536
0
    if (X->s == -1) {
537
0
        *p++ = '-';
538
0
        buflen--;
539
0
    }
540
541
0
    if (radix == 16) {
542
0
        int c;
543
0
        size_t i, j, k;
544
545
0
        for (i = X->n, k = 0; i > 0; i--) {
546
0
            for (j = ciL; j > 0; j--) {
547
0
                c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
548
549
0
                if (c == 0 && k == 0 && (i + j) != 2) {
550
0
                    continue;
551
0
                }
552
553
0
                *(p++) = "0123456789ABCDEF" [c / 16];
554
0
                *(p++) = "0123456789ABCDEF" [c % 16];
555
0
                k = 1;
556
0
            }
557
0
        }
558
0
    } else {
559
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
560
561
0
        if (T.s == -1) {
562
0
            T.s = 1;
563
0
        }
564
565
0
        MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
566
0
    }
567
568
0
    *p++ = '\0';
569
0
    *olen = p - buf;
570
571
0
cleanup:
572
573
0
    mbedtls_mpi_free(&T);
574
575
0
    return ret;
576
0
}
577
578
#if defined(MBEDTLS_FS_IO)
579
/*
580
 * Read X from an opened file
581
 */
582
int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
583
0
{
584
0
    mbedtls_mpi_uint d;
585
0
    size_t slen;
586
0
    char *p;
587
    /*
588
     * Buffer should have space for (short) label and decimal formatted MPI,
589
     * newline characters and '\0'
590
     */
591
0
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
592
593
0
    MPI_VALIDATE_RET(X   != NULL);
594
0
    MPI_VALIDATE_RET(fin != NULL);
595
596
0
    if (radix < 2 || radix > 16) {
597
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
598
0
    }
599
600
0
    memset(s, 0, sizeof(s));
601
0
    if (fgets(s, sizeof(s) - 1, fin) == NULL) {
602
0
        return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
603
0
    }
604
605
0
    slen = strlen(s);
606
0
    if (slen == sizeof(s) - 2) {
607
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
608
0
    }
609
610
0
    if (slen > 0 && s[slen - 1] == '\n') {
611
0
        slen--; s[slen] = '\0';
612
0
    }
613
0
    if (slen > 0 && s[slen - 1] == '\r') {
614
0
        slen--; s[slen] = '\0';
615
0
    }
616
617
0
    p = s + slen;
618
0
    while (p-- > s) {
619
0
        if (mpi_get_digit(&d, radix, *p) != 0) {
620
0
            break;
621
0
        }
622
0
    }
623
624
0
    return mbedtls_mpi_read_string(X, radix, p + 1);
625
0
}
626
627
/*
628
 * Write X into an opened file (or stdout if fout == NULL)
629
 */
630
int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
631
0
{
632
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
633
0
    size_t n, slen, plen;
634
    /*
635
     * Buffer should have space for (short) label and decimal formatted MPI,
636
     * newline characters and '\0'
637
     */
638
0
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
639
0
    MPI_VALIDATE_RET(X != NULL);
640
641
0
    if (radix < 2 || radix > 16) {
642
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
643
0
    }
644
645
0
    memset(s, 0, sizeof(s));
646
647
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
648
649
0
    if (p == NULL) {
650
0
        p = "";
651
0
    }
652
653
0
    plen = strlen(p);
654
0
    slen = strlen(s);
655
0
    s[slen++] = '\r';
656
0
    s[slen++] = '\n';
657
658
0
    if (fout != NULL) {
659
0
        if (fwrite(p, 1, plen, fout) != plen ||
660
0
            fwrite(s, 1, slen, fout) != slen) {
661
0
            return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
662
0
        }
663
0
    } else {
664
0
        mbedtls_printf("%s%s", p, s);
665
0
    }
666
667
0
cleanup:
668
669
0
    return ret;
670
0
}
671
#endif /* MBEDTLS_FS_IO */
672
673
/*
674
 * Import X from unsigned binary data, little endian
675
 *
676
 * This function is guaranteed to return an MPI with exactly the necessary
677
 * number of limbs (in particular, it does not skip 0s in the input).
678
 */
679
int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
680
                               const unsigned char *buf, size_t buflen)
681
6
{
682
6
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
683
6
    const size_t limbs = CHARS_TO_LIMBS(buflen);
684
685
    /* Ensure that target MPI has exactly the necessary number of limbs */
686
6
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
687
688
6
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
689
690
6
cleanup:
691
692
    /*
693
     * This function is also used to import keys. However, wiping the buffers
694
     * upon failure is not necessary because failure only can happen before any
695
     * input is copied.
696
     */
697
6
    return ret;
698
6
}
699
700
/*
701
 * Import X from unsigned binary data, big endian
702
 *
703
 * This function is guaranteed to return an MPI with exactly the necessary
704
 * number of limbs (in particular, it does not skip 0s in the input).
705
 */
706
int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
707
34.2k
{
708
34.2k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
709
34.2k
    const size_t limbs = CHARS_TO_LIMBS(buflen);
710
711
34.2k
    MPI_VALIDATE_RET(X != NULL);
712
34.2k
    MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
713
714
    /* Ensure that target MPI has exactly the necessary number of limbs */
715
34.2k
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
716
717
34.2k
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
718
719
34.2k
cleanup:
720
721
    /*
722
     * This function is also used to import keys. However, wiping the buffers
723
     * upon failure is not necessary because failure only can happen before any
724
     * input is copied.
725
     */
726
34.2k
    return ret;
727
34.2k
}
728
729
/*
730
 * Export X into unsigned binary data, little endian
731
 */
732
int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
733
                                unsigned char *buf, size_t buflen)
734
0
{
735
0
    return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
736
0
}
737
738
/*
739
 * Export X into unsigned binary data, big endian
740
 */
741
int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
742
                             unsigned char *buf, size_t buflen)
743
1.52k
{
744
1.52k
    return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
745
1.52k
}
746
747
/*
748
 * Left-shift: X <<= count
749
 */
750
int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
751
403k
{
752
403k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
753
403k
    size_t i, v0, t1;
754
403k
    mbedtls_mpi_uint r0 = 0, r1;
755
403k
    MPI_VALIDATE_RET(X != NULL);
756
757
403k
    v0 = count / (biL);
758
403k
    t1 = count & (biL - 1);
759
760
403k
    i = mbedtls_mpi_bitlen(X) + count;
761
762
403k
    if (X->n * biL < i) {
763
2.62k
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
764
2.62k
    }
765
766
403k
    ret = 0;
767
768
    /*
769
     * shift by count / limb_size
770
     */
771
403k
    if (v0 > 0) {
772
1.73M
        for (i = X->n; i > v0; i--) {
773
1.69M
            X->p[i - 1] = X->p[i - v0 - 1];
774
1.69M
        }
775
776
682k
        for (; i > 0; i--) {
777
647k
            X->p[i - 1] = 0;
778
647k
        }
779
34.1k
    }
780
781
    /*
782
     * shift by count % limb_size
783
     */
784
403k
    if (t1 > 0) {
785
5.22M
        for (i = v0; i < X->n; i++) {
786
4.85M
            r1 = X->p[i] >> (biL - t1);
787
4.85M
            X->p[i] <<= t1;
788
4.85M
            X->p[i] |= r0;
789
4.85M
            r0 = r1;
790
4.85M
        }
791
368k
    }
792
793
403k
cleanup:
794
795
403k
    return ret;
796
403k
}
797
798
/*
799
 * Right-shift: X >>= count
800
 */
801
int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
802
1.82M
{
803
1.82M
    MPI_VALIDATE_RET(X != NULL);
804
1.82M
    if (X->n != 0) {
805
1.82M
        mbedtls_mpi_core_shift_r(X->p, X->n, count);
806
1.82M
    }
807
1.82M
    return 0;
808
1.82M
}
809
810
/*
811
 * Compare unsigned values
812
 */
813
int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
814
1.63M
{
815
1.63M
    size_t i, j;
816
1.63M
    MPI_VALIDATE_RET(X != NULL);
817
1.63M
    MPI_VALIDATE_RET(Y != NULL);
818
819
9.13M
    for (i = X->n; i > 0; i--) {
820
9.13M
        if (X->p[i - 1] != 0) {
821
1.63M
            break;
822
1.63M
        }
823
9.13M
    }
824
825
7.19M
    for (j = Y->n; j > 0; j--) {
826
7.19M
        if (Y->p[j - 1] != 0) {
827
1.63M
            break;
828
1.63M
        }
829
7.19M
    }
830
831
1.63M
    if (i == 0 && j == 0) {
832
0
        return 0;
833
0
    }
834
835
1.63M
    if (i > j) {
836
17.3k
        return 1;
837
17.3k
    }
838
1.61M
    if (j > i) {
839
2.71k
        return -1;
840
2.71k
    }
841
842
1.65M
    for (; i > 0; i--) {
843
1.64M
        if (X->p[i - 1] > Y->p[i - 1]) {
844
698k
            return 1;
845
698k
        }
846
949k
        if (X->p[i - 1] < Y->p[i - 1]) {
847
913k
            return -1;
848
913k
        }
849
949k
    }
850
851
1.87k
    return 0;
852
1.61M
}
853
854
/*
855
 * Compare signed values
856
 */
857
int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
858
4.31M
{
859
4.31M
    size_t i, j;
860
4.31M
    MPI_VALIDATE_RET(X != NULL);
861
4.31M
    MPI_VALIDATE_RET(Y != NULL);
862
863
30.9M
    for (i = X->n; i > 0; i--) {
864
30.8M
        if (X->p[i - 1] != 0) {
865
4.24M
            break;
866
4.24M
        }
867
30.8M
    }
868
869
6.42M
    for (j = Y->n; j > 0; j--) {
870
5.37M
        if (Y->p[j - 1] != 0) {
871
3.26M
            break;
872
3.26M
        }
873
5.37M
    }
874
875
4.31M
    if (i == 0 && j == 0) {
876
75.9k
        return 0;
877
75.9k
    }
878
879
4.24M
    if (i > j) {
880
2.14M
        return X->s;
881
2.14M
    }
882
2.09M
    if (j > i) {
883
18.7k
        return -Y->s;
884
18.7k
    }
885
886
2.07M
    if (X->s > 0 && Y->s < 0) {
887
12
        return 1;
888
12
    }
889
2.07M
    if (Y->s > 0 && X->s < 0) {
890
0
        return -1;
891
0
    }
892
893
2.18M
    for (; i > 0; i--) {
894
2.14M
        if (X->p[i - 1] > Y->p[i - 1]) {
895
226k
            return X->s;
896
226k
        }
897
1.91M
        if (X->p[i - 1] < Y->p[i - 1]) {
898
1.81M
            return -X->s;
899
1.81M
        }
900
1.91M
    }
901
902
40.6k
    return 0;
903
2.07M
}
904
905
/*
906
 * Compare signed values
907
 */
908
int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
909
1.09M
{
910
1.09M
    mbedtls_mpi Y;
911
1.09M
    mbedtls_mpi_uint p[1];
912
1.09M
    MPI_VALIDATE_RET(X != NULL);
913
914
1.09M
    *p  = mpi_sint_abs(z);
915
1.09M
    Y.s = (z < 0) ? -1 : 1;
916
1.09M
    Y.n = 1;
917
1.09M
    Y.p = p;
918
919
1.09M
    return mbedtls_mpi_cmp_mpi(X, &Y);
920
1.09M
}
921
922
/*
923
 * Unsigned addition: X = |A| + |B|  (HAC 14.7)
924
 */
925
int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
926
456k
{
927
456k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
928
456k
    size_t j;
929
456k
    MPI_VALIDATE_RET(X != NULL);
930
456k
    MPI_VALIDATE_RET(A != NULL);
931
456k
    MPI_VALIDATE_RET(B != NULL);
932
933
456k
    if (X == B) {
934
0
        const mbedtls_mpi *T = A; A = X; B = T;
935
0
    }
936
937
456k
    if (X != A) {
938
83.7k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
939
83.7k
    }
940
941
    /*
942
     * X must always be positive as a result of unsigned additions.
943
     */
944
456k
    X->s = 1;
945
946
1.12M
    for (j = B->n; j > 0; j--) {
947
1.12M
        if (B->p[j - 1] != 0) {
948
456k
            break;
949
456k
        }
950
1.12M
    }
951
952
    /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
953
     * and B is 0 (of any size). */
954
456k
    if (j == 0) {
955
187
        return 0;
956
187
    }
957
958
456k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
959
960
    /* j is the number of non-zero limbs of B. Add those to X. */
961
962
456k
    mbedtls_mpi_uint *p = X->p;
963
964
456k
    mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j);
965
966
456k
    p += j;
967
968
    /* Now propagate any carry */
969
970
655k
    while (c != 0) {
971
199k
        if (j >= X->n) {
972
1.30k
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
973
1.30k
            p = X->p + j;
974
1.30k
        }
975
976
199k
        *p += c; c = (*p < c); j++; p++;
977
199k
    }
978
979
456k
cleanup:
980
981
456k
    return ret;
982
456k
}
983
984
/*
985
 * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
986
 */
987
int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
988
2.98M
{
989
2.98M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
990
2.98M
    size_t n;
991
2.98M
    mbedtls_mpi_uint carry;
992
2.98M
    MPI_VALIDATE_RET(X != NULL);
993
2.98M
    MPI_VALIDATE_RET(A != NULL);
994
2.98M
    MPI_VALIDATE_RET(B != NULL);
995
996
11.2M
    for (n = B->n; n > 0; n--) {
997
11.2M
        if (B->p[n - 1] != 0) {
998
2.98M
            break;
999
2.98M
        }
1000
11.2M
    }
1001
2.98M
    if (n > A->n) {
1002
        /* B >= (2^ciL)^n > A */
1003
0
        ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1004
0
        goto cleanup;
1005
0
    }
1006
1007
2.98M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
1008
1009
    /* Set the high limbs of X to match A. Don't touch the lower limbs
1010
     * because X might be aliased to B, and we must not overwrite the
1011
     * significant digits of B. */
1012
2.98M
    if (A->n > n) {
1013
2.30M
        memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1014
2.30M
    }
1015
2.98M
    if (X->n > A->n) {
1016
447k
        memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1017
447k
    }
1018
1019
2.98M
    carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
1020
2.98M
    if (carry != 0) {
1021
        /* Propagate the carry through the rest of X. */
1022
1.16M
        carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
1023
1024
        /* If we have further carry/borrow, the result is negative. */
1025
1.16M
        if (carry != 0) {
1026
0
            ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1027
0
            goto cleanup;
1028
0
        }
1029
1.16M
    }
1030
1031
    /* X should always be positive as a result of unsigned subtractions. */
1032
2.98M
    X->s = 1;
1033
1034
2.98M
cleanup:
1035
2.98M
    return ret;
1036
2.98M
}
1037
1038
/* Common function for signed addition and subtraction.
1039
 * Calculate A + B * flip_B where flip_B is 1 or -1.
1040
 */
1041
static int add_sub_mpi(mbedtls_mpi *X,
1042
                       const mbedtls_mpi *A, const mbedtls_mpi *B,
1043
                       int flip_B)
1044
2.09M
{
1045
2.09M
    int ret, s;
1046
2.09M
    MPI_VALIDATE_RET(X != NULL);
1047
2.09M
    MPI_VALIDATE_RET(A != NULL);
1048
2.09M
    MPI_VALIDATE_RET(B != NULL);
1049
1050
2.09M
    s = A->s;
1051
2.09M
    if (A->s * B->s * flip_B < 0) {
1052
1.63M
        int cmp = mbedtls_mpi_cmp_abs(A, B);
1053
1.63M
        if (cmp >= 0) {
1054
717k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
1055
            /* If |A| = |B|, the result is 0 and we must set the sign bit
1056
             * to +1 regardless of which of A or B was negative. Otherwise,
1057
             * since |A| > |B|, the sign is the sign of A. */
1058
717k
            X->s = cmp == 0 ? 1 : s;
1059
915k
        } else {
1060
915k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
1061
            /* Since |A| < |B|, the sign is the opposite of A. */
1062
915k
            X->s = -s;
1063
915k
        }
1064
1.63M
    } else {
1065
456k
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
1066
456k
        X->s = s;
1067
456k
    }
1068
1069
2.09M
cleanup:
1070
1071
2.09M
    return ret;
1072
2.09M
}
1073
1074
/*
1075
 * Signed addition: X = A + B
1076
 */
1077
int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1078
609k
{
1079
609k
    return add_sub_mpi(X, A, B, 1);
1080
609k
}
1081
1082
/*
1083
 * Signed subtraction: X = A - B
1084
 */
1085
int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1086
1.48M
{
1087
1.48M
    return add_sub_mpi(X, A, B, -1);
1088
1.48M
}
1089
1090
/*
1091
 * Signed addition: X = A + b
1092
 */
1093
int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1094
2
{
1095
2
    mbedtls_mpi B;
1096
2
    mbedtls_mpi_uint p[1];
1097
2
    MPI_VALIDATE_RET(X != NULL);
1098
2
    MPI_VALIDATE_RET(A != NULL);
1099
1100
2
    p[0] = mpi_sint_abs(b);
1101
2
    B.s = (b < 0) ? -1 : 1;
1102
2
    B.n = 1;
1103
2
    B.p = p;
1104
1105
2
    return mbedtls_mpi_add_mpi(X, A, &B);
1106
2
}
1107
1108
/*
1109
 * Signed subtraction: X = A - b
1110
 */
1111
int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1112
3.69k
{
1113
3.69k
    mbedtls_mpi B;
1114
3.69k
    mbedtls_mpi_uint p[1];
1115
3.69k
    MPI_VALIDATE_RET(X != NULL);
1116
3.69k
    MPI_VALIDATE_RET(A != NULL);
1117
1118
3.69k
    p[0] = mpi_sint_abs(b);
1119
3.69k
    B.s = (b < 0) ? -1 : 1;
1120
3.69k
    B.n = 1;
1121
3.69k
    B.p = p;
1122
1123
3.69k
    return mbedtls_mpi_sub_mpi(X, A, &B);
1124
3.69k
}
1125
1126
/*
1127
 * Baseline multiplication: X = A * B  (HAC 14.12)
1128
 */
1129
int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1130
1.04M
{
1131
1.04M
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1132
1.04M
    size_t i, j;
1133
1.04M
    mbedtls_mpi TA, TB;
1134
1.04M
    int result_is_zero = 0;
1135
1.04M
    MPI_VALIDATE_RET(X != NULL);
1136
1.04M
    MPI_VALIDATE_RET(A != NULL);
1137
1.04M
    MPI_VALIDATE_RET(B != NULL);
1138
1139
1.04M
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
1140
1141
1.04M
    if (X == A) {
1142
286k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1143
286k
    }
1144
1.04M
    if (X == B) {
1145
2.99k
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1146
2.99k
    }
1147
1148
4.43M
    for (i = A->n; i > 0; i--) {
1149
4.43M
        if (A->p[i - 1] != 0) {
1150
1.04M
            break;
1151
1.04M
        }
1152
4.43M
    }
1153
1.04M
    if (i == 0) {
1154
38
        result_is_zero = 1;
1155
38
    }
1156
1157
5.98M
    for (j = B->n; j > 0; j--) {
1158
5.98M
        if (B->p[j - 1] != 0) {
1159
1.04M
            break;
1160
1.04M
        }
1161
5.98M
    }
1162
1.04M
    if (j == 0) {
1163
65
        result_is_zero = 1;
1164
65
    }
1165
1166
1.04M
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1167
1.04M
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
1168
1169
7.28M
    for (size_t k = 0; k < j; k++) {
1170
        /* We know that there cannot be any carry-out since we're
1171
         * iterating from bottom to top. */
1172
6.24M
        (void) mbedtls_mpi_core_mla(X->p + k, i + 1,
1173
6.24M
                                    A->p, i,
1174
6.24M
                                    B->p[k]);
1175
6.24M
    }
1176
1177
    /* If the result is 0, we don't shortcut the operation, which reduces
1178
     * but does not eliminate side channels leaking the zero-ness. We do
1179
     * need to take care to set the sign bit properly since the library does
1180
     * not fully support an MPI object with a value of 0 and s == -1. */
1181
1.04M
    if (result_is_zero) {
1182
65
        X->s = 1;
1183
1.04M
    } else {
1184
1.04M
        X->s = A->s * B->s;
1185
1.04M
    }
1186
1187
1.04M
cleanup:
1188
1189
1.04M
    mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
1190
1191
1.04M
    return ret;
1192
1.04M
}
1193
1194
/*
1195
 * Baseline multiplication: X = A * b
1196
 */
1197
int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
1198
175k
{
1199
175k
    MPI_VALIDATE_RET(X != NULL);
1200
175k
    MPI_VALIDATE_RET(A != NULL);
1201
1202
175k
    size_t n = A->n;
1203
5.81M
    while (n > 0 && A->p[n - 1] == 0) {
1204
5.63M
        --n;
1205
5.63M
    }
1206
1207
    /* The general method below doesn't work if b==0. */
1208
175k
    if (b == 0 || n == 0) {
1209
48
        return mbedtls_mpi_lset(X, 0);
1210
48
    }
1211
1212
    /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
1213
175k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1214
    /* In general, A * b requires 1 limb more than b. If
1215
     * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1216
     * number of limbs as A and the call to grow() is not required since
1217
     * copy() will take care of the growth if needed. However, experimentally,
1218
     * making the call to grow() unconditional causes slightly fewer
1219
     * calls to calloc() in ECP code, presumably because it reuses the
1220
     * same mpi for a while and this way the mpi is more likely to directly
1221
     * grow to its final size.
1222
     *
1223
     * Note that calculating A*b as 0 + A*b doesn't work as-is because
1224
     * A,X can be the same. */
1225
175k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1226
175k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1227
175k
    mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
1228
1229
175k
cleanup:
1230
175k
    return ret;
1231
175k
}
1232
1233
/*
1234
 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1235
 * mbedtls_mpi_uint divisor, d
1236
 */
1237
static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1238
                                            mbedtls_mpi_uint u0,
1239
                                            mbedtls_mpi_uint d,
1240
                                            mbedtls_mpi_uint *r)
1241
33.1k
{
1242
33.1k
#if defined(MBEDTLS_HAVE_UDBL)
1243
33.1k
    mbedtls_t_udbl dividend, quotient;
1244
#else
1245
    const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1246
    const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
1247
    mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1248
    mbedtls_mpi_uint u0_msw, u0_lsw;
1249
    size_t s;
1250
#endif
1251
1252
    /*
1253
     * Check for overflow
1254
     */
1255
33.1k
    if (0 == d || u1 >= d) {
1256
0
        if (r != NULL) {
1257
0
            *r = ~(mbedtls_mpi_uint) 0u;
1258
0
        }
1259
1260
0
        return ~(mbedtls_mpi_uint) 0u;
1261
0
    }
1262
1263
33.1k
#if defined(MBEDTLS_HAVE_UDBL)
1264
33.1k
    dividend  = (mbedtls_t_udbl) u1 << biL;
1265
33.1k
    dividend |= (mbedtls_t_udbl) u0;
1266
33.1k
    quotient = dividend / d;
1267
33.1k
    if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1268
0
        quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1269
0
    }
1270
1271
33.1k
    if (r != NULL) {
1272
0
        *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1273
0
    }
1274
1275
33.1k
    return (mbedtls_mpi_uint) quotient;
1276
#else
1277
1278
    /*
1279
     * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1280
     *   Vol. 2 - Seminumerical Algorithms, Knuth
1281
     */
1282
1283
    /*
1284
     * Normalize the divisor, d, and dividend, u0, u1
1285
     */
1286
    s = mbedtls_mpi_core_clz(d);
1287
    d = d << s;
1288
1289
    u1 = u1 << s;
1290
    u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
1291
    u0 =  u0 << s;
1292
1293
    d1 = d >> biH;
1294
    d0 = d & uint_halfword_mask;
1295
1296
    u0_msw = u0 >> biH;
1297
    u0_lsw = u0 & uint_halfword_mask;
1298
1299
    /*
1300
     * Find the first quotient and remainder
1301
     */
1302
    q1 = u1 / d1;
1303
    r0 = u1 - d1 * q1;
1304
1305
    while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
1306
        q1 -= 1;
1307
        r0 += d1;
1308
1309
        if (r0 >= radix) {
1310
            break;
1311
        }
1312
    }
1313
1314
    rAX = (u1 * radix) + (u0_msw - q1 * d);
1315
    q0 = rAX / d1;
1316
    r0 = rAX - q0 * d1;
1317
1318
    while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
1319
        q0 -= 1;
1320
        r0 += d1;
1321
1322
        if (r0 >= radix) {
1323
            break;
1324
        }
1325
    }
1326
1327
    if (r != NULL) {
1328
        *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1329
    }
1330
1331
    quotient = q1 * radix + q0;
1332
1333
    return quotient;
1334
#endif
1335
33.1k
}
1336
1337
/*
1338
 * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
1339
 */
1340
int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1341
                        const mbedtls_mpi *B)
1342
1.72k
{
1343
1.72k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1344
1.72k
    size_t i, n, t, k;
1345
1.72k
    mbedtls_mpi X, Y, Z, T1, T2;
1346
1.72k
    mbedtls_mpi_uint TP2[3];
1347
1.72k
    MPI_VALIDATE_RET(A != NULL);
1348
1.72k
    MPI_VALIDATE_RET(B != NULL);
1349
1350
1.72k
    if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1351
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1352
0
    }
1353
1354
1.72k
    mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1355
1.72k
    mbedtls_mpi_init(&T1);
1356
    /*
1357
     * Avoid dynamic memory allocations for constant-size T2.
1358
     *
1359
     * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1360
     * so nobody increase the size of the MPI and we're safe to use an on-stack
1361
     * buffer.
1362
     */
1363
1.72k
    T2.s = 1;
1364
1.72k
    T2.n = sizeof(TP2) / sizeof(*TP2);
1365
1.72k
    T2.p = TP2;
1366
1367
1.72k
    if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1368
748
        if (Q != NULL) {
1369
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1370
0
        }
1371
748
        if (R != NULL) {
1372
748
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1373
748
        }
1374
748
        return 0;
1375
748
    }
1376
1377
972
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1378
972
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
1379
972
    X.s = Y.s = 1;
1380
1381
972
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1382
972
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
1383
972
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
1384
1385
972
    k = mbedtls_mpi_bitlen(&Y) % biL;
1386
972
    if (k < biL - 1) {
1387
916
        k = biL - 1 - k;
1388
916
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1389
916
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1390
916
    } else {
1391
56
        k = 0;
1392
56
    }
1393
1394
972
    n = X.n - 1;
1395
972
    t = Y.n - 1;
1396
972
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
1397
1398
1.64k
    while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
1399
677
        Z.p[n - t]++;
1400
677
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
1401
677
    }
1402
972
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
1403
1404
34.1k
    for (i = n; i > t; i--) {
1405
33.1k
        if (X.p[i] >= Y.p[t]) {
1406
10
            Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1407
33.1k
        } else {
1408
33.1k
            Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1409
33.1k
                                                 Y.p[t], NULL);
1410
33.1k
        }
1411
1412
33.1k
        T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1413
33.1k
        T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
1414
33.1k
        T2.p[2] = X.p[i];
1415
1416
33.1k
        Z.p[i - t - 1]++;
1417
58.4k
        do {
1418
58.4k
            Z.p[i - t - 1]--;
1419
1420
58.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1421
58.4k
            T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
1422
58.4k
            T1.p[1] = Y.p[t];
1423
58.4k
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1424
58.4k
        } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
1425
1426
33.1k
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1427
33.1k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
1428
33.1k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
1429
1430
33.1k
        if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1431
1
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1432
1
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1433
1
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
1434
1
            Z.p[i - t - 1]--;
1435
1
        }
1436
33.1k
    }
1437
1438
972
    if (Q != NULL) {
1439
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
1440
0
        Q->s = A->s * B->s;
1441
0
    }
1442
1443
972
    if (R != NULL) {
1444
972
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
1445
972
        X.s = A->s;
1446
972
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
1447
1448
972
        if (mbedtls_mpi_cmp_int(R, 0) == 0) {
1449
0
            R->s = 1;
1450
0
        }
1451
972
    }
1452
1453
972
cleanup:
1454
1455
972
    mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1456
972
    mbedtls_mpi_free(&T1);
1457
972
    mbedtls_platform_zeroize(TP2, sizeof(TP2));
1458
1459
972
    return ret;
1460
972
}
1461
1462
/*
1463
 * Division by int: A = Q * b + R
1464
 */
1465
int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1466
                        const mbedtls_mpi *A,
1467
                        mbedtls_mpi_sint b)
1468
0
{
1469
0
    mbedtls_mpi B;
1470
0
    mbedtls_mpi_uint p[1];
1471
0
    MPI_VALIDATE_RET(A != NULL);
1472
1473
0
    p[0] = mpi_sint_abs(b);
1474
0
    B.s = (b < 0) ? -1 : 1;
1475
0
    B.n = 1;
1476
0
    B.p = p;
1477
1478
0
    return mbedtls_mpi_div_mpi(Q, R, A, &B);
1479
0
}
1480
1481
/*
1482
 * Modulo: R = A mod B
1483
 */
1484
int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
1485
1.72k
{
1486
1.72k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1487
1.72k
    MPI_VALIDATE_RET(R != NULL);
1488
1.72k
    MPI_VALIDATE_RET(A != NULL);
1489
1.72k
    MPI_VALIDATE_RET(B != NULL);
1490
1491
1.72k
    if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1492
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1493
0
    }
1494
1495
1.72k
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
1496
1497
1.72k
    while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1498
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1499
0
    }
1500
1501
1.72k
    while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1502
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1503
0
    }
1504
1505
1.72k
cleanup:
1506
1507
1.72k
    return ret;
1508
1.72k
}
1509
1510
/*
1511
 * Modulo: r = A mod b
1512
 */
1513
int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1514
0
{
1515
0
    size_t i;
1516
0
    mbedtls_mpi_uint x, y, z;
1517
0
    MPI_VALIDATE_RET(r != NULL);
1518
0
    MPI_VALIDATE_RET(A != NULL);
1519
1520
0
    if (b == 0) {
1521
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1522
0
    }
1523
1524
0
    if (b < 0) {
1525
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1526
0
    }
1527
1528
    /*
1529
     * handle trivial cases
1530
     */
1531
0
    if (b == 1 || A->n == 0) {
1532
0
        *r = 0;
1533
0
        return 0;
1534
0
    }
1535
1536
0
    if (b == 2) {
1537
0
        *r = A->p[0] & 1;
1538
0
        return 0;
1539
0
    }
1540
1541
    /*
1542
     * general case
1543
     */
1544
0
    for (i = A->n, y = 0; i > 0; i--) {
1545
0
        x  = A->p[i - 1];
1546
0
        y  = (y << biH) | (x >> biH);
1547
0
        z  = y / b;
1548
0
        y -= z * b;
1549
1550
0
        x <<= biH;
1551
0
        y  = (y << biH) | (x >> biH);
1552
0
        z  = y / b;
1553
0
        y -= z * b;
1554
0
    }
1555
1556
    /*
1557
     * If A is negative, then the current y represents a negative value.
1558
     * Flipping it to the positive side.
1559
     */
1560
0
    if (A->s < 0 && y != 0) {
1561
0
        y = b - y;
1562
0
    }
1563
1564
0
    *r = y;
1565
1566
0
    return 0;
1567
0
}
1568
1569
static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
1570
968
{
1571
968
    *mm = mbedtls_mpi_core_montmul_init(N->p);
1572
968
}
1573
1574
/** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
1575
 *
1576
 * \param[in,out]   A   One of the numbers to multiply.
1577
 *                      It must have at least as many limbs as N
1578
 *                      (A->n >= N->n), and any limbs beyond n are ignored.
1579
 *                      On successful completion, A contains the result of
1580
 *                      the multiplication A * B * R^-1 mod N where
1581
 *                      R = (2^ciL)^n.
1582
 * \param[in]       B   One of the numbers to multiply.
1583
 *                      It must be nonzero and must not have more limbs than N
1584
 *                      (B->n <= N->n).
1585
 * \param[in]       N   The modulus. \p N must be odd.
1586
 * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`.
1587
 *                      This is -N^-1 mod 2^ciL.
1588
 * \param[in,out]   T   A bignum for temporary storage.
1589
 *                      It must be at least twice the limb size of N plus 1
1590
 *                      (T->n >= 2 * N->n + 1).
1591
 *                      Its initial content is unused and
1592
 *                      its final content is indeterminate.
1593
 *                      It does not get reallocated.
1594
 */
1595
static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1596
                        const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1597
                        mbedtls_mpi *T)
1598
24.4k
{
1599
24.4k
    mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
1600
24.4k
}
1601
1602
/*
1603
 * Montgomery reduction: A = A * R^-1 mod N
1604
 *
1605
 * See mpi_montmul() regarding constraints and guarantees on the parameters.
1606
 */
1607
static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1608
                        mbedtls_mpi_uint mm, mbedtls_mpi *T)
1609
1.93k
{
1610
1.93k
    mbedtls_mpi_uint z = 1;
1611
1.93k
    mbedtls_mpi U;
1612
1613
1.93k
    U.n = U.s = (int) z;
1614
1.93k
    U.p = &z;
1615
1616
1.93k
    mpi_montmul(A, &U, N, mm, T);
1617
1.93k
}
1618
1619
/**
1620
 * Select an MPI from a table without leaking the index.
1621
 *
1622
 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1623
 * reads the entire table in order to avoid leaking the value of idx to an
1624
 * attacker able to observe memory access patterns.
1625
 *
1626
 * \param[out] R        Where to write the selected MPI.
1627
 * \param[in] T         The table to read from.
1628
 * \param[in] T_size    The number of elements in the table.
1629
 * \param[in] idx       The index of the element to select;
1630
 *                      this must satisfy 0 <= idx < T_size.
1631
 *
1632
 * \return \c 0 on success, or a negative error code.
1633
 */
1634
static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
1635
21.0k
{
1636
21.0k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1637
1638
104k
    for (size_t i = 0; i < T_size; i++) {
1639
83.8k
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1640
83.8k
                                                     (unsigned char) mbedtls_ct_size_bool_eq(i,
1641
83.8k
                                                                                             idx)));
1642
83.8k
    }
1643
1644
21.0k
cleanup:
1645
21.0k
    return ret;
1646
21.0k
}
1647
1648
/*
1649
 * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
1650
 */
1651
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1652
                        const mbedtls_mpi *E, const mbedtls_mpi *N,
1653
                        mbedtls_mpi *prec_RR)
1654
968
{
1655
968
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1656
968
    size_t window_bitsize;
1657
968
    size_t i, j, nblimbs;
1658
968
    size_t bufsize, nbits;
1659
968
    mbedtls_mpi_uint ei, mm, state;
1660
968
    mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
1661
968
    int neg;
1662
1663
968
    MPI_VALIDATE_RET(X != NULL);
1664
968
    MPI_VALIDATE_RET(A != NULL);
1665
968
    MPI_VALIDATE_RET(E != NULL);
1666
968
    MPI_VALIDATE_RET(N != NULL);
1667
1668
968
    if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1669
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1670
0
    }
1671
1672
968
    if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1673
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1674
0
    }
1675
1676
968
    if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1677
968
        mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1678
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1679
0
    }
1680
1681
    /*
1682
     * Init temps and window size
1683
     */
1684
968
    mpi_montg_init(&mm, N);
1685
968
    mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1686
968
    mbedtls_mpi_init(&Apos);
1687
968
    mbedtls_mpi_init(&WW);
1688
968
    memset(W, 0, sizeof(W));
1689
1690
968
    i = mbedtls_mpi_bitlen(E);
1691
1692
968
    window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1693
968
                     (i >  79) ? 4 : (i >  23) ? 3 : 1;
1694
1695
#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1696
    if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
1697
        window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
1698
    }
1699
#endif
1700
1701
968
    const size_t w_table_used_size = (size_t) 1 << window_bitsize;
1702
1703
    /*
1704
     * This function is not constant-trace: its memory accesses depend on the
1705
     * exponent value. To defend against timing attacks, callers (such as RSA
1706
     * and DHM) should use exponent blinding. However this is not enough if the
1707
     * adversary can find the exponent in a single trace, so this function
1708
     * takes extra precautions against adversaries who can observe memory
1709
     * access patterns.
1710
     *
1711
     * This function performs a series of multiplications by table elements and
1712
     * squarings, and we want the prevent the adversary from finding out which
1713
     * table element was used, and from distinguishing between multiplications
1714
     * and squarings. Firstly, when multiplying by an element of the window
1715
     * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1716
     * squarings as having a different memory access patterns from other
1717
     * multiplications. So secondly, we put the accumulator X in the table as
1718
     * well, and also do a constant-trace table lookup to multiply by X.
1719
     *
1720
     * This way, all multiplications take the form of a lookup-and-multiply.
1721
     * The number of lookup-and-multiply operations inside each iteration of
1722
     * the main loop still depends on the bits of the exponent, but since the
1723
     * other operations in the loop don't have an easily recognizable memory
1724
     * trace, an adversary is unlikely to be able to observe the exact
1725
     * patterns.
1726
     *
1727
     * An adversary may still be able to recover the exponent if they can
1728
     * observe both memory accesses and branches. However, branch prediction
1729
     * exploitation typically requires many traces of execution over the same
1730
     * data, which is defeated by randomized blinding.
1731
     *
1732
     * To achieve this, we make a copy of X and we use the table entry in each
1733
     * calculation from this point on.
1734
     */
1735
968
    const size_t x_index = 0;
1736
968
    mbedtls_mpi_init(&W[x_index]);
1737
968
    mbedtls_mpi_copy(&W[x_index], X);
1738
1739
968
    j = N->n + 1;
1740
    /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
1741
     * and mpi_montred() calls later. Here we ensure that W[1] and X are
1742
     * large enough, and later we'll grow other W[i] to the same length.
1743
     * They must not be shrunk midway through this function!
1744
     */
1745
968
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1746
968
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1],  j));
1747
968
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
1748
1749
    /*
1750
     * Compensate for negative A (and correct at the end)
1751
     */
1752
968
    neg = (A->s == -1);
1753
968
    if (neg) {
1754
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
1755
0
        Apos.s = 1;
1756
0
        A = &Apos;
1757
0
    }
1758
1759
    /*
1760
     * If 1st call, pre-compute R^2 mod N
1761
     */
1762
968
    if (prec_RR == NULL || prec_RR->p == NULL) {
1763
968
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1764
968
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1765
968
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
1766
1767
968
        if (prec_RR != NULL) {
1768
966
            memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1769
966
        }
1770
968
    } else {
1771
0
        memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
1772
0
    }
1773
1774
    /*
1775
     * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1776
     */
1777
968
    if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1778
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
1779
        /* This should be a no-op because W[1] is already that large before
1780
         * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
1781
         * in mpi_montmul() below, so let's make sure. */
1782
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1783
968
    } else {
1784
968
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
1785
968
    }
1786
1787
    /* Note that this is safe because W[1] always has at least N->n limbs
1788
     * (it grew above and was preserved by mbedtls_mpi_copy()). */
1789
968
    mpi_montmul(&W[1], &RR, N, mm, &T);
1790
1791
    /*
1792
     * W[x_index] = R^2 * R^-1 mod N = R mod N
1793
     */
1794
968
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1795
968
    mpi_montred(&W[x_index], N, mm, &T);
1796
1797
1798
968
    if (window_bitsize > 1) {
1799
        /*
1800
         * W[i] = W[1] ^ i
1801
         *
1802
         * The first bit of the sliding window is always 1 and therefore we
1803
         * only need to store the second half of the table.
1804
         *
1805
         * (There are two special elements in the table: W[0] for the
1806
         * accumulator/result and W[1] for A in Montgomery form. Both of these
1807
         * are already set at this point.)
1808
         */
1809
87
        j = w_table_used_size / 2;
1810
1811
87
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1812
87
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
1813
1814
265
        for (i = 0; i < window_bitsize - 1; i++) {
1815
178
            mpi_montmul(&W[j], &W[j], N, mm, &T);
1816
178
        }
1817
1818
        /*
1819
         * W[i] = W[i - 1] * W[1]
1820
         */
1821
372
        for (i = j + 1; i < w_table_used_size; i++) {
1822
285
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1823
285
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
1824
1825
285
            mpi_montmul(&W[i], &W[1], N, mm, &T);
1826
285
        }
1827
87
    }
1828
1829
968
    nblimbs = E->n;
1830
968
    bufsize = 0;
1831
968
    nbits   = 0;
1832
968
    size_t exponent_bits_in_window = 0;
1833
968
    state   = 0;
1834
1835
63.5k
    while (1) {
1836
63.5k
        if (bufsize == 0) {
1837
1.94k
            if (nblimbs == 0) {
1838
968
                break;
1839
968
            }
1840
1841
978
            nblimbs--;
1842
1843
978
            bufsize = sizeof(mbedtls_mpi_uint) << 3;
1844
978
        }
1845
1846
62.5k
        bufsize--;
1847
1848
62.5k
        ei = (E->p[nblimbs] >> bufsize) & 1;
1849
1850
        /*
1851
         * skip leading 0s
1852
         */
1853
62.5k
        if (ei == 0 && state == 0) {
1854
44.4k
            continue;
1855
44.4k
        }
1856
1857
18.1k
        if (ei == 0 && state == 1) {
1858
            /*
1859
             * out of window, square W[x_index]
1860
             */
1861
13.9k
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1862
13.9k
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1863
13.9k
            continue;
1864
13.9k
        }
1865
1866
        /*
1867
         * add ei to current window
1868
         */
1869
4.17k
        state = 2;
1870
1871
4.17k
        nbits++;
1872
4.17k
        exponent_bits_in_window |= (ei << (window_bitsize - nbits));
1873
1874
4.17k
        if (nbits == window_bitsize) {
1875
            /*
1876
             * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
1877
             */
1878
6.90k
            for (i = 0; i < window_bitsize; i++) {
1879
4.07k
                MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1880
4.07k
                                           x_index));
1881
4.07k
                mpi_montmul(&W[x_index], &WW, N, mm, &T);
1882
4.07k
            }
1883
1884
            /*
1885
             * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
1886
             */
1887
2.82k
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1888
2.82k
                                       exponent_bits_in_window));
1889
2.82k
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1890
1891
2.82k
            state--;
1892
2.82k
            nbits = 0;
1893
2.82k
            exponent_bits_in_window = 0;
1894
2.82k
        }
1895
4.17k
    }
1896
1897
    /*
1898
     * process the remaining bits
1899
     */
1900
1.06k
    for (i = 0; i < nbits; i++) {
1901
94
        MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1902
94
        mpi_montmul(&W[x_index], &WW, N, mm, &T);
1903
1904
94
        exponent_bits_in_window <<= 1;
1905
1906
94
        if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1907
94
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1908
94
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1909
94
        }
1910
94
    }
1911
1912
    /*
1913
     * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
1914
     */
1915
968
    mpi_montred(&W[x_index], N, mm, &T);
1916
1917
968
    if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
1918
0
        W[x_index].s = -1;
1919
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
1920
0
    }
1921
1922
    /*
1923
     * Load the result in the output variable.
1924
     */
1925
968
    mbedtls_mpi_copy(X, &W[x_index]);
1926
1927
968
cleanup:
1928
1929
    /* The first bit of the sliding window is always 1 and therefore the first
1930
     * half of the table was unused. */
1931
2.22k
    for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1932
1.25k
        mbedtls_mpi_free(&W[i]);
1933
1.25k
    }
1934
1935
968
    mbedtls_mpi_free(&W[x_index]);
1936
968
    mbedtls_mpi_free(&W[1]);
1937
968
    mbedtls_mpi_free(&T);
1938
968
    mbedtls_mpi_free(&Apos);
1939
968
    mbedtls_mpi_free(&WW);
1940
1941
968
    if (prec_RR == NULL || prec_RR->p == NULL) {
1942
2
        mbedtls_mpi_free(&RR);
1943
2
    }
1944
1945
968
    return ret;
1946
968
}
1947
1948
/*
1949
 * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
1950
 */
1951
int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
1952
748
{
1953
748
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1954
748
    size_t lz, lzt;
1955
748
    mbedtls_mpi TA, TB;
1956
1957
748
    MPI_VALIDATE_RET(G != NULL);
1958
748
    MPI_VALIDATE_RET(A != NULL);
1959
748
    MPI_VALIDATE_RET(B != NULL);
1960
1961
748
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
1962
1963
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1964
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
1965
1966
748
    lz = mbedtls_mpi_lsb(&TA);
1967
748
    lzt = mbedtls_mpi_lsb(&TB);
1968
1969
    /* The loop below gives the correct result when A==0 but not when B==0.
1970
     * So have a special case for B==0. Leverage the fact that we just
1971
     * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1972
     * slightly more efficient than cmp_int(). */
1973
748
    if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1974
0
        ret = mbedtls_mpi_copy(G, A);
1975
0
        goto cleanup;
1976
0
    }
1977
1978
748
    if (lzt < lz) {
1979
187
        lz = lzt;
1980
187
    }
1981
1982
748
    TA.s = TB.s = 1;
1983
1984
    /* We mostly follow the procedure described in HAC 14.54, but with some
1985
     * minor differences:
1986
     * - Sequences of multiplications or divisions by 2 are grouped into a
1987
     *   single shift operation.
1988
     * - The procedure in HAC assumes that 0 < TB <= TA.
1989
     *     - The condition TB <= TA is not actually necessary for correctness.
1990
     *       TA and TB have symmetric roles except for the loop termination
1991
     *       condition, and the shifts at the beginning of the loop body
1992
     *       remove any significance from the ordering of TA vs TB before
1993
     *       the shifts.
1994
     *     - If TA = 0, the loop goes through 0 iterations and the result is
1995
     *       correctly TB.
1996
     *     - The case TB = 0 was short-circuited above.
1997
     *
1998
     * For the correctness proof below, decompose the original values of
1999
     * A and B as
2000
     *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2001
     *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2002
     * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2003
     * and gcd(A',B') is odd or 0.
2004
     *
2005
     * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2006
     * The code maintains the following invariant:
2007
     *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
2008
     */
2009
2010
    /* Proof that the loop terminates:
2011
     * At each iteration, either the right-shift by 1 is made on a nonzero
2012
     * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2013
     * by at least 1, or the right-shift by 1 is made on zero and then
2014
     * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2015
     * since in that case TB is calculated from TB-TA with the condition TB>TA).
2016
     */
2017
203k
    while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
2018
        /* Divisions by 2 preserve the invariant (I). */
2019
202k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
2020
202k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
2021
2022
        /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2023
         * TA-TB is even so the division by 2 has an integer result.
2024
         * Invariant (I) is preserved since any odd divisor of both TA and TB
2025
         * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
2026
         * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
2027
         * divides TA.
2028
         */
2029
202k
        if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2030
105k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2031
105k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2032
105k
        } else {
2033
96.8k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2034
96.8k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
2035
96.8k
        }
2036
        /* Note that one of TA or TB is still odd. */
2037
202k
    }
2038
2039
    /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2040
     * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2041
     * - If there was at least one loop iteration, then one of TA or TB is odd,
2042
     *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2043
     *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2044
     * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
2045
     *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
2046
     */
2047
2048
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2049
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
2050
2051
748
cleanup:
2052
2053
748
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
2054
2055
748
    return ret;
2056
748
}
2057
2058
/*
2059
 * Fill X with size bytes of random.
2060
 * The bytes returned from the RNG are used in a specific order which
2061
 * is suitable for deterministic ECDSA (see the specification of
2062
 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
2063
 */
2064
int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2065
                            int (*f_rng)(void *, unsigned char *, size_t),
2066
                            void *p_rng)
2067
0
{
2068
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2069
0
    const size_t limbs = CHARS_TO_LIMBS(size);
2070
2071
0
    MPI_VALIDATE_RET(X     != NULL);
2072
0
    MPI_VALIDATE_RET(f_rng != NULL);
2073
2074
    /* Ensure that target MPI has exactly the necessary number of limbs */
2075
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2076
0
    if (size == 0) {
2077
0
        return 0;
2078
0
    }
2079
2080
0
    ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
2081
2082
0
cleanup:
2083
0
    return ret;
2084
0
}
2085
2086
int mbedtls_mpi_random(mbedtls_mpi *X,
2087
                       mbedtls_mpi_sint min,
2088
                       const mbedtls_mpi *N,
2089
                       int (*f_rng)(void *, unsigned char *, size_t),
2090
                       void *p_rng)
2091
935
{
2092
935
    if (min < 0) {
2093
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2094
0
    }
2095
935
    if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2096
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2097
0
    }
2098
2099
    /* Ensure that target MPI has exactly the same number of limbs
2100
     * as the upper bound, even if the upper bound has leading zeros.
2101
     * This is necessary for mbedtls_mpi_core_random. */
2102
935
    int ret = mbedtls_mpi_resize_clear(X, N->n);
2103
935
    if (ret != 0) {
2104
0
        return ret;
2105
0
    }
2106
2107
935
    return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
2108
935
}
2109
2110
/*
2111
 * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
2112
 */
2113
int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
2114
748
{
2115
748
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2116
748
    mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
2117
748
    MPI_VALIDATE_RET(X != NULL);
2118
748
    MPI_VALIDATE_RET(A != NULL);
2119
748
    MPI_VALIDATE_RET(N != NULL);
2120
2121
748
    if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2122
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2123
0
    }
2124
2125
748
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2126
748
    mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2127
748
    mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
2128
2129
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
2130
2131
748
    if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
2132
0
        ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2133
0
        goto cleanup;
2134
0
    }
2135
2136
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2137
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2138
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2139
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
2140
2141
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2142
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2143
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2144
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
2145
2146
202k
    do {
2147
410k
        while ((TU.p[0] & 1) == 0) {
2148
207k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
2149
2150
207k
            if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2151
99.1k
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2152
99.1k
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
2153
99.1k
            }
2154
2155
207k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2156
207k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
2157
207k
        }
2158
2159
400k
        while ((TV.p[0] & 1) == 0) {
2160
197k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
2161
2162
197k
            if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2163
99.8k
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2164
99.8k
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
2165
99.8k
            }
2166
2167
197k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2168
197k
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
2169
197k
        }
2170
2171
202k
        if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2172
105k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2173
105k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2174
105k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2175
105k
        } else {
2176
96.8k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2177
96.8k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2178
96.8k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
2179
96.8k
        }
2180
202k
    } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2181
2182
935
    while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2183
187
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
2184
187
    }
2185
2186
748
    while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2187
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2188
0
    }
2189
2190
748
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
2191
2192
748
cleanup:
2193
2194
748
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2195
748
    mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2196
748
    mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
2197
2198
748
    return ret;
2199
748
}
2200
2201
#if defined(MBEDTLS_GENPRIME)
2202
2203
static const int small_prime[] =
2204
{
2205
    3,    5,    7,   11,   13,   17,   19,   23,
2206
    29,   31,   37,   41,   43,   47,   53,   59,
2207
    61,   67,   71,   73,   79,   83,   89,   97,
2208
    101,  103,  107,  109,  113,  127,  131,  137,
2209
    139,  149,  151,  157,  163,  167,  173,  179,
2210
    181,  191,  193,  197,  199,  211,  223,  227,
2211
    229,  233,  239,  241,  251,  257,  263,  269,
2212
    271,  277,  281,  283,  293,  307,  311,  313,
2213
    317,  331,  337,  347,  349,  353,  359,  367,
2214
    373,  379,  383,  389,  397,  401,  409,  419,
2215
    421,  431,  433,  439,  443,  449,  457,  461,
2216
    463,  467,  479,  487,  491,  499,  503,  509,
2217
    521,  523,  541,  547,  557,  563,  569,  571,
2218
    577,  587,  593,  599,  601,  607,  613,  617,
2219
    619,  631,  641,  643,  647,  653,  659,  661,
2220
    673,  677,  683,  691,  701,  709,  719,  727,
2221
    733,  739,  743,  751,  757,  761,  769,  773,
2222
    787,  797,  809,  811,  821,  823,  827,  829,
2223
    839,  853,  857,  859,  863,  877,  881,  883,
2224
    887,  907,  911,  919,  929,  937,  941,  947,
2225
    953,  967,  971,  977,  983,  991,  997, -103
2226
};
2227
2228
/*
2229
 * Small divisors test (X must be positive)
2230
 *
2231
 * Return values:
2232
 * 0: no small factor (possible prime, more tests needed)
2233
 * 1: certain prime
2234
 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
2235
 * other negative: error
2236
 */
2237
static int mpi_check_small_factors(const mbedtls_mpi *X)
2238
0
{
2239
0
    int ret = 0;
2240
0
    size_t i;
2241
0
    mbedtls_mpi_uint r;
2242
2243
0
    if ((X->p[0] & 1) == 0) {
2244
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2245
0
    }
2246
2247
0
    for (i = 0; small_prime[i] > 0; i++) {
2248
0
        if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2249
0
            return 1;
2250
0
        }
2251
2252
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
2253
2254
0
        if (r == 0) {
2255
0
            return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2256
0
        }
2257
0
    }
2258
2259
0
cleanup:
2260
0
    return ret;
2261
0
}
2262
2263
/*
2264
 * Miller-Rabin pseudo-primality test  (HAC 4.24)
2265
 */
2266
static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2267
                            int (*f_rng)(void *, unsigned char *, size_t),
2268
                            void *p_rng)
2269
0
{
2270
0
    int ret, count;
2271
0
    size_t i, j, k, s;
2272
0
    mbedtls_mpi W, R, T, A, RR;
2273
2274
0
    MPI_VALIDATE_RET(X     != NULL);
2275
0
    MPI_VALIDATE_RET(f_rng != NULL);
2276
2277
0
    mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2278
0
    mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2279
0
    mbedtls_mpi_init(&RR);
2280
2281
    /*
2282
     * W = |X| - 1
2283
     * R = W >> lsb( W )
2284
     */
2285
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2286
0
    s = mbedtls_mpi_lsb(&W);
2287
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2288
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
2289
2290
0
    for (i = 0; i < rounds; i++) {
2291
        /*
2292
         * pick a random A, 1 < A < |X| - 1
2293
         */
2294
0
        count = 0;
2295
0
        do {
2296
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
2297
2298
0
            j = mbedtls_mpi_bitlen(&A);
2299
0
            k = mbedtls_mpi_bitlen(&W);
2300
0
            if (j > k) {
2301
0
                A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
2302
0
            }
2303
2304
0
            if (count++ > 30) {
2305
0
                ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2306
0
                goto cleanup;
2307
0
            }
2308
2309
0
        } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2310
0
                 mbedtls_mpi_cmp_int(&A, 1)  <= 0);
2311
2312
        /*
2313
         * A = A^R mod |X|
2314
         */
2315
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
2316
2317
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2318
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2319
0
            continue;
2320
0
        }
2321
2322
0
        j = 1;
2323
0
        while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
2324
            /*
2325
             * A = A * A mod |X|
2326
             */
2327
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2328
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
2329
2330
0
            if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
2331
0
                break;
2332
0
            }
2333
2334
0
            j++;
2335
0
        }
2336
2337
        /*
2338
         * not prime if A != |X| - 1 or A == 1
2339
         */
2340
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2341
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2342
0
            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2343
0
            break;
2344
0
        }
2345
0
    }
2346
2347
0
cleanup:
2348
0
    mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2349
0
    mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2350
0
    mbedtls_mpi_free(&RR);
2351
2352
0
    return ret;
2353
0
}
2354
2355
/*
2356
 * Pseudo-primality test: small factors, then Miller-Rabin
2357
 */
2358
int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2359
                             int (*f_rng)(void *, unsigned char *, size_t),
2360
                             void *p_rng)
2361
0
{
2362
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2363
0
    mbedtls_mpi XX;
2364
0
    MPI_VALIDATE_RET(X     != NULL);
2365
0
    MPI_VALIDATE_RET(f_rng != NULL);
2366
2367
0
    XX.s = 1;
2368
0
    XX.n = X->n;
2369
0
    XX.p = X->p;
2370
2371
0
    if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2372
0
        mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2373
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2374
0
    }
2375
2376
0
    if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2377
0
        return 0;
2378
0
    }
2379
2380
0
    if ((ret = mpi_check_small_factors(&XX)) != 0) {
2381
0
        if (ret == 1) {
2382
0
            return 0;
2383
0
        }
2384
2385
0
        return ret;
2386
0
    }
2387
2388
0
    return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
2389
0
}
2390
2391
/*
2392
 * Prime number generation
2393
 *
2394
 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2395
 * be either 1024 bits or 1536 bits long, and flags must contain
2396
 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
2397
 */
2398
int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2399
                          int (*f_rng)(void *, unsigned char *, size_t),
2400
                          void *p_rng)
2401
0
{
2402
0
#ifdef MBEDTLS_HAVE_INT64
2403
// ceil(2^63.5)
2404
0
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2405
#else
2406
// ceil(2^31.5)
2407
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2408
#endif
2409
0
    int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2410
0
    size_t k, n;
2411
0
    int rounds;
2412
0
    mbedtls_mpi_uint r;
2413
0
    mbedtls_mpi Y;
2414
2415
0
    MPI_VALIDATE_RET(X     != NULL);
2416
0
    MPI_VALIDATE_RET(f_rng != NULL);
2417
2418
0
    if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2419
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2420
0
    }
2421
2422
0
    mbedtls_mpi_init(&Y);
2423
2424
0
    n = BITS_TO_LIMBS(nbits);
2425
2426
0
    if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
2427
        /*
2428
         * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2429
         */
2430
0
        rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :
2431
0
                  (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :
2432
0
                  (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);
2433
0
    } else {
2434
        /*
2435
         * 2^-100 error probability, number of rounds computed based on HAC,
2436
         * fact 4.48
2437
         */
2438
0
        rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :
2439
0
                  (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :
2440
0
                  (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :
2441
0
                  (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);
2442
0
    }
2443
2444
0
    while (1) {
2445
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
2446
        /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2447
0
        if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2448
0
            continue;
2449
0
        }
2450
2451
0
        k = n * biL;
2452
0
        if (k > nbits) {
2453
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2454
0
        }
2455
0
        X->p[0] |= 1;
2456
2457
0
        if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2458
0
            ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
2459
2460
0
            if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2461
0
                goto cleanup;
2462
0
            }
2463
0
        } else {
2464
            /*
2465
             * A necessary condition for Y and X = 2Y + 1 to be prime
2466
             * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2467
             * Make sure it is satisfied, while keeping X = 3 mod 4
2468
             */
2469
2470
0
            X->p[0] |= 2;
2471
2472
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2473
0
            if (r == 0) {
2474
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2475
0
            } else if (r == 1) {
2476
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2477
0
            }
2478
2479
            /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2480
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2481
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
2482
2483
0
            while (1) {
2484
                /*
2485
                 * First, check small factors for X and Y
2486
                 * before doing Miller-Rabin on any of them
2487
                 */
2488
0
                if ((ret = mpi_check_small_factors(X)) == 0 &&
2489
0
                    (ret = mpi_check_small_factors(&Y)) == 0 &&
2490
0
                    (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2491
0
                    == 0 &&
2492
0
                    (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2493
0
                    == 0) {
2494
0
                    goto cleanup;
2495
0
                }
2496
2497
0
                if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2498
0
                    goto cleanup;
2499
0
                }
2500
2501
                /*
2502
                 * Next candidates. We want to preserve Y = (X-1) / 2 and
2503
                 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2504
                 * so up Y by 6 and X by 12.
2505
                 */
2506
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
2507
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
2508
0
            }
2509
0
        }
2510
0
    }
2511
2512
0
cleanup:
2513
2514
0
    mbedtls_mpi_free(&Y);
2515
2516
0
    return ret;
2517
0
}
2518
2519
#endif /* MBEDTLS_GENPRIME */
2520
2521
#if defined(MBEDTLS_SELF_TEST)
2522
2523
0
#define GCD_PAIR_COUNT  3
2524
2525
static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2526
{
2527
    { 693, 609, 21 },
2528
    { 1764, 868, 28 },
2529
    { 768454923, 542167814, 1 }
2530
};
2531
2532
/*
2533
 * Checkup routine
2534
 */
2535
int mbedtls_mpi_self_test(int verbose)
2536
0
{
2537
0
    int ret, i;
2538
0
    mbedtls_mpi A, E, N, X, Y, U, V;
2539
2540
0
    mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2541
0
    mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
2542
2543
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2544
0
                                            "EFE021C2645FD1DC586E69184AF4A31E" \
2545
0
                                            "D5F53E93B5F123FA41680867BA110131" \
2546
0
                                            "944FE7952E2517337780CB0DB80E61AA" \
2547
0
                                            "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
2548
2549
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2550
0
                                            "B2E7EFD37075B9F03FF989C7C5051C20" \
2551
0
                                            "34D2A323810251127E7BF8625A4F49A5" \
2552
0
                                            "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2553
0
                                            "5B5C25763222FEFCCFC38B832366C29E"));
2554
2555
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2556
0
                                            "0066A198186C18C10B2F5ED9B522752A" \
2557
0
                                            "9830B69916E535C8F047518A889A43A5" \
2558
0
                                            "94B6BED27A168D31D4A52F88925AA8F5"));
2559
2560
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
2561
2562
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2563
0
                                            "602AB7ECA597A3D6B56FF9829A5E8B85" \
2564
0
                                            "9E857EA95A03512E2BAE7391688D264A" \
2565
0
                                            "A5663B0341DB9CCFD2C4C5F421FEC814" \
2566
0
                                            "8001B72E848A38CAE1C65F78E56ABDEF" \
2567
0
                                            "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2568
0
                                            "ECF677152EF804370C1A305CAF3B5BF1" \
2569
0
                                            "30879B56C61DE584A0F53A2447A51E"));
2570
2571
0
    if (verbose != 0) {
2572
0
        mbedtls_printf("  MPI test #1 (mul_mpi): ");
2573
0
    }
2574
2575
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2576
0
        if (verbose != 0) {
2577
0
            mbedtls_printf("failed\n");
2578
0
        }
2579
2580
0
        ret = 1;
2581
0
        goto cleanup;
2582
0
    }
2583
2584
0
    if (verbose != 0) {
2585
0
        mbedtls_printf("passed\n");
2586
0
    }
2587
2588
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
2589
2590
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2591
0
                                            "256567336059E52CAE22925474705F39A94"));
2592
2593
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2594
0
                                            "6613F26162223DF488E9CD48CC132C7A" \
2595
0
                                            "0AC93C701B001B092E4E5B9F73BCD27B" \
2596
0
                                            "9EE50D0657C77F374E903CDFA4C642"));
2597
2598
0
    if (verbose != 0) {
2599
0
        mbedtls_printf("  MPI test #2 (div_mpi): ");
2600
0
    }
2601
2602
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2603
0
        mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2604
0
        if (verbose != 0) {
2605
0
            mbedtls_printf("failed\n");
2606
0
        }
2607
2608
0
        ret = 1;
2609
0
        goto cleanup;
2610
0
    }
2611
2612
0
    if (verbose != 0) {
2613
0
        mbedtls_printf("passed\n");
2614
0
    }
2615
2616
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
2617
2618
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2619
0
                                            "36E139AEA55215609D2816998ED020BB" \
2620
0
                                            "BD96C37890F65171D948E9BC7CBAA4D9" \
2621
0
                                            "325D24D6A3C12710F10A09FA08AB87"));
2622
2623
0
    if (verbose != 0) {
2624
0
        mbedtls_printf("  MPI test #3 (exp_mod): ");
2625
0
    }
2626
2627
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2628
0
        if (verbose != 0) {
2629
0
            mbedtls_printf("failed\n");
2630
0
        }
2631
2632
0
        ret = 1;
2633
0
        goto cleanup;
2634
0
    }
2635
2636
0
    if (verbose != 0) {
2637
0
        mbedtls_printf("passed\n");
2638
0
    }
2639
2640
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
2641
2642
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2643
0
                                            "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2644
0
                                            "C3DBA76456363A10869622EAC2DD84EC" \
2645
0
                                            "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
2646
2647
0
    if (verbose != 0) {
2648
0
        mbedtls_printf("  MPI test #4 (inv_mod): ");
2649
0
    }
2650
2651
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2652
0
        if (verbose != 0) {
2653
0
            mbedtls_printf("failed\n");
2654
0
        }
2655
2656
0
        ret = 1;
2657
0
        goto cleanup;
2658
0
    }
2659
2660
0
    if (verbose != 0) {
2661
0
        mbedtls_printf("passed\n");
2662
0
    }
2663
2664
0
    if (verbose != 0) {
2665
0
        mbedtls_printf("  MPI test #5 (simple gcd): ");
2666
0
    }
2667
2668
0
    for (i = 0; i < GCD_PAIR_COUNT; i++) {
2669
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2670
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
2671
2672
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
2673
2674
0
        if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2675
0
            if (verbose != 0) {
2676
0
                mbedtls_printf("failed at %d\n", i);
2677
0
            }
2678
2679
0
            ret = 1;
2680
0
            goto cleanup;
2681
0
        }
2682
0
    }
2683
2684
0
    if (verbose != 0) {
2685
0
        mbedtls_printf("passed\n");
2686
0
    }
2687
2688
0
cleanup:
2689
2690
0
    if (ret != 0 && verbose != 0) {
2691
0
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2692
0
    }
2693
2694
0
    mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2695
0
    mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
2696
2697
0
    if (verbose != 0) {
2698
0
        mbedtls_printf("\n");
2699
0
    }
2700
2701
0
    return ret;
2702
0
}
2703
2704
#endif /* MBEDTLS_SELF_TEST */
2705
2706
#endif /* MBEDTLS_BIGNUM_C */