/src/libjpeg-turbo.main/jcdctmgr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jcdctmgr.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1994-1996, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 1999-2006, MIYASAKA Masaru. |
8 | | * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB |
9 | | * Copyright (C) 2011, 2014-2015, D. R. Commander. |
10 | | * For conditions of distribution and use, see the accompanying README.ijg |
11 | | * file. |
12 | | * |
13 | | * This file contains the forward-DCT management logic. |
14 | | * This code selects a particular DCT implementation to be used, |
15 | | * and it performs related housekeeping chores including coefficient |
16 | | * quantization. |
17 | | */ |
18 | | |
19 | | #define JPEG_INTERNALS |
20 | | #include "jinclude.h" |
21 | | #include "jpeglib.h" |
22 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
23 | | #include "jsimddct.h" |
24 | | |
25 | | |
26 | | /* Private subobject for this module */ |
27 | | |
28 | | typedef void (*forward_DCT_method_ptr) (DCTELEM *data); |
29 | | typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); |
30 | | |
31 | | typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, |
32 | | JDIMENSION start_col, |
33 | | DCTELEM *workspace); |
34 | | typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, |
35 | | JDIMENSION start_col, |
36 | | FAST_FLOAT *workspace); |
37 | | |
38 | | typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, |
39 | | DCTELEM *workspace); |
40 | | typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, |
41 | | FAST_FLOAT *divisors, |
42 | | FAST_FLOAT *workspace); |
43 | | |
44 | | METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *); |
45 | | |
46 | | typedef struct { |
47 | | struct jpeg_forward_dct pub; /* public fields */ |
48 | | |
49 | | /* Pointer to the DCT routine actually in use */ |
50 | | forward_DCT_method_ptr dct; |
51 | | convsamp_method_ptr convsamp; |
52 | | quantize_method_ptr quantize; |
53 | | |
54 | | /* The actual post-DCT divisors --- not identical to the quant table |
55 | | * entries, because of scaling (especially for an unnormalized DCT). |
56 | | * Each table is given in normal array order. |
57 | | */ |
58 | | DCTELEM *divisors[NUM_QUANT_TBLS]; |
59 | | |
60 | | /* work area for FDCT subroutine */ |
61 | | DCTELEM *workspace; |
62 | | |
63 | | #ifdef DCT_FLOAT_SUPPORTED |
64 | | /* Same as above for the floating-point case. */ |
65 | | float_DCT_method_ptr float_dct; |
66 | | float_convsamp_method_ptr float_convsamp; |
67 | | float_quantize_method_ptr float_quantize; |
68 | | FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; |
69 | | FAST_FLOAT *float_workspace; |
70 | | #endif |
71 | | } my_fdct_controller; |
72 | | |
73 | | typedef my_fdct_controller *my_fdct_ptr; |
74 | | |
75 | | |
76 | | #if BITS_IN_JSAMPLE == 8 |
77 | | |
78 | | /* |
79 | | * Find the highest bit in an integer through binary search. |
80 | | */ |
81 | | |
82 | | LOCAL(int) |
83 | | flss(UINT16 val) |
84 | 0 | { |
85 | 0 | int bit; |
86 | |
|
87 | 0 | bit = 16; |
88 | |
|
89 | 0 | if (!val) |
90 | 0 | return 0; |
91 | | |
92 | 0 | if (!(val & 0xff00)) { |
93 | 0 | bit -= 8; |
94 | 0 | val <<= 8; |
95 | 0 | } |
96 | 0 | if (!(val & 0xf000)) { |
97 | 0 | bit -= 4; |
98 | 0 | val <<= 4; |
99 | 0 | } |
100 | 0 | if (!(val & 0xc000)) { |
101 | 0 | bit -= 2; |
102 | 0 | val <<= 2; |
103 | 0 | } |
104 | 0 | if (!(val & 0x8000)) { |
105 | 0 | bit -= 1; |
106 | 0 | val <<= 1; |
107 | 0 | } |
108 | |
|
109 | 0 | return bit; |
110 | 0 | } |
111 | | |
112 | | |
113 | | /* |
114 | | * Compute values to do a division using reciprocal. |
115 | | * |
116 | | * This implementation is based on an algorithm described in |
117 | | * "How to optimize for the Pentium family of microprocessors" |
118 | | * (http://www.agner.org/assem/). |
119 | | * More information about the basic algorithm can be found in |
120 | | * the paper "Integer Division Using Reciprocals" by Robert Alverson. |
121 | | * |
122 | | * The basic idea is to replace x/d by x * d^-1. In order to store |
123 | | * d^-1 with enough precision we shift it left a few places. It turns |
124 | | * out that this algoright gives just enough precision, and also fits |
125 | | * into DCTELEM: |
126 | | * |
127 | | * b = (the number of significant bits in divisor) - 1 |
128 | | * r = (word size) + b |
129 | | * f = 2^r / divisor |
130 | | * |
131 | | * f will not be an integer for most cases, so we need to compensate |
132 | | * for the rounding error introduced: |
133 | | * |
134 | | * no fractional part: |
135 | | * |
136 | | * result = input >> r |
137 | | * |
138 | | * fractional part of f < 0.5: |
139 | | * |
140 | | * round f down to nearest integer |
141 | | * result = ((input + 1) * f) >> r |
142 | | * |
143 | | * fractional part of f > 0.5: |
144 | | * |
145 | | * round f up to nearest integer |
146 | | * result = (input * f) >> r |
147 | | * |
148 | | * This is the original algorithm that gives truncated results. But we |
149 | | * want properly rounded results, so we replace "input" with |
150 | | * "input + divisor/2". |
151 | | * |
152 | | * In order to allow SIMD implementations we also tweak the values to |
153 | | * allow the same calculation to be made at all times: |
154 | | * |
155 | | * dctbl[0] = f rounded to nearest integer |
156 | | * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) |
157 | | * dctbl[2] = 1 << ((word size) * 2 - r) |
158 | | * dctbl[3] = r - (word size) |
159 | | * |
160 | | * dctbl[2] is for stupid instruction sets where the shift operation |
161 | | * isn't member wise (e.g. MMX). |
162 | | * |
163 | | * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) |
164 | | * is that most SIMD implementations have a "multiply and store top |
165 | | * half" operation. |
166 | | * |
167 | | * Lastly, we store each of the values in their own table instead |
168 | | * of in a consecutive manner, yet again in order to allow SIMD |
169 | | * routines. |
170 | | */ |
171 | | |
172 | | LOCAL(int) |
173 | | compute_reciprocal(UINT16 divisor, DCTELEM *dtbl) |
174 | 0 | { |
175 | 0 | UDCTELEM2 fq, fr; |
176 | 0 | UDCTELEM c; |
177 | 0 | int b, r; |
178 | |
|
179 | 0 | if (divisor == 1) { |
180 | | /* divisor == 1 means unquantized, so these reciprocal/correction/shift |
181 | | * values will cause the C quantization algorithm to act like the |
182 | | * identity function. Since only the C quantization algorithm is used in |
183 | | * these cases, the scale value is irrelevant. |
184 | | */ |
185 | 0 | dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */ |
186 | 0 | dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */ |
187 | 0 | dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */ |
188 | 0 | dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */ |
189 | 0 | return 0; |
190 | 0 | } |
191 | | |
192 | 0 | b = flss(divisor) - 1; |
193 | 0 | r = sizeof(DCTELEM) * 8 + b; |
194 | |
|
195 | 0 | fq = ((UDCTELEM2)1 << r) / divisor; |
196 | 0 | fr = ((UDCTELEM2)1 << r) % divisor; |
197 | |
|
198 | 0 | c = divisor / 2; /* for rounding */ |
199 | |
|
200 | 0 | if (fr == 0) { /* divisor is power of two */ |
201 | | /* fq will be one bit too large to fit in DCTELEM, so adjust */ |
202 | 0 | fq >>= 1; |
203 | 0 | r--; |
204 | 0 | } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ |
205 | 0 | c++; |
206 | 0 | } else { /* fractional part is > 0.5 */ |
207 | 0 | fq++; |
208 | 0 | } |
209 | |
|
210 | 0 | dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */ |
211 | 0 | dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */ |
212 | 0 | #ifdef WITH_SIMD |
213 | 0 | dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */ |
214 | | #else |
215 | | dtbl[DCTSIZE2 * 2] = 1; |
216 | | #endif |
217 | 0 | dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */ |
218 | |
|
219 | 0 | if (r <= 16) return 0; |
220 | 0 | else return 1; |
221 | 0 | } |
222 | | |
223 | | #endif |
224 | | |
225 | | |
226 | | /* |
227 | | * Initialize for a processing pass. |
228 | | * Verify that all referenced Q-tables are present, and set up |
229 | | * the divisor table for each one. |
230 | | * In the current implementation, DCT of all components is done during |
231 | | * the first pass, even if only some components will be output in the |
232 | | * first scan. Hence all components should be examined here. |
233 | | */ |
234 | | |
235 | | METHODDEF(void) |
236 | | start_pass_fdctmgr(j_compress_ptr cinfo) |
237 | 0 | { |
238 | 0 | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
239 | 0 | int ci, qtblno, i; |
240 | 0 | jpeg_component_info *compptr; |
241 | 0 | JQUANT_TBL *qtbl; |
242 | 0 | DCTELEM *dtbl; |
243 | |
|
244 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
245 | 0 | ci++, compptr++) { |
246 | 0 | qtblno = compptr->quant_tbl_no; |
247 | | /* Make sure specified quantization table is present */ |
248 | 0 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
249 | 0 | cinfo->quant_tbl_ptrs[qtblno] == NULL) |
250 | 0 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
251 | 0 | qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
252 | | /* Compute divisors for this quant table */ |
253 | | /* We may do this more than once for same table, but it's not a big deal */ |
254 | 0 | switch (cinfo->dct_method) { |
255 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
256 | 0 | case JDCT_ISLOW: |
257 | | /* For LL&M IDCT method, divisors are equal to raw quantization |
258 | | * coefficients multiplied by 8 (to counteract scaling). |
259 | | */ |
260 | 0 | if (fdct->divisors[qtblno] == NULL) { |
261 | 0 | fdct->divisors[qtblno] = (DCTELEM *) |
262 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
263 | 0 | (DCTSIZE2 * 4) * sizeof(DCTELEM)); |
264 | 0 | } |
265 | 0 | dtbl = fdct->divisors[qtblno]; |
266 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
267 | 0 | #if BITS_IN_JSAMPLE == 8 |
268 | 0 | if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && |
269 | 0 | fdct->quantize == jsimd_quantize) |
270 | 0 | fdct->quantize = quantize; |
271 | | #else |
272 | | dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3; |
273 | | #endif |
274 | 0 | } |
275 | 0 | break; |
276 | 0 | #endif |
277 | 0 | #ifdef DCT_IFAST_SUPPORTED |
278 | 0 | case JDCT_IFAST: |
279 | 0 | { |
280 | | /* For AA&N IDCT method, divisors are equal to quantization |
281 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
282 | | * scalefactor[0] = 1 |
283 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
284 | | * We apply a further scale factor of 8. |
285 | | */ |
286 | 0 | #define CONST_BITS 14 |
287 | 0 | static const INT16 aanscales[DCTSIZE2] = { |
288 | | /* precomputed values scaled up by 14 bits */ |
289 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
290 | 0 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
291 | 0 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
292 | 0 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
293 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
294 | 0 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
295 | 0 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
296 | 0 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
297 | 0 | }; |
298 | 0 | SHIFT_TEMPS |
299 | |
|
300 | 0 | if (fdct->divisors[qtblno] == NULL) { |
301 | 0 | fdct->divisors[qtblno] = (DCTELEM *) |
302 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
303 | 0 | (DCTSIZE2 * 4) * sizeof(DCTELEM)); |
304 | 0 | } |
305 | 0 | dtbl = fdct->divisors[qtblno]; |
306 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
307 | 0 | #if BITS_IN_JSAMPLE == 8 |
308 | 0 | if (!compute_reciprocal( |
309 | 0 | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
310 | 0 | (JLONG)aanscales[i]), |
311 | 0 | CONST_BITS - 3), &dtbl[i]) && |
312 | 0 | fdct->quantize == jsimd_quantize) |
313 | 0 | fdct->quantize = quantize; |
314 | | #else |
315 | | dtbl[i] = (DCTELEM) |
316 | | DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], |
317 | | (JLONG)aanscales[i]), |
318 | | CONST_BITS - 3); |
319 | | #endif |
320 | 0 | } |
321 | 0 | } |
322 | 0 | break; |
323 | 0 | #endif |
324 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
325 | 0 | case JDCT_FLOAT: |
326 | 0 | { |
327 | | /* For float AA&N IDCT method, divisors are equal to quantization |
328 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
329 | | * scalefactor[0] = 1 |
330 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
331 | | * We apply a further scale factor of 8. |
332 | | * What's actually stored is 1/divisor so that the inner loop can |
333 | | * use a multiplication rather than a division. |
334 | | */ |
335 | 0 | FAST_FLOAT *fdtbl; |
336 | 0 | int row, col; |
337 | 0 | static const double aanscalefactor[DCTSIZE] = { |
338 | 0 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
339 | 0 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
340 | 0 | }; |
341 | |
|
342 | 0 | if (fdct->float_divisors[qtblno] == NULL) { |
343 | 0 | fdct->float_divisors[qtblno] = (FAST_FLOAT *) |
344 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
345 | 0 | DCTSIZE2 * sizeof(FAST_FLOAT)); |
346 | 0 | } |
347 | 0 | fdtbl = fdct->float_divisors[qtblno]; |
348 | 0 | i = 0; |
349 | 0 | for (row = 0; row < DCTSIZE; row++) { |
350 | 0 | for (col = 0; col < DCTSIZE; col++) { |
351 | 0 | fdtbl[i] = (FAST_FLOAT) |
352 | 0 | (1.0 / (((double)qtbl->quantval[i] * |
353 | 0 | aanscalefactor[row] * aanscalefactor[col] * 8.0))); |
354 | 0 | i++; |
355 | 0 | } |
356 | 0 | } |
357 | 0 | } |
358 | 0 | break; |
359 | 0 | #endif |
360 | 0 | default: |
361 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
362 | 0 | break; |
363 | 0 | } |
364 | 0 | } |
365 | 0 | } |
366 | | |
367 | | |
368 | | /* |
369 | | * Load data into workspace, applying unsigned->signed conversion. |
370 | | */ |
371 | | |
372 | | METHODDEF(void) |
373 | | convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) |
374 | 0 | { |
375 | 0 | register DCTELEM *workspaceptr; |
376 | 0 | register JSAMPROW elemptr; |
377 | 0 | register int elemr; |
378 | |
|
379 | 0 | workspaceptr = workspace; |
380 | 0 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
381 | 0 | elemptr = sample_data[elemr] + start_col; |
382 | |
|
383 | 0 | #if DCTSIZE == 8 /* unroll the inner loop */ |
384 | 0 | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
385 | 0 | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
386 | 0 | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
387 | 0 | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
388 | 0 | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
389 | 0 | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
390 | 0 | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
391 | 0 | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
392 | | #else |
393 | | { |
394 | | register int elemc; |
395 | | for (elemc = DCTSIZE; elemc > 0; elemc--) |
396 | | *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; |
397 | | } |
398 | | #endif |
399 | 0 | } |
400 | 0 | } |
401 | | |
402 | | |
403 | | /* |
404 | | * Quantize/descale the coefficients, and store into coef_blocks[]. |
405 | | */ |
406 | | |
407 | | METHODDEF(void) |
408 | | quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) |
409 | 0 | { |
410 | 0 | int i; |
411 | 0 | DCTELEM temp; |
412 | 0 | JCOEFPTR output_ptr = coef_block; |
413 | |
|
414 | 0 | #if BITS_IN_JSAMPLE == 8 |
415 | |
|
416 | 0 | UDCTELEM recip, corr; |
417 | 0 | int shift; |
418 | 0 | UDCTELEM2 product; |
419 | |
|
420 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
421 | 0 | temp = workspace[i]; |
422 | 0 | recip = divisors[i + DCTSIZE2 * 0]; |
423 | 0 | corr = divisors[i + DCTSIZE2 * 1]; |
424 | 0 | shift = divisors[i + DCTSIZE2 * 3]; |
425 | |
|
426 | 0 | if (temp < 0) { |
427 | 0 | temp = -temp; |
428 | 0 | product = (UDCTELEM2)(temp + corr) * recip; |
429 | 0 | product >>= shift + sizeof(DCTELEM) * 8; |
430 | 0 | temp = (DCTELEM)product; |
431 | 0 | temp = -temp; |
432 | 0 | } else { |
433 | 0 | product = (UDCTELEM2)(temp + corr) * recip; |
434 | 0 | product >>= shift + sizeof(DCTELEM) * 8; |
435 | 0 | temp = (DCTELEM)product; |
436 | 0 | } |
437 | 0 | output_ptr[i] = (JCOEF)temp; |
438 | 0 | } |
439 | |
|
440 | | #else |
441 | | |
442 | | register DCTELEM qval; |
443 | | |
444 | | for (i = 0; i < DCTSIZE2; i++) { |
445 | | qval = divisors[i]; |
446 | | temp = workspace[i]; |
447 | | /* Divide the coefficient value by qval, ensuring proper rounding. |
448 | | * Since C does not specify the direction of rounding for negative |
449 | | * quotients, we have to force the dividend positive for portability. |
450 | | * |
451 | | * In most files, at least half of the output values will be zero |
452 | | * (at default quantization settings, more like three-quarters...) |
453 | | * so we should ensure that this case is fast. On many machines, |
454 | | * a comparison is enough cheaper than a divide to make a special test |
455 | | * a win. Since both inputs will be nonnegative, we need only test |
456 | | * for a < b to discover whether a/b is 0. |
457 | | * If your machine's division is fast enough, define FAST_DIVIDE. |
458 | | */ |
459 | | #ifdef FAST_DIVIDE |
460 | | #define DIVIDE_BY(a, b) a /= b |
461 | | #else |
462 | | #define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0 |
463 | | #endif |
464 | | if (temp < 0) { |
465 | | temp = -temp; |
466 | | temp += qval >> 1; /* for rounding */ |
467 | | DIVIDE_BY(temp, qval); |
468 | | temp = -temp; |
469 | | } else { |
470 | | temp += qval >> 1; /* for rounding */ |
471 | | DIVIDE_BY(temp, qval); |
472 | | } |
473 | | output_ptr[i] = (JCOEF)temp; |
474 | | } |
475 | | |
476 | | #endif |
477 | |
|
478 | 0 | } |
479 | | |
480 | | |
481 | | /* |
482 | | * Perform forward DCT on one or more blocks of a component. |
483 | | * |
484 | | * The input samples are taken from the sample_data[] array starting at |
485 | | * position start_row/start_col, and moving to the right for any additional |
486 | | * blocks. The quantized coefficients are returned in coef_blocks[]. |
487 | | */ |
488 | | |
489 | | METHODDEF(void) |
490 | | forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr, |
491 | | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
492 | | JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) |
493 | | /* This version is used for integer DCT implementations. */ |
494 | 0 | { |
495 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
496 | 0 | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
497 | 0 | DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; |
498 | 0 | DCTELEM *workspace; |
499 | 0 | JDIMENSION bi; |
500 | | |
501 | | /* Make sure the compiler doesn't look up these every pass */ |
502 | 0 | forward_DCT_method_ptr do_dct = fdct->dct; |
503 | 0 | convsamp_method_ptr do_convsamp = fdct->convsamp; |
504 | 0 | quantize_method_ptr do_quantize = fdct->quantize; |
505 | 0 | workspace = fdct->workspace; |
506 | |
|
507 | 0 | sample_data += start_row; /* fold in the vertical offset once */ |
508 | |
|
509 | 0 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
510 | | /* Load data into workspace, applying unsigned->signed conversion */ |
511 | 0 | (*do_convsamp) (sample_data, start_col, workspace); |
512 | | |
513 | | /* Perform the DCT */ |
514 | 0 | (*do_dct) (workspace); |
515 | | |
516 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
517 | 0 | (*do_quantize) (coef_blocks[bi], divisors, workspace); |
518 | 0 | } |
519 | 0 | } |
520 | | |
521 | | |
522 | | #ifdef DCT_FLOAT_SUPPORTED |
523 | | |
524 | | METHODDEF(void) |
525 | | convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, |
526 | | FAST_FLOAT *workspace) |
527 | 0 | { |
528 | 0 | register FAST_FLOAT *workspaceptr; |
529 | 0 | register JSAMPROW elemptr; |
530 | 0 | register int elemr; |
531 | |
|
532 | 0 | workspaceptr = workspace; |
533 | 0 | for (elemr = 0; elemr < DCTSIZE; elemr++) { |
534 | 0 | elemptr = sample_data[elemr] + start_col; |
535 | 0 | #if DCTSIZE == 8 /* unroll the inner loop */ |
536 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
537 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
538 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
539 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
540 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
541 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
542 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
543 | 0 | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
544 | | #else |
545 | | { |
546 | | register int elemc; |
547 | | for (elemc = DCTSIZE; elemc > 0; elemc--) |
548 | | *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); |
549 | | } |
550 | | #endif |
551 | 0 | } |
552 | 0 | } |
553 | | |
554 | | |
555 | | METHODDEF(void) |
556 | | quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, |
557 | | FAST_FLOAT *workspace) |
558 | 0 | { |
559 | 0 | register FAST_FLOAT temp; |
560 | 0 | register int i; |
561 | 0 | register JCOEFPTR output_ptr = coef_block; |
562 | |
|
563 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
564 | | /* Apply the quantization and scaling factor */ |
565 | 0 | temp = workspace[i] * divisors[i]; |
566 | | |
567 | | /* Round to nearest integer. |
568 | | * Since C does not specify the direction of rounding for negative |
569 | | * quotients, we have to force the dividend positive for portability. |
570 | | * The maximum coefficient size is +-16K (for 12-bit data), so this |
571 | | * code should work for either 16-bit or 32-bit ints. |
572 | | */ |
573 | 0 | output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384); |
574 | 0 | } |
575 | 0 | } |
576 | | |
577 | | |
578 | | METHODDEF(void) |
579 | | forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr, |
580 | | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
581 | | JDIMENSION start_row, JDIMENSION start_col, |
582 | | JDIMENSION num_blocks) |
583 | | /* This version is used for floating-point DCT implementations. */ |
584 | 0 | { |
585 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
586 | 0 | my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; |
587 | 0 | FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; |
588 | 0 | FAST_FLOAT *workspace; |
589 | 0 | JDIMENSION bi; |
590 | | |
591 | | |
592 | | /* Make sure the compiler doesn't look up these every pass */ |
593 | 0 | float_DCT_method_ptr do_dct = fdct->float_dct; |
594 | 0 | float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; |
595 | 0 | float_quantize_method_ptr do_quantize = fdct->float_quantize; |
596 | 0 | workspace = fdct->float_workspace; |
597 | |
|
598 | 0 | sample_data += start_row; /* fold in the vertical offset once */ |
599 | |
|
600 | 0 | for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { |
601 | | /* Load data into workspace, applying unsigned->signed conversion */ |
602 | 0 | (*do_convsamp) (sample_data, start_col, workspace); |
603 | | |
604 | | /* Perform the DCT */ |
605 | 0 | (*do_dct) (workspace); |
606 | | |
607 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
608 | 0 | (*do_quantize) (coef_blocks[bi], divisors, workspace); |
609 | 0 | } |
610 | 0 | } |
611 | | |
612 | | #endif /* DCT_FLOAT_SUPPORTED */ |
613 | | |
614 | | |
615 | | /* |
616 | | * Initialize FDCT manager. |
617 | | */ |
618 | | |
619 | | GLOBAL(void) |
620 | | jinit_forward_dct(j_compress_ptr cinfo) |
621 | 0 | { |
622 | 0 | my_fdct_ptr fdct; |
623 | 0 | int i; |
624 | |
|
625 | 0 | fdct = (my_fdct_ptr) |
626 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
627 | 0 | sizeof(my_fdct_controller)); |
628 | 0 | cinfo->fdct = (struct jpeg_forward_dct *)fdct; |
629 | 0 | fdct->pub.start_pass = start_pass_fdctmgr; |
630 | | |
631 | | /* First determine the DCT... */ |
632 | 0 | switch (cinfo->dct_method) { |
633 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
634 | 0 | case JDCT_ISLOW: |
635 | 0 | fdct->pub.forward_DCT = forward_DCT; |
636 | 0 | if (jsimd_can_fdct_islow()) |
637 | 0 | fdct->dct = jsimd_fdct_islow; |
638 | 0 | else |
639 | 0 | fdct->dct = jpeg_fdct_islow; |
640 | 0 | break; |
641 | 0 | #endif |
642 | 0 | #ifdef DCT_IFAST_SUPPORTED |
643 | 0 | case JDCT_IFAST: |
644 | 0 | fdct->pub.forward_DCT = forward_DCT; |
645 | 0 | if (jsimd_can_fdct_ifast()) |
646 | 0 | fdct->dct = jsimd_fdct_ifast; |
647 | 0 | else |
648 | 0 | fdct->dct = jpeg_fdct_ifast; |
649 | 0 | break; |
650 | 0 | #endif |
651 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
652 | 0 | case JDCT_FLOAT: |
653 | 0 | fdct->pub.forward_DCT = forward_DCT_float; |
654 | 0 | if (jsimd_can_fdct_float()) |
655 | 0 | fdct->float_dct = jsimd_fdct_float; |
656 | 0 | else |
657 | 0 | fdct->float_dct = jpeg_fdct_float; |
658 | 0 | break; |
659 | 0 | #endif |
660 | 0 | default: |
661 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
662 | 0 | break; |
663 | 0 | } |
664 | | |
665 | | /* ...then the supporting stages. */ |
666 | 0 | switch (cinfo->dct_method) { |
667 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
668 | 0 | case JDCT_ISLOW: |
669 | 0 | #endif |
670 | 0 | #ifdef DCT_IFAST_SUPPORTED |
671 | 0 | case JDCT_IFAST: |
672 | 0 | #endif |
673 | 0 | #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) |
674 | 0 | if (jsimd_can_convsamp()) |
675 | 0 | fdct->convsamp = jsimd_convsamp; |
676 | 0 | else |
677 | 0 | fdct->convsamp = convsamp; |
678 | 0 | if (jsimd_can_quantize()) |
679 | 0 | fdct->quantize = jsimd_quantize; |
680 | 0 | else |
681 | 0 | fdct->quantize = quantize; |
682 | 0 | break; |
683 | 0 | #endif |
684 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
685 | 0 | case JDCT_FLOAT: |
686 | 0 | if (jsimd_can_convsamp_float()) |
687 | 0 | fdct->float_convsamp = jsimd_convsamp_float; |
688 | 0 | else |
689 | 0 | fdct->float_convsamp = convsamp_float; |
690 | 0 | if (jsimd_can_quantize_float()) |
691 | 0 | fdct->float_quantize = jsimd_quantize_float; |
692 | 0 | else |
693 | 0 | fdct->float_quantize = quantize_float; |
694 | 0 | break; |
695 | 0 | #endif |
696 | 0 | default: |
697 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
698 | 0 | break; |
699 | 0 | } |
700 | | |
701 | | /* Allocate workspace memory */ |
702 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
703 | 0 | if (cinfo->dct_method == JDCT_FLOAT) |
704 | 0 | fdct->float_workspace = (FAST_FLOAT *) |
705 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
706 | 0 | sizeof(FAST_FLOAT) * DCTSIZE2); |
707 | 0 | else |
708 | 0 | #endif |
709 | 0 | fdct->workspace = (DCTELEM *) |
710 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, |
711 | 0 | sizeof(DCTELEM) * DCTSIZE2); |
712 | | |
713 | | /* Mark divisor tables unallocated */ |
714 | 0 | for (i = 0; i < NUM_QUANT_TBLS; i++) { |
715 | 0 | fdct->divisors[i] = NULL; |
716 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
717 | 0 | fdct->float_divisors[i] = NULL; |
718 | 0 | #endif |
719 | 0 | } |
720 | 0 | } |