Coverage Report

Created: 2024-05-18 12:36

/src/libjpeg-turbo.main/jidctflt.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jidctflt.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1998, Thomas G. Lane.
6
 * Modified 2010 by Guido Vollbeding.
7
 * libjpeg-turbo Modifications:
8
 * Copyright (C) 2014, D. R. Commander.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains a floating-point implementation of the
13
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
14
 * must also perform dequantization of the input coefficients.
15
 *
16
 * This implementation should be more accurate than either of the integer
17
 * IDCT implementations.  However, it may not give the same results on all
18
 * machines because of differences in roundoff behavior.  Speed will depend
19
 * on the hardware's floating point capacity.
20
 *
21
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
22
 * on each row (or vice versa, but it's more convenient to emit a row at
23
 * a time).  Direct algorithms are also available, but they are much more
24
 * complex and seem not to be any faster when reduced to code.
25
 *
26
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
27
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
28
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
29
 * JPEG textbook (see REFERENCES section in file README.ijg).  The following
30
 * code is based directly on figure 4-8 in P&M.
31
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
32
 * possible to arrange the computation so that many of the multiplies are
33
 * simple scalings of the final outputs.  These multiplies can then be
34
 * folded into the multiplications or divisions by the JPEG quantization
35
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
36
 * to be done in the DCT itself.
37
 * The primary disadvantage of this method is that with a fixed-point
38
 * implementation, accuracy is lost due to imprecise representation of the
39
 * scaled quantization values.  However, that problem does not arise if
40
 * we use floating point arithmetic.
41
 */
42
43
#define JPEG_INTERNALS
44
#include "jinclude.h"
45
#include "jpeglib.h"
46
#include "jdct.h"               /* Private declarations for DCT subsystem */
47
48
#ifdef DCT_FLOAT_SUPPORTED
49
50
51
/*
52
 * This module is specialized to the case DCTSIZE = 8.
53
 */
54
55
#if DCTSIZE != 8
56
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
57
#endif
58
59
60
/* Dequantize a coefficient by multiplying it by the multiplier-table
61
 * entry; produce a float result.
62
 */
63
64
0
#define DEQUANTIZE(coef, quantval)  (((FAST_FLOAT)(coef)) * (quantval))
65
66
67
/*
68
 * Perform dequantization and inverse DCT on one block of coefficients.
69
 */
70
71
GLOBAL(void)
72
jpeg_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr,
73
                JCOEFPTR coef_block, JSAMPARRAY output_buf,
74
                JDIMENSION output_col)
75
0
{
76
0
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
77
0
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
78
0
  FAST_FLOAT z5, z10, z11, z12, z13;
79
0
  JCOEFPTR inptr;
80
0
  FLOAT_MULT_TYPE *quantptr;
81
0
  FAST_FLOAT *wsptr;
82
0
  JSAMPROW outptr;
83
0
  JSAMPLE *range_limit = cinfo->sample_range_limit;
84
0
  int ctr;
85
0
  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
86
0
#define _0_125  ((FLOAT_MULT_TYPE)0.125)
87
88
  /* Pass 1: process columns from input, store into work array. */
89
90
0
  inptr = coef_block;
91
0
  quantptr = (FLOAT_MULT_TYPE *)compptr->dct_table;
92
0
  wsptr = workspace;
93
0
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
94
    /* Due to quantization, we will usually find that many of the input
95
     * coefficients are zero, especially the AC terms.  We can exploit this
96
     * by short-circuiting the IDCT calculation for any column in which all
97
     * the AC terms are zero.  In that case each output is equal to the
98
     * DC coefficient (with scale factor as needed).
99
     * With typical images and quantization tables, half or more of the
100
     * column DCT calculations can be simplified this way.
101
     */
102
103
0
    if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
104
0
        inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
105
0
        inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
106
0
        inptr[DCTSIZE * 7] == 0) {
107
      /* AC terms all zero */
108
0
      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE * 0],
109
0
                                    quantptr[DCTSIZE * 0] * _0_125);
110
111
0
      wsptr[DCTSIZE * 0] = dcval;
112
0
      wsptr[DCTSIZE * 1] = dcval;
113
0
      wsptr[DCTSIZE * 2] = dcval;
114
0
      wsptr[DCTSIZE * 3] = dcval;
115
0
      wsptr[DCTSIZE * 4] = dcval;
116
0
      wsptr[DCTSIZE * 5] = dcval;
117
0
      wsptr[DCTSIZE * 6] = dcval;
118
0
      wsptr[DCTSIZE * 7] = dcval;
119
120
0
      inptr++;                  /* advance pointers to next column */
121
0
      quantptr++;
122
0
      wsptr++;
123
0
      continue;
124
0
    }
125
126
    /* Even part */
127
128
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] * _0_125);
129
0
    tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] * _0_125);
130
0
    tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] * _0_125);
131
0
    tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] * _0_125);
132
133
0
    tmp10 = tmp0 + tmp2;        /* phase 3 */
134
0
    tmp11 = tmp0 - tmp2;
135
136
0
    tmp13 = tmp1 + tmp3;        /* phases 5-3 */
137
0
    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT)1.414213562) - tmp13; /* 2*c4 */
138
139
0
    tmp0 = tmp10 + tmp13;       /* phase 2 */
140
0
    tmp3 = tmp10 - tmp13;
141
0
    tmp1 = tmp11 + tmp12;
142
0
    tmp2 = tmp11 - tmp12;
143
144
    /* Odd part */
145
146
0
    tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] * _0_125);
147
0
    tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] * _0_125);
148
0
    tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] * _0_125);
149
0
    tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] * _0_125);
150
151
0
    z13 = tmp6 + tmp5;          /* phase 6 */
152
0
    z10 = tmp6 - tmp5;
153
0
    z11 = tmp4 + tmp7;
154
0
    z12 = tmp4 - tmp7;
155
156
0
    tmp7 = z11 + z13;           /* phase 5 */
157
0
    tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562); /* 2*c4 */
158
159
0
    z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */
160
0
    tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */
161
0
    tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */
162
163
0
    tmp6 = tmp12 - tmp7;        /* phase 2 */
164
0
    tmp5 = tmp11 - tmp6;
165
0
    tmp4 = tmp10 - tmp5;
166
167
0
    wsptr[DCTSIZE * 0] = tmp0 + tmp7;
168
0
    wsptr[DCTSIZE * 7] = tmp0 - tmp7;
169
0
    wsptr[DCTSIZE * 1] = tmp1 + tmp6;
170
0
    wsptr[DCTSIZE * 6] = tmp1 - tmp6;
171
0
    wsptr[DCTSIZE * 2] = tmp2 + tmp5;
172
0
    wsptr[DCTSIZE * 5] = tmp2 - tmp5;
173
0
    wsptr[DCTSIZE * 3] = tmp3 + tmp4;
174
0
    wsptr[DCTSIZE * 4] = tmp3 - tmp4;
175
176
0
    inptr++;                    /* advance pointers to next column */
177
0
    quantptr++;
178
0
    wsptr++;
179
0
  }
180
181
  /* Pass 2: process rows from work array, store into output array. */
182
183
0
  wsptr = workspace;
184
0
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
185
0
    outptr = output_buf[ctr] + output_col;
186
    /* Rows of zeroes can be exploited in the same way as we did with columns.
187
     * However, the column calculation has created many nonzero AC terms, so
188
     * the simplification applies less often (typically 5% to 10% of the time).
189
     * And testing floats for zero is relatively expensive, so we don't bother.
190
     */
191
192
    /* Even part */
193
194
    /* Apply signed->unsigned and prepare float->int conversion */
195
0
    z5 = wsptr[0] + ((FAST_FLOAT)CENTERJSAMPLE + (FAST_FLOAT)0.5);
196
0
    tmp10 = z5 + wsptr[4];
197
0
    tmp11 = z5 - wsptr[4];
198
199
0
    tmp13 = wsptr[2] + wsptr[6];
200
0
    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT)1.414213562) - tmp13;
201
202
0
    tmp0 = tmp10 + tmp13;
203
0
    tmp3 = tmp10 - tmp13;
204
0
    tmp1 = tmp11 + tmp12;
205
0
    tmp2 = tmp11 - tmp12;
206
207
    /* Odd part */
208
209
0
    z13 = wsptr[5] + wsptr[3];
210
0
    z10 = wsptr[5] - wsptr[3];
211
0
    z11 = wsptr[1] + wsptr[7];
212
0
    z12 = wsptr[1] - wsptr[7];
213
214
0
    tmp7 = z11 + z13;
215
0
    tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562);
216
217
0
    z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */
218
0
    tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */
219
0
    tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */
220
221
0
    tmp6 = tmp12 - tmp7;
222
0
    tmp5 = tmp11 - tmp6;
223
0
    tmp4 = tmp10 - tmp5;
224
225
    /* Final output stage: float->int conversion and range-limit */
226
227
0
    outptr[0] = range_limit[((int)(tmp0 + tmp7)) & RANGE_MASK];
228
0
    outptr[7] = range_limit[((int)(tmp0 - tmp7)) & RANGE_MASK];
229
0
    outptr[1] = range_limit[((int)(tmp1 + tmp6)) & RANGE_MASK];
230
0
    outptr[6] = range_limit[((int)(tmp1 - tmp6)) & RANGE_MASK];
231
0
    outptr[2] = range_limit[((int)(tmp2 + tmp5)) & RANGE_MASK];
232
0
    outptr[5] = range_limit[((int)(tmp2 - tmp5)) & RANGE_MASK];
233
0
    outptr[3] = range_limit[((int)(tmp3 + tmp4)) & RANGE_MASK];
234
0
    outptr[4] = range_limit[((int)(tmp3 - tmp4)) & RANGE_MASK];
235
236
0
    wsptr += DCTSIZE;           /* advance pointer to next row */
237
0
  }
238
0
}
239
240
#endif /* DCT_FLOAT_SUPPORTED */