Coverage Report

Created: 2024-05-18 12:36

/src/libjpeg-turbo.main/jquant1.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jquant1.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009, 2015, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains 1-pass color quantization (color mapping) routines.
12
 * These routines provide mapping to a fixed color map using equally spaced
13
 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
14
 */
15
16
#define JPEG_INTERNALS
17
#include "jinclude.h"
18
#include "jpeglib.h"
19
20
#ifdef QUANT_1PASS_SUPPORTED
21
22
23
/*
24
 * The main purpose of 1-pass quantization is to provide a fast, if not very
25
 * high quality, colormapped output capability.  A 2-pass quantizer usually
26
 * gives better visual quality; however, for quantized grayscale output this
27
 * quantizer is perfectly adequate.  Dithering is highly recommended with this
28
 * quantizer, though you can turn it off if you really want to.
29
 *
30
 * In 1-pass quantization the colormap must be chosen in advance of seeing the
31
 * image.  We use a map consisting of all combinations of Ncolors[i] color
32
 * values for the i'th component.  The Ncolors[] values are chosen so that
33
 * their product, the total number of colors, is no more than that requested.
34
 * (In most cases, the product will be somewhat less.)
35
 *
36
 * Since the colormap is orthogonal, the representative value for each color
37
 * component can be determined without considering the other components;
38
 * then these indexes can be combined into a colormap index by a standard
39
 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
40
 * can be precalculated and stored in the lookup table colorindex[].
41
 * colorindex[i][j] maps pixel value j in component i to the nearest
42
 * representative value (grid plane) for that component; this index is
43
 * multiplied by the array stride for component i, so that the
44
 * index of the colormap entry closest to a given pixel value is just
45
 *    sum( colorindex[component-number][pixel-component-value] )
46
 * Aside from being fast, this scheme allows for variable spacing between
47
 * representative values with no additional lookup cost.
48
 *
49
 * If gamma correction has been applied in color conversion, it might be wise
50
 * to adjust the color grid spacing so that the representative colors are
51
 * equidistant in linear space.  At this writing, gamma correction is not
52
 * implemented by jdcolor, so nothing is done here.
53
 */
54
55
56
/* Declarations for ordered dithering.
57
 *
58
 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
59
 * dithering is described in many references, for instance Dale Schumacher's
60
 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
61
 * In place of Schumacher's comparisons against a "threshold" value, we add a
62
 * "dither" value to the input pixel and then round the result to the nearest
63
 * output value.  The dither value is equivalent to (0.5 - threshold) times
64
 * the distance between output values.  For ordered dithering, we assume that
65
 * the output colors are equally spaced; if not, results will probably be
66
 * worse, since the dither may be too much or too little at a given point.
67
 *
68
 * The normal calculation would be to form pixel value + dither, range-limit
69
 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
70
 * We can skip the separate range-limiting step by extending the colorindex
71
 * table in both directions.
72
 */
73
74
0
#define ODITHER_SIZE  16        /* dimension of dither matrix */
75
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
76
0
#define ODITHER_CELLS  (ODITHER_SIZE * ODITHER_SIZE) /* # cells in matrix */
77
0
#define ODITHER_MASK  (ODITHER_SIZE - 1) /* mask for wrapping around
78
                                            counters */
79
80
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
81
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
82
83
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
84
  /* Bayer's order-4 dither array.  Generated by the code given in
85
   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
86
   * The values in this array must range from 0 to ODITHER_CELLS-1.
87
   */
88
  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
89
  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
90
  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
91
  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
92
  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
93
  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
94
  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
95
  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
96
  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
97
  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
98
  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
99
  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
100
  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
101
  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
102
  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
103
  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
104
};
105
106
107
/* Declarations for Floyd-Steinberg dithering.
108
 *
109
 * Errors are accumulated into the array fserrors[], at a resolution of
110
 * 1/16th of a pixel count.  The error at a given pixel is propagated
111
 * to its not-yet-processed neighbors using the standard F-S fractions,
112
 *              ...     (here)  7/16
113
 *              3/16    5/16    1/16
114
 * We work left-to-right on even rows, right-to-left on odd rows.
115
 *
116
 * We can get away with a single array (holding one row's worth of errors)
117
 * by using it to store the current row's errors at pixel columns not yet
118
 * processed, but the next row's errors at columns already processed.  We
119
 * need only a few extra variables to hold the errors immediately around the
120
 * current column.  (If we are lucky, those variables are in registers, but
121
 * even if not, they're probably cheaper to access than array elements are.)
122
 *
123
 * The fserrors[] array is indexed [component#][position].
124
 * We provide (#columns + 2) entries per component; the extra entry at each
125
 * end saves us from special-casing the first and last pixels.
126
 */
127
128
#if BITS_IN_JSAMPLE == 8
129
typedef INT16 FSERROR;          /* 16 bits should be enough */
130
typedef int LOCFSERROR;         /* use 'int' for calculation temps */
131
#else
132
typedef JLONG FSERROR;          /* may need more than 16 bits */
133
typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
134
#endif
135
136
typedef FSERROR *FSERRPTR;      /* pointer to error array */
137
138
139
/* Private subobject */
140
141
0
#define MAX_Q_COMPS  4          /* max components I can handle */
142
143
typedef struct {
144
  struct jpeg_color_quantizer pub; /* public fields */
145
146
  /* Initially allocated colormap is saved here */
147
  JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
148
  int sv_actual;                /* number of entries in use */
149
150
  JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
151
  /* colorindex[i][j] = index of color closest to pixel value j in component i,
152
   * premultiplied as described above.  Since colormap indexes must fit into
153
   * JSAMPLEs, the entries of this array will too.
154
   */
155
  boolean is_padded;            /* is the colorindex padded for odither? */
156
157
  int Ncolors[MAX_Q_COMPS];     /* # of values allocated to each component */
158
159
  /* Variables for ordered dithering */
160
  int row_index;                /* cur row's vertical index in dither matrix */
161
  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
162
163
  /* Variables for Floyd-Steinberg dithering */
164
  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
165
  boolean on_odd_row;           /* flag to remember which row we are on */
166
} my_cquantizer;
167
168
typedef my_cquantizer *my_cquantize_ptr;
169
170
171
/*
172
 * Policy-making subroutines for create_colormap and create_colorindex.
173
 * These routines determine the colormap to be used.  The rest of the module
174
 * only assumes that the colormap is orthogonal.
175
 *
176
 *  * select_ncolors decides how to divvy up the available colors
177
 *    among the components.
178
 *  * output_value defines the set of representative values for a component.
179
 *  * largest_input_value defines the mapping from input values to
180
 *    representative values for a component.
181
 * Note that the latter two routines may impose different policies for
182
 * different components, though this is not currently done.
183
 */
184
185
186
LOCAL(int)
187
select_ncolors(j_decompress_ptr cinfo, int Ncolors[])
188
/* Determine allocation of desired colors to components, */
189
/* and fill in Ncolors[] array to indicate choice. */
190
/* Return value is total number of colors (product of Ncolors[] values). */
191
0
{
192
0
  int nc = cinfo->out_color_components; /* number of color components */
193
0
  int max_colors = cinfo->desired_number_of_colors;
194
0
  int total_colors, iroot, i, j;
195
0
  boolean changed;
196
0
  long temp;
197
0
  int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
198
0
  RGB_order[0] = rgb_green[cinfo->out_color_space];
199
0
  RGB_order[1] = rgb_red[cinfo->out_color_space];
200
0
  RGB_order[2] = rgb_blue[cinfo->out_color_space];
201
202
  /* We can allocate at least the nc'th root of max_colors per component. */
203
  /* Compute floor(nc'th root of max_colors). */
204
0
  iroot = 1;
205
0
  do {
206
0
    iroot++;
207
0
    temp = iroot;               /* set temp = iroot ** nc */
208
0
    for (i = 1; i < nc; i++)
209
0
      temp *= iroot;
210
0
  } while (temp <= (long)max_colors); /* repeat till iroot exceeds root */
211
0
  iroot--;                      /* now iroot = floor(root) */
212
213
  /* Must have at least 2 color values per component */
214
0
  if (iroot < 2)
215
0
    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int)temp);
216
217
  /* Initialize to iroot color values for each component */
218
0
  total_colors = 1;
219
0
  for (i = 0; i < nc; i++) {
220
0
    Ncolors[i] = iroot;
221
0
    total_colors *= iroot;
222
0
  }
223
  /* We may be able to increment the count for one or more components without
224
   * exceeding max_colors, though we know not all can be incremented.
225
   * Sometimes, the first component can be incremented more than once!
226
   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
227
   * In RGB colorspace, try to increment G first, then R, then B.
228
   */
229
0
  do {
230
0
    changed = FALSE;
231
0
    for (i = 0; i < nc; i++) {
232
0
      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
233
      /* calculate new total_colors if Ncolors[j] is incremented */
234
0
      temp = total_colors / Ncolors[j];
235
0
      temp *= Ncolors[j] + 1;   /* done in long arith to avoid oflo */
236
0
      if (temp > (long)max_colors)
237
0
        break;                  /* won't fit, done with this pass */
238
0
      Ncolors[j]++;             /* OK, apply the increment */
239
0
      total_colors = (int)temp;
240
0
      changed = TRUE;
241
0
    }
242
0
  } while (changed);
243
244
0
  return total_colors;
245
0
}
246
247
248
LOCAL(int)
249
output_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
250
/* Return j'th output value, where j will range from 0 to maxj */
251
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
252
0
{
253
  /* We always provide values 0 and MAXJSAMPLE for each component;
254
   * any additional values are equally spaced between these limits.
255
   * (Forcing the upper and lower values to the limits ensures that
256
   * dithering can't produce a color outside the selected gamut.)
257
   */
258
0
  return (int)(((JLONG)j * MAXJSAMPLE + maxj / 2) / maxj);
259
0
}
260
261
262
LOCAL(int)
263
largest_input_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
264
/* Return largest input value that should map to j'th output value */
265
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
266
0
{
267
  /* Breakpoints are halfway between values returned by output_value */
268
0
  return (int)(((JLONG)(2 * j + 1) * MAXJSAMPLE + maxj) / (2 * maxj));
269
0
}
270
271
272
/*
273
 * Create the colormap.
274
 */
275
276
LOCAL(void)
277
create_colormap(j_decompress_ptr cinfo)
278
0
{
279
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
280
0
  JSAMPARRAY colormap;          /* Created colormap */
281
0
  int total_colors;             /* Number of distinct output colors */
282
0
  int i, j, k, nci, blksize, blkdist, ptr, val;
283
284
  /* Select number of colors for each component */
285
0
  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
286
287
  /* Report selected color counts */
288
0
  if (cinfo->out_color_components == 3)
289
0
    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors,
290
0
             cquantize->Ncolors[0], cquantize->Ncolors[1],
291
0
             cquantize->Ncolors[2]);
292
0
  else
293
0
    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
294
295
  /* Allocate and fill in the colormap. */
296
  /* The colors are ordered in the map in standard row-major order, */
297
  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
298
299
0
  colormap = (*cinfo->mem->alloc_sarray)
300
0
    ((j_common_ptr)cinfo, JPOOL_IMAGE,
301
0
     (JDIMENSION)total_colors, (JDIMENSION)cinfo->out_color_components);
302
303
  /* blksize is number of adjacent repeated entries for a component */
304
  /* blkdist is distance between groups of identical entries for a component */
305
0
  blkdist = total_colors;
306
307
0
  for (i = 0; i < cinfo->out_color_components; i++) {
308
    /* fill in colormap entries for i'th color component */
309
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
310
0
    blksize = blkdist / nci;
311
0
    for (j = 0; j < nci; j++) {
312
      /* Compute j'th output value (out of nci) for component */
313
0
      val = output_value(cinfo, i, j, nci - 1);
314
      /* Fill in all colormap entries that have this value of this component */
315
0
      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
316
        /* fill in blksize entries beginning at ptr */
317
0
        for (k = 0; k < blksize; k++)
318
0
          colormap[i][ptr + k] = (JSAMPLE)val;
319
0
      }
320
0
    }
321
0
    blkdist = blksize;          /* blksize of this color is blkdist of next */
322
0
  }
323
324
  /* Save the colormap in private storage,
325
   * where it will survive color quantization mode changes.
326
   */
327
0
  cquantize->sv_colormap = colormap;
328
0
  cquantize->sv_actual = total_colors;
329
0
}
330
331
332
/*
333
 * Create the color index table.
334
 */
335
336
LOCAL(void)
337
create_colorindex(j_decompress_ptr cinfo)
338
0
{
339
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
340
0
  JSAMPROW indexptr;
341
0
  int i, j, k, nci, blksize, val, pad;
342
343
  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
344
   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
345
   * This is not necessary in the other dithering modes.  However, we
346
   * flag whether it was done in case user changes dithering mode.
347
   */
348
0
  if (cinfo->dither_mode == JDITHER_ORDERED) {
349
0
    pad = MAXJSAMPLE * 2;
350
0
    cquantize->is_padded = TRUE;
351
0
  } else {
352
0
    pad = 0;
353
0
    cquantize->is_padded = FALSE;
354
0
  }
355
356
0
  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
357
0
    ((j_common_ptr)cinfo, JPOOL_IMAGE,
358
0
     (JDIMENSION)(MAXJSAMPLE + 1 + pad),
359
0
     (JDIMENSION)cinfo->out_color_components);
360
361
  /* blksize is number of adjacent repeated entries for a component */
362
0
  blksize = cquantize->sv_actual;
363
364
0
  for (i = 0; i < cinfo->out_color_components; i++) {
365
    /* fill in colorindex entries for i'th color component */
366
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
367
0
    blksize = blksize / nci;
368
369
    /* adjust colorindex pointers to provide padding at negative indexes. */
370
0
    if (pad)
371
0
      cquantize->colorindex[i] += MAXJSAMPLE;
372
373
    /* in loop, val = index of current output value, */
374
    /* and k = largest j that maps to current val */
375
0
    indexptr = cquantize->colorindex[i];
376
0
    val = 0;
377
0
    k = largest_input_value(cinfo, i, 0, nci - 1);
378
0
    for (j = 0; j <= MAXJSAMPLE; j++) {
379
0
      while (j > k)             /* advance val if past boundary */
380
0
        k = largest_input_value(cinfo, i, ++val, nci - 1);
381
      /* premultiply so that no multiplication needed in main processing */
382
0
      indexptr[j] = (JSAMPLE)(val * blksize);
383
0
    }
384
    /* Pad at both ends if necessary */
385
0
    if (pad)
386
0
      for (j = 1; j <= MAXJSAMPLE; j++) {
387
0
        indexptr[-j] = indexptr[0];
388
0
        indexptr[MAXJSAMPLE + j] = indexptr[MAXJSAMPLE];
389
0
      }
390
0
  }
391
0
}
392
393
394
/*
395
 * Create an ordered-dither array for a component having ncolors
396
 * distinct output values.
397
 */
398
399
LOCAL(ODITHER_MATRIX_PTR)
400
make_odither_array(j_decompress_ptr cinfo, int ncolors)
401
0
{
402
0
  ODITHER_MATRIX_PTR odither;
403
0
  int j, k;
404
0
  JLONG num, den;
405
406
0
  odither = (ODITHER_MATRIX_PTR)
407
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
408
0
                                sizeof(ODITHER_MATRIX));
409
  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
410
   * Hence the dither value for the matrix cell with fill order f
411
   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
412
   * On 16-bit-int machine, be careful to avoid overflow.
413
   */
414
0
  den = 2 * ODITHER_CELLS * ((JLONG)(ncolors - 1));
415
0
  for (j = 0; j < ODITHER_SIZE; j++) {
416
0
    for (k = 0; k < ODITHER_SIZE; k++) {
417
0
      num = ((JLONG)(ODITHER_CELLS - 1 -
418
0
                     2 * ((int)base_dither_matrix[j][k]))) * MAXJSAMPLE;
419
      /* Ensure round towards zero despite C's lack of consistency
420
       * about rounding negative values in integer division...
421
       */
422
0
      odither[j][k] = (int)(num < 0 ? -((-num) / den) : num / den);
423
0
    }
424
0
  }
425
0
  return odither;
426
0
}
427
428
429
/*
430
 * Create the ordered-dither tables.
431
 * Components having the same number of representative colors may
432
 * share a dither table.
433
 */
434
435
LOCAL(void)
436
create_odither_tables(j_decompress_ptr cinfo)
437
0
{
438
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
439
0
  ODITHER_MATRIX_PTR odither;
440
0
  int i, j, nci;
441
442
0
  for (i = 0; i < cinfo->out_color_components; i++) {
443
0
    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
444
0
    odither = NULL;             /* search for matching prior component */
445
0
    for (j = 0; j < i; j++) {
446
0
      if (nci == cquantize->Ncolors[j]) {
447
0
        odither = cquantize->odither[j];
448
0
        break;
449
0
      }
450
0
    }
451
0
    if (odither == NULL)        /* need a new table? */
452
0
      odither = make_odither_array(cinfo, nci);
453
0
    cquantize->odither[i] = odither;
454
0
  }
455
0
}
456
457
458
/*
459
 * Map some rows of pixels to the output colormapped representation.
460
 */
461
462
METHODDEF(void)
463
color_quantize(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
464
               JSAMPARRAY output_buf, int num_rows)
465
/* General case, no dithering */
466
0
{
467
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
468
0
  JSAMPARRAY colorindex = cquantize->colorindex;
469
0
  register int pixcode, ci;
470
0
  register JSAMPROW ptrin, ptrout;
471
0
  int row;
472
0
  JDIMENSION col;
473
0
  JDIMENSION width = cinfo->output_width;
474
0
  register int nc = cinfo->out_color_components;
475
476
0
  for (row = 0; row < num_rows; row++) {
477
0
    ptrin = input_buf[row];
478
0
    ptrout = output_buf[row];
479
0
    for (col = width; col > 0; col--) {
480
0
      pixcode = 0;
481
0
      for (ci = 0; ci < nc; ci++) {
482
0
        pixcode += colorindex[ci][*ptrin++];
483
0
      }
484
0
      *ptrout++ = (JSAMPLE)pixcode;
485
0
    }
486
0
  }
487
0
}
488
489
490
METHODDEF(void)
491
color_quantize3(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
492
                JSAMPARRAY output_buf, int num_rows)
493
/* Fast path for out_color_components==3, no dithering */
494
0
{
495
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
496
0
  register int pixcode;
497
0
  register JSAMPROW ptrin, ptrout;
498
0
  JSAMPROW colorindex0 = cquantize->colorindex[0];
499
0
  JSAMPROW colorindex1 = cquantize->colorindex[1];
500
0
  JSAMPROW colorindex2 = cquantize->colorindex[2];
501
0
  int row;
502
0
  JDIMENSION col;
503
0
  JDIMENSION width = cinfo->output_width;
504
505
0
  for (row = 0; row < num_rows; row++) {
506
0
    ptrin = input_buf[row];
507
0
    ptrout = output_buf[row];
508
0
    for (col = width; col > 0; col--) {
509
0
      pixcode  = colorindex0[*ptrin++];
510
0
      pixcode += colorindex1[*ptrin++];
511
0
      pixcode += colorindex2[*ptrin++];
512
0
      *ptrout++ = (JSAMPLE)pixcode;
513
0
    }
514
0
  }
515
0
}
516
517
518
METHODDEF(void)
519
quantize_ord_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
520
                    JSAMPARRAY output_buf, int num_rows)
521
/* General case, with ordered dithering */
522
0
{
523
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
524
0
  register JSAMPROW input_ptr;
525
0
  register JSAMPROW output_ptr;
526
0
  JSAMPROW colorindex_ci;
527
0
  int *dither;                  /* points to active row of dither matrix */
528
0
  int row_index, col_index;     /* current indexes into dither matrix */
529
0
  int nc = cinfo->out_color_components;
530
0
  int ci;
531
0
  int row;
532
0
  JDIMENSION col;
533
0
  JDIMENSION width = cinfo->output_width;
534
535
0
  for (row = 0; row < num_rows; row++) {
536
    /* Initialize output values to 0 so can process components separately */
537
0
    jzero_far((void *)output_buf[row], (size_t)(width * sizeof(JSAMPLE)));
538
0
    row_index = cquantize->row_index;
539
0
    for (ci = 0; ci < nc; ci++) {
540
0
      input_ptr = input_buf[row] + ci;
541
0
      output_ptr = output_buf[row];
542
0
      colorindex_ci = cquantize->colorindex[ci];
543
0
      dither = cquantize->odither[ci][row_index];
544
0
      col_index = 0;
545
546
0
      for (col = width; col > 0; col--) {
547
        /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
548
         * select output value, accumulate into output code for this pixel.
549
         * Range-limiting need not be done explicitly, as we have extended
550
         * the colorindex table to produce the right answers for out-of-range
551
         * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
552
         * required amount of padding.
553
         */
554
0
        *output_ptr +=
555
0
          colorindex_ci[*input_ptr + dither[col_index]];
556
0
        input_ptr += nc;
557
0
        output_ptr++;
558
0
        col_index = (col_index + 1) & ODITHER_MASK;
559
0
      }
560
0
    }
561
    /* Advance row index for next row */
562
0
    row_index = (row_index + 1) & ODITHER_MASK;
563
0
    cquantize->row_index = row_index;
564
0
  }
565
0
}
566
567
568
METHODDEF(void)
569
quantize3_ord_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
570
                     JSAMPARRAY output_buf, int num_rows)
571
/* Fast path for out_color_components==3, with ordered dithering */
572
0
{
573
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
574
0
  register int pixcode;
575
0
  register JSAMPROW input_ptr;
576
0
  register JSAMPROW output_ptr;
577
0
  JSAMPROW colorindex0 = cquantize->colorindex[0];
578
0
  JSAMPROW colorindex1 = cquantize->colorindex[1];
579
0
  JSAMPROW colorindex2 = cquantize->colorindex[2];
580
0
  int *dither0;                 /* points to active row of dither matrix */
581
0
  int *dither1;
582
0
  int *dither2;
583
0
  int row_index, col_index;     /* current indexes into dither matrix */
584
0
  int row;
585
0
  JDIMENSION col;
586
0
  JDIMENSION width = cinfo->output_width;
587
588
0
  for (row = 0; row < num_rows; row++) {
589
0
    row_index = cquantize->row_index;
590
0
    input_ptr = input_buf[row];
591
0
    output_ptr = output_buf[row];
592
0
    dither0 = cquantize->odither[0][row_index];
593
0
    dither1 = cquantize->odither[1][row_index];
594
0
    dither2 = cquantize->odither[2][row_index];
595
0
    col_index = 0;
596
597
0
    for (col = width; col > 0; col--) {
598
0
      pixcode  = colorindex0[(*input_ptr++) + dither0[col_index]];
599
0
      pixcode += colorindex1[(*input_ptr++) + dither1[col_index]];
600
0
      pixcode += colorindex2[(*input_ptr++) + dither2[col_index]];
601
0
      *output_ptr++ = (JSAMPLE)pixcode;
602
0
      col_index = (col_index + 1) & ODITHER_MASK;
603
0
    }
604
0
    row_index = (row_index + 1) & ODITHER_MASK;
605
0
    cquantize->row_index = row_index;
606
0
  }
607
0
}
608
609
610
METHODDEF(void)
611
quantize_fs_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
612
                   JSAMPARRAY output_buf, int num_rows)
613
/* General case, with Floyd-Steinberg dithering */
614
0
{
615
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
616
0
  register LOCFSERROR cur;      /* current error or pixel value */
617
0
  LOCFSERROR belowerr;          /* error for pixel below cur */
618
0
  LOCFSERROR bpreverr;          /* error for below/prev col */
619
0
  LOCFSERROR bnexterr;          /* error for below/next col */
620
0
  LOCFSERROR delta;
621
0
  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
622
0
  register JSAMPROW input_ptr;
623
0
  register JSAMPROW output_ptr;
624
0
  JSAMPROW colorindex_ci;
625
0
  JSAMPROW colormap_ci;
626
0
  int pixcode;
627
0
  int nc = cinfo->out_color_components;
628
0
  int dir;                      /* 1 for left-to-right, -1 for right-to-left */
629
0
  int dirnc;                    /* dir * nc */
630
0
  int ci;
631
0
  int row;
632
0
  JDIMENSION col;
633
0
  JDIMENSION width = cinfo->output_width;
634
0
  JSAMPLE *range_limit = cinfo->sample_range_limit;
635
0
  SHIFT_TEMPS
636
637
0
  for (row = 0; row < num_rows; row++) {
638
    /* Initialize output values to 0 so can process components separately */
639
0
    jzero_far((void *)output_buf[row], (size_t)(width * sizeof(JSAMPLE)));
640
0
    for (ci = 0; ci < nc; ci++) {
641
0
      input_ptr = input_buf[row] + ci;
642
0
      output_ptr = output_buf[row];
643
0
      if (cquantize->on_odd_row) {
644
        /* work right to left in this row */
645
0
        input_ptr += (width - 1) * nc; /* so point to rightmost pixel */
646
0
        output_ptr += width - 1;
647
0
        dir = -1;
648
0
        dirnc = -nc;
649
0
        errorptr = cquantize->fserrors[ci] + (width + 1); /* => entry after last column */
650
0
      } else {
651
        /* work left to right in this row */
652
0
        dir = 1;
653
0
        dirnc = nc;
654
0
        errorptr = cquantize->fserrors[ci]; /* => entry before first column */
655
0
      }
656
0
      colorindex_ci = cquantize->colorindex[ci];
657
0
      colormap_ci = cquantize->sv_colormap[ci];
658
      /* Preset error values: no error propagated to first pixel from left */
659
0
      cur = 0;
660
      /* and no error propagated to row below yet */
661
0
      belowerr = bpreverr = 0;
662
663
0
      for (col = width; col > 0; col--) {
664
        /* cur holds the error propagated from the previous pixel on the
665
         * current line.  Add the error propagated from the previous line
666
         * to form the complete error correction term for this pixel, and
667
         * round the error term (which is expressed * 16) to an integer.
668
         * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
669
         * for either sign of the error value.
670
         * Note: errorptr points to *previous* column's array entry.
671
         */
672
0
        cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
673
        /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
674
         * The maximum error is +- MAXJSAMPLE; this sets the required size
675
         * of the range_limit array.
676
         */
677
0
        cur += *input_ptr;
678
0
        cur = range_limit[cur];
679
        /* Select output value, accumulate into output code for this pixel */
680
0
        pixcode = colorindex_ci[cur];
681
0
        *output_ptr += (JSAMPLE)pixcode;
682
        /* Compute actual representation error at this pixel */
683
        /* Note: we can do this even though we don't have the final */
684
        /* pixel code, because the colormap is orthogonal. */
685
0
        cur -= colormap_ci[pixcode];
686
        /* Compute error fractions to be propagated to adjacent pixels.
687
         * Add these into the running sums, and simultaneously shift the
688
         * next-line error sums left by 1 column.
689
         */
690
0
        bnexterr = cur;
691
0
        delta = cur * 2;
692
0
        cur += delta;           /* form error * 3 */
693
0
        errorptr[0] = (FSERROR)(bpreverr + cur);
694
0
        cur += delta;           /* form error * 5 */
695
0
        bpreverr = belowerr + cur;
696
0
        belowerr = bnexterr;
697
0
        cur += delta;           /* form error * 7 */
698
        /* At this point cur contains the 7/16 error value to be propagated
699
         * to the next pixel on the current line, and all the errors for the
700
         * next line have been shifted over. We are therefore ready to move on.
701
         */
702
0
        input_ptr += dirnc;     /* advance input ptr to next column */
703
0
        output_ptr += dir;      /* advance output ptr to next column */
704
0
        errorptr += dir;        /* advance errorptr to current column */
705
0
      }
706
      /* Post-loop cleanup: we must unload the final error value into the
707
       * final fserrors[] entry.  Note we need not unload belowerr because
708
       * it is for the dummy column before or after the actual array.
709
       */
710
0
      errorptr[0] = (FSERROR)bpreverr; /* unload prev err into array */
711
0
    }
712
0
    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
713
0
  }
714
0
}
715
716
717
/*
718
 * Allocate workspace for Floyd-Steinberg errors.
719
 */
720
721
LOCAL(void)
722
alloc_fs_workspace(j_decompress_ptr cinfo)
723
0
{
724
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
725
0
  size_t arraysize;
726
0
  int i;
727
728
0
  arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
729
0
  for (i = 0; i < cinfo->out_color_components; i++) {
730
0
    cquantize->fserrors[i] = (FSERRPTR)
731
0
      (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
732
0
  }
733
0
}
734
735
736
/*
737
 * Initialize for one-pass color quantization.
738
 */
739
740
METHODDEF(void)
741
start_pass_1_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
742
0
{
743
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
744
0
  size_t arraysize;
745
0
  int i;
746
747
  /* Install my colormap. */
748
0
  cinfo->colormap = cquantize->sv_colormap;
749
0
  cinfo->actual_number_of_colors = cquantize->sv_actual;
750
751
  /* Initialize for desired dithering mode. */
752
0
  switch (cinfo->dither_mode) {
753
0
  case JDITHER_NONE:
754
0
    if (cinfo->out_color_components == 3)
755
0
      cquantize->pub.color_quantize = color_quantize3;
756
0
    else
757
0
      cquantize->pub.color_quantize = color_quantize;
758
0
    break;
759
0
  case JDITHER_ORDERED:
760
0
    if (cinfo->out_color_components == 3)
761
0
      cquantize->pub.color_quantize = quantize3_ord_dither;
762
0
    else
763
0
      cquantize->pub.color_quantize = quantize_ord_dither;
764
0
    cquantize->row_index = 0;   /* initialize state for ordered dither */
765
    /* If user changed to ordered dither from another mode,
766
     * we must recreate the color index table with padding.
767
     * This will cost extra space, but probably isn't very likely.
768
     */
769
0
    if (!cquantize->is_padded)
770
0
      create_colorindex(cinfo);
771
    /* Create ordered-dither tables if we didn't already. */
772
0
    if (cquantize->odither[0] == NULL)
773
0
      create_odither_tables(cinfo);
774
0
    break;
775
0
  case JDITHER_FS:
776
0
    cquantize->pub.color_quantize = quantize_fs_dither;
777
0
    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
778
    /* Allocate Floyd-Steinberg workspace if didn't already. */
779
0
    if (cquantize->fserrors[0] == NULL)
780
0
      alloc_fs_workspace(cinfo);
781
    /* Initialize the propagated errors to zero. */
782
0
    arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
783
0
    for (i = 0; i < cinfo->out_color_components; i++)
784
0
      jzero_far((void *)cquantize->fserrors[i], arraysize);
785
0
    break;
786
0
  default:
787
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
788
0
    break;
789
0
  }
790
0
}
791
792
793
/*
794
 * Finish up at the end of the pass.
795
 */
796
797
METHODDEF(void)
798
finish_pass_1_quant(j_decompress_ptr cinfo)
799
0
{
800
  /* no work in 1-pass case */
801
0
}
802
803
804
/*
805
 * Switch to a new external colormap between output passes.
806
 * Shouldn't get to this module!
807
 */
808
809
METHODDEF(void)
810
new_color_map_1_quant(j_decompress_ptr cinfo)
811
0
{
812
0
  ERREXIT(cinfo, JERR_MODE_CHANGE);
813
0
}
814
815
816
/*
817
 * Module initialization routine for 1-pass color quantization.
818
 */
819
820
GLOBAL(void)
821
jinit_1pass_quantizer(j_decompress_ptr cinfo)
822
0
{
823
0
  my_cquantize_ptr cquantize;
824
825
0
  cquantize = (my_cquantize_ptr)
826
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
0
                                sizeof(my_cquantizer));
828
0
  cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
829
0
  cquantize->pub.start_pass = start_pass_1_quant;
830
0
  cquantize->pub.finish_pass = finish_pass_1_quant;
831
0
  cquantize->pub.new_color_map = new_color_map_1_quant;
832
0
  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
833
0
  cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
834
835
  /* Make sure my internal arrays won't overflow */
836
0
  if (cinfo->out_color_components > MAX_Q_COMPS)
837
0
    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
838
  /* Make sure colormap indexes can be represented by JSAMPLEs */
839
0
  if (cinfo->desired_number_of_colors > (MAXJSAMPLE + 1))
840
0
    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE + 1);
841
842
  /* Create the colormap and color index table. */
843
0
  create_colormap(cinfo);
844
0
  create_colorindex(cinfo);
845
846
  /* Allocate Floyd-Steinberg workspace now if requested.
847
   * We do this now since it may affect the memory manager's space
848
   * calculations.  If the user changes to FS dither mode in a later pass, we
849
   * will allocate the space then, and will possibly overrun the
850
   * max_memory_to_use setting.
851
   */
852
0
  if (cinfo->dither_mode == JDITHER_FS)
853
0
    alloc_fs_workspace(cinfo);
854
0
}
855
856
#endif /* QUANT_1PASS_SUPPORTED */