Coverage Report

Created: 2024-06-06 05:25

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * Lossless JPEG Modifications:
7
 * Copyright (C) 1999, Ken Murchison.
8
 * libjpeg-turbo Modifications:
9
 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10
 * Copyright (C) 2018, Matthias Räncker.
11
 * For conditions of distribution and use, see the accompanying README.ijg
12
 * file.
13
 *
14
 * This file contains Huffman entropy decoding routines.
15
 *
16
 * Much of the complexity here has to do with supporting input suspension.
17
 * If the data source module demands suspension, we want to be able to back
18
 * up to the start of the current MCU.  To do this, we copy state variables
19
 * into local working storage, and update them back to the permanent
20
 * storage only upon successful completion of an MCU.
21
 *
22
 * NOTE: All referenced figures are from
23
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdhuff.h"             /* Declarations shared with jd*huff.c */
30
#include "jpegapicomp.h"
31
#include "jstdhuff.c"
32
33
34
/*
35
 * Expanded entropy decoder object for Huffman decoding.
36
 *
37
 * The savable_state subrecord contains fields that change within an MCU,
38
 * but must not be updated permanently until we complete the MCU.
39
 */
40
41
typedef struct {
42
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
43
} savable_state;
44
45
typedef struct {
46
  struct jpeg_entropy_decoder pub; /* public fields */
47
48
  /* These fields are loaded into local variables at start of each MCU.
49
   * In case of suspension, we exit WITHOUT updating them.
50
   */
51
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
52
  savable_state saved;          /* Other state at start of MCU */
53
54
  /* These fields are NOT loaded into local working state. */
55
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
56
57
  /* Pointers to derived tables (these workspaces have image lifespan) */
58
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
60
61
  /* Precalculated info set up by start_pass for use in decode_mcu: */
62
63
  /* Pointers to derived tables to be used for each block within an MCU */
64
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66
  /* Whether we care about the DC and AC coefficient values for each block */
67
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69
} huff_entropy_decoder;
70
71
typedef huff_entropy_decoder *huff_entropy_ptr;
72
73
74
/*
75
 * Initialize for a Huffman-compressed scan.
76
 */
77
78
METHODDEF(void)
79
start_pass_huff_decoder(j_decompress_ptr cinfo)
80
761k
{
81
761k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82
761k
  int ci, blkn, dctbl, actbl;
83
761k
  d_derived_tbl **pdtbl;
84
761k
  jpeg_component_info *compptr;
85
86
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87
   * This ought to be an error condition, but we make it a warning because
88
   * there are some baseline files out there with all zeroes in these bytes.
89
   */
90
761k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91
761k
      cinfo->Ah != 0 || cinfo->Al != 0)
92
733k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
93
94
1.59M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95
830k
    compptr = cinfo->cur_comp_info[ci];
96
830k
    dctbl = compptr->dc_tbl_no;
97
830k
    actbl = compptr->ac_tbl_no;
98
    /* Compute derived values for Huffman tables */
99
    /* We may do this more than once for a table, but it's not expensive */
100
830k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101
830k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102
830k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103
830k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104
    /* Initialize DC predictions to 0 */
105
830k
    entropy->saved.last_dc_val[ci] = 0;
106
830k
  }
107
108
  /* Precalculate decoding info for each block in an MCU of this scan */
109
1.72M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110
966k
    ci = cinfo->MCU_membership[blkn];
111
966k
    compptr = cinfo->cur_comp_info[ci];
112
    /* Precalculate which table to use for each block */
113
966k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114
966k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115
    /* Decide whether we really care about the coefficient values */
116
966k
    if (compptr->component_needed) {
117
957k
      entropy->dc_needed[blkn] = TRUE;
118
      /* we don't need the ACs if producing a 1/8th-size image */
119
957k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
120
957k
    } else {
121
9.47k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
122
9.47k
    }
123
966k
  }
124
125
  /* Initialize bitread state variables */
126
761k
  entropy->bitstate.bits_left = 0;
127
761k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128
761k
  entropy->pub.insufficient_data = FALSE;
129
130
  /* Initialize restart counter */
131
761k
  entropy->restarts_to_go = cinfo->restart_interval;
132
761k
}
133
134
135
/*
136
 * Compute the derived values for a Huffman table.
137
 * This routine also performs some validation checks on the table.
138
 *
139
 * Note this is also used by jdphuff.c and jdlhuff.c.
140
 */
141
142
GLOBAL(void)
143
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144
                        d_derived_tbl **pdtbl)
145
2.26M
{
146
2.26M
  JHUFF_TBL *htbl;
147
2.26M
  d_derived_tbl *dtbl;
148
2.26M
  int p, i, l, si, numsymbols;
149
2.26M
  int lookbits, ctr;
150
2.26M
  char huffsize[257];
151
2.26M
  unsigned int huffcode[257];
152
2.26M
  unsigned int code;
153
154
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
155
   * paralleling the order of the symbols themselves in htbl->huffval[].
156
   */
157
158
  /* Find the input Huffman table */
159
2.26M
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160
1.94k
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
161
2.26M
  htbl =
162
2.26M
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
163
2.26M
  if (htbl == NULL)
164
205
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
165
166
  /* Allocate a workspace if we haven't already done so. */
167
2.26M
  if (*pdtbl == NULL)
168
213k
    *pdtbl = (d_derived_tbl *)
169
213k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170
213k
                                  sizeof(d_derived_tbl));
171
2.26M
  dtbl = *pdtbl;
172
2.26M
  dtbl->pub = htbl;             /* fill in back link */
173
174
  /* Figure C.1: make table of Huffman code length for each symbol */
175
176
2.26M
  p = 0;
177
38.4M
  for (l = 1; l <= 16; l++) {
178
36.1M
    i = (int)htbl->bits[l];
179
36.1M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
180
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
181
68.3M
    while (i--)
182
32.1M
      huffsize[p++] = (char)l;
183
36.1M
  }
184
2.26M
  huffsize[p] = 0;
185
2.26M
  numsymbols = p;
186
187
  /* Figure C.2: generate the codes themselves */
188
  /* We also validate that the counts represent a legal Huffman code tree. */
189
190
2.26M
  code = 0;
191
2.26M
  si = huffsize[0];
192
2.26M
  p = 0;
193
16.4M
  while (huffsize[p]) {
194
46.3M
    while (((int)huffsize[p]) == si) {
195
32.1M
      huffcode[p++] = code;
196
32.1M
      code++;
197
32.1M
    }
198
    /* code is now 1 more than the last code used for codelength si; but
199
     * it must still fit in si bits, since no code is allowed to be all ones.
200
     */
201
14.1M
    if (((JLONG)code) >= (((JLONG)1) << si))
202
122
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
203
14.1M
    code <<= 1;
204
14.1M
    si++;
205
14.1M
  }
206
207
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
208
209
2.26M
  p = 0;
210
38.4M
  for (l = 1; l <= 16; l++) {
211
36.1M
    if (htbl->bits[l]) {
212
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213
       * minus the minimum code of length l
214
       */
215
11.9M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
216
11.9M
      p += htbl->bits[l];
217
11.9M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
218
24.2M
    } else {
219
24.2M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
220
24.2M
    }
221
36.1M
  }
222
2.26M
  dtbl->valoffset[17] = 0;
223
2.26M
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
224
225
  /* Compute lookahead tables to speed up decoding.
226
   * First we set all the table entries to 0, indicating "too long";
227
   * then we iterate through the Huffman codes that are short enough and
228
   * fill in all the entries that correspond to bit sequences starting
229
   * with that code.
230
   */
231
232
581M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233
578M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
234
235
2.26M
  p = 0;
236
20.3M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237
43.2M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239
      /* Generate left-justified code followed by all possible bit sequences */
240
25.1M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241
520M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242
495M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
243
495M
        lookbits++;
244
495M
      }
245
25.1M
    }
246
18.0M
  }
247
248
  /* Validate symbols as being reasonable.
249
   * For AC tables, we make no check, but accept all byte values 0..255.
250
   * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251
   * and 0..16 in lossless mode.  (Tighter bounds could be applied depending on
252
   * the data depth and mode, but this is sufficient to ensure safe decoding.)
253
   */
254
2.26M
  if (isDC) {
255
9.01M
    for (i = 0; i < numsymbols; i++) {
256
7.78M
      int sym = htbl->huffval[i];
257
7.78M
      if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258
755
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
259
7.78M
    }
260
1.22M
  }
261
2.26M
}
262
263
264
/*
265
 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266
 * See jdhuff.h for info about usage.
267
 * Note: current values of get_buffer and bits_left are passed as parameters,
268
 * but are returned in the corresponding fields of the state struct.
269
 *
270
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271
 * of get_buffer to be used.  (On machines with wider words, an even larger
272
 * buffer could be used.)  However, on some machines 32-bit shifts are
273
 * quite slow and take time proportional to the number of places shifted.
274
 * (This is true with most PC compilers, for instance.)  In this case it may
275
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
276
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
277
 */
278
279
#ifdef SLOW_SHIFT_32
280
#define MIN_GET_BITS  15        /* minimum allowable value */
281
#else
282
555M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
283
#endif
284
285
286
GLOBAL(boolean)
287
jpeg_fill_bit_buffer(bitread_working_state *state,
288
                     register bit_buf_type get_buffer, register int bits_left,
289
                     int nbits)
290
/* Load up the bit buffer to a depth of at least nbits */
291
412M
{
292
  /* Copy heavily used state fields into locals (hopefully registers) */
293
412M
  register const JOCTET *next_input_byte = state->next_input_byte;
294
412M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
295
412M
  j_decompress_ptr cinfo = state->cinfo;
296
297
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298
  /* (It is assumed that no request will be for more than that many bits.) */
299
  /* We fail to do so only if we hit a marker or are forced to suspend. */
300
301
412M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
302
359M
    while (bits_left < MIN_GET_BITS) {
303
315M
      register int c;
304
305
      /* Attempt to read a byte */
306
315M
      if (bytes_in_buffer == 0) {
307
10.6k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
308
0
          return FALSE;
309
10.6k
        next_input_byte = cinfo->src->next_input_byte;
310
10.6k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
311
10.6k
      }
312
315M
      bytes_in_buffer--;
313
315M
      c = *next_input_byte++;
314
315
      /* If it's 0xFF, check and discard stuffed zero byte */
316
315M
      if (c == 0xFF) {
317
        /* Loop here to discard any padding FF's on terminating marker,
318
         * so that we can save a valid unread_marker value.  NOTE: we will
319
         * accept multiple FF's followed by a 0 as meaning a single FF data
320
         * byte.  This data pattern is not valid according to the standard.
321
         */
322
2.20M
        do {
323
2.20M
          if (bytes_in_buffer == 0) {
324
290
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
325
0
              return FALSE;
326
290
            next_input_byte = cinfo->src->next_input_byte;
327
290
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
328
290
          }
329
2.20M
          bytes_in_buffer--;
330
2.20M
          c = *next_input_byte++;
331
2.20M
        } while (c == 0xFF);
332
333
2.01M
        if (c == 0) {
334
          /* Found FF/00, which represents an FF data byte */
335
965k
          c = 0xFF;
336
1.05M
        } else {
337
          /* Oops, it's actually a marker indicating end of compressed data.
338
           * Save the marker code for later use.
339
           * Fine point: it might appear that we should save the marker into
340
           * bitread working state, not straight into permanent state.  But
341
           * once we have hit a marker, we cannot need to suspend within the
342
           * current MCU, because we will read no more bytes from the data
343
           * source.  So it is OK to update permanent state right away.
344
           */
345
1.05M
          cinfo->unread_marker = c;
346
          /* See if we need to insert some fake zero bits. */
347
1.05M
          goto no_more_bytes;
348
1.05M
        }
349
2.01M
      }
350
351
      /* OK, load c into get_buffer */
352
314M
      get_buffer = (get_buffer << 8) | c;
353
314M
      bits_left += 8;
354
314M
    } /* end while */
355
367M
  } else {
356
368M
no_more_bytes:
357
    /* We get here if we've read the marker that terminates the compressed
358
     * data segment.  There should be enough bits in the buffer register
359
     * to satisfy the request; if so, no problem.
360
     */
361
368M
    if (nbits > bits_left) {
362
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
363
       * the data stream, so that we can produce some kind of image.
364
       * We use a nonvolatile flag to ensure that only one warning message
365
       * appears per data segment.
366
       */
367
98.1M
      if (!cinfo->entropy->insufficient_data) {
368
1.10M
        WARNMS(cinfo, JWRN_HIT_MARKER);
369
1.10M
        cinfo->entropy->insufficient_data = TRUE;
370
1.10M
      }
371
      /* Fill the buffer with zero bits */
372
98.1M
      get_buffer <<= MIN_GET_BITS - bits_left;
373
98.1M
      bits_left = MIN_GET_BITS;
374
98.1M
    }
375
368M
  }
376
377
  /* Unload the local registers */
378
412M
  state->next_input_byte = next_input_byte;
379
412M
  state->bytes_in_buffer = bytes_in_buffer;
380
412M
  state->get_buffer = get_buffer;
381
412M
  state->bits_left = bits_left;
382
383
412M
  return TRUE;
384
412M
}
385
386
387
/* Macro version of the above, which performs much better but does not
388
   handle markers.  We have to hand off any blocks with markers to the
389
   slower routines. */
390
391
116M
#define GET_BYTE { \
392
116M
  register int c0, c1; \
393
116M
  c0 = *buffer++; \
394
116M
  c1 = *buffer; \
395
116M
  /* Pre-execute most common case */ \
396
116M
  get_buffer = (get_buffer << 8) | c0; \
397
116M
  bits_left += 8; \
398
116M
  if (c0 == 0xFF) { \
399
6.98M
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
400
6.98M
    buffer++; \
401
6.98M
    if (c1 != 0) { \
402
6.47M
      /* Oops, it's actually a marker indicating end of compressed data. */ \
403
6.47M
      cinfo->unread_marker = c1; \
404
6.47M
      /* Back out pre-execution and fill the buffer with zero bits */ \
405
6.47M
      buffer -= 2; \
406
6.47M
      get_buffer &= ~0xFF; \
407
6.47M
    } \
408
6.98M
  } \
409
116M
}
410
411
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
412
413
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
414
#define FILL_BIT_BUFFER_FAST \
415
253M
  if (bits_left <= 16) { \
416
19.3M
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
417
19.3M
  }
418
419
#else
420
421
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
422
#define FILL_BIT_BUFFER_FAST \
423
  if (bits_left <= 16) { \
424
    GET_BYTE GET_BYTE \
425
  }
426
427
#endif
428
429
430
/*
431
 * Out-of-line code for Huffman code decoding.
432
 * See jdhuff.h for info about usage.
433
 */
434
435
GLOBAL(int)
436
jpeg_huff_decode(bitread_working_state *state,
437
                 register bit_buf_type get_buffer, register int bits_left,
438
                 d_derived_tbl *htbl, int min_bits)
439
272M
{
440
272M
  register int l = min_bits;
441
272M
  register JLONG code;
442
443
  /* HUFF_DECODE has determined that the code is at least min_bits */
444
  /* bits long, so fetch that many bits in one swoop. */
445
446
272M
  CHECK_BIT_BUFFER(*state, l, return -1);
447
272M
  code = GET_BITS(l);
448
449
  /* Collect the rest of the Huffman code one bit at a time. */
450
  /* This is per Figure F.16. */
451
452
311M
  while (code > htbl->maxcode[l]) {
453
38.7M
    code <<= 1;
454
38.7M
    CHECK_BIT_BUFFER(*state, 1, return -1);
455
38.7M
    code |= GET_BITS(1);
456
38.7M
    l++;
457
38.7M
  }
458
459
  /* Unload the local registers */
460
272M
  state->get_buffer = get_buffer;
461
272M
  state->bits_left = bits_left;
462
463
  /* With garbage input we may reach the sentinel value l = 17. */
464
465
272M
  if (l > 16) {
466
2.05M
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467
2.05M
    return 0;                   /* fake a zero as the safest result */
468
2.05M
  }
469
470
270M
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
471
272M
}
472
473
474
/*
475
 * Figure F.12: extend sign bit.
476
 * On some machines, a shift and add will be faster than a table lookup.
477
 */
478
479
#define AVOID_TABLES
480
#ifdef AVOID_TABLES
481
482
188M
#define NEG_1  ((unsigned int)-1)
483
#define HUFF_EXTEND(x, s) \
484
188M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
485
486
#else
487
488
#define HUFF_EXTEND(x, s) \
489
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
490
491
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
492
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
494
};
495
496
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
501
};
502
503
#endif /* AVOID_TABLES */
504
505
506
/*
507
 * Check for a restart marker & resynchronize decoder.
508
 * Returns FALSE if must suspend.
509
 */
510
511
LOCAL(boolean)
512
process_restart(j_decompress_ptr cinfo)
513
4.53M
{
514
4.53M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
515
4.53M
  int ci;
516
517
  /* Throw away any unused bits remaining in bit buffer; */
518
  /* include any full bytes in next_marker's count of discarded bytes */
519
4.53M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520
4.53M
  entropy->bitstate.bits_left = 0;
521
522
  /* Advance past the RSTn marker */
523
4.53M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
524
0
    return FALSE;
525
526
  /* Re-initialize DC predictions to 0 */
527
9.14M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528
4.61M
    entropy->saved.last_dc_val[ci] = 0;
529
530
  /* Reset restart counter */
531
4.53M
  entropy->restarts_to_go = cinfo->restart_interval;
532
533
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
534
   * against a marker.  In that case we will end up treating the next data
535
   * segment as empty, and we can avoid producing bogus output pixels by
536
   * leaving the flag set.
537
   */
538
4.53M
  if (cinfo->unread_marker == 0)
539
72.1k
    entropy->pub.insufficient_data = FALSE;
540
541
4.53M
  return TRUE;
542
4.53M
}
543
544
545
#if defined(__has_feature)
546
#if __has_feature(undefined_behavior_sanitizer)
547
__attribute__((no_sanitize("signed-integer-overflow"),
548
               no_sanitize("unsigned-integer-overflow")))
549
#endif
550
#endif
551
LOCAL(boolean)
552
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
553
1.72M
{
554
1.72M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
555
1.72M
  BITREAD_STATE_VARS;
556
1.72M
  int blkn;
557
1.72M
  savable_state state;
558
  /* Outer loop handles each block in the MCU */
559
560
  /* Load up working state */
561
1.72M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562
1.72M
  state = entropy->saved;
563
564
4.59M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565
2.86M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566
2.86M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567
2.86M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568
2.86M
    register int s, k, r;
569
570
    /* Decode a single block's worth of coefficients */
571
572
    /* Section F.2.2.1: decode the DC coefficient difference */
573
2.86M
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574
2.86M
    if (s) {
575
2.27M
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
576
2.27M
      r = GET_BITS(s);
577
2.27M
      s = HUFF_EXTEND(r, s);
578
2.27M
    }
579
580
2.86M
    if (entropy->dc_needed[blkn]) {
581
      /* Convert DC difference to actual value, update last_dc_val */
582
2.81M
      int ci = cinfo->MCU_membership[blkn];
583
      /* Certain malformed JPEG images produce repeated DC coefficient
584
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585
       * grow until it overflows or underflows a 32-bit signed integer.  This
586
       * behavior is, to the best of our understanding, innocuous, and it is
587
       * unclear how to work around it without potentially affecting
588
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
589
       * overflow errors for this function and decode_mcu_fast().
590
       */
591
2.81M
      s += state.last_dc_val[ci];
592
2.81M
      state.last_dc_val[ci] = s;
593
2.81M
      if (block) {
594
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595
2.81M
        (*block)[0] = (JCOEF)s;
596
2.81M
      }
597
2.81M
    }
598
599
2.86M
    if (entropy->ac_needed[blkn] && block) {
600
601
      /* Section F.2.2.2: decode the AC coefficients */
602
      /* Since zeroes are skipped, output area must be cleared beforehand */
603
74.2M
      for (k = 1; k < DCTSIZE2; k++) {
604
73.1M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
605
606
73.1M
        r = s >> 4;
607
73.1M
        s &= 15;
608
609
73.1M
        if (s) {
610
71.3M
          k += r;
611
71.3M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
612
71.3M
          r = GET_BITS(s);
613
71.3M
          s = HUFF_EXTEND(r, s);
614
          /* Output coefficient in natural (dezigzagged) order.
615
           * Note: the extra entries in jpeg_natural_order[] will save us
616
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
617
           */
618
71.3M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
619
71.3M
        } else {
620
1.83M
          if (r != 15)
621
1.67M
            break;
622
161k
          k += 15;
623
161k
        }
624
73.1M
      }
625
626
2.81M
    } else {
627
628
      /* Section F.2.2.2: decode the AC coefficients */
629
      /* In this path we just discard the values */
630
2.11M
      for (k = 1; k < DCTSIZE2; k++) {
631
2.08M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
632
633
2.08M
        r = s >> 4;
634
2.08M
        s &= 15;
635
636
2.08M
        if (s) {
637
2.05M
          k += r;
638
2.05M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
639
2.05M
          DROP_BITS(s);
640
2.05M
        } else {
641
21.4k
          if (r != 15)
642
19.2k
            break;
643
2.15k
          k += 15;
644
2.15k
        }
645
2.08M
      }
646
52.5k
    }
647
2.86M
  }
648
649
  /* Completed MCU, so update state */
650
1.72M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651
1.72M
  entropy->saved = state;
652
1.72M
  return TRUE;
653
1.72M
}
654
655
656
#if defined(__has_feature)
657
#if __has_feature(undefined_behavior_sanitizer)
658
__attribute__((no_sanitize("signed-integer-overflow"),
659
               no_sanitize("unsigned-integer-overflow")))
660
#endif
661
#endif
662
LOCAL(boolean)
663
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
664
15.0M
{
665
15.0M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
666
15.0M
  BITREAD_STATE_VARS;
667
15.0M
  JOCTET *buffer;
668
15.0M
  int blkn;
669
15.0M
  savable_state state;
670
  /* Outer loop handles each block in the MCU */
671
672
  /* Load up working state */
673
15.0M
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674
15.0M
  buffer = (JOCTET *)br_state.next_input_byte;
675
15.0M
  state = entropy->saved;
676
677
32.6M
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678
17.6M
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679
17.6M
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680
17.6M
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681
17.6M
    register int s, k, r, l;
682
683
17.6M
    HUFF_DECODE_FAST(s, l, dctbl);
684
17.6M
    if (s) {
685
13.8M
      FILL_BIT_BUFFER_FAST
686
13.8M
      r = GET_BITS(s);
687
13.8M
      s = HUFF_EXTEND(r, s);
688
13.8M
    }
689
690
17.6M
    if (entropy->dc_needed[blkn]) {
691
17.5M
      int ci = cinfo->MCU_membership[blkn];
692
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
693
       * a UBSan integer overflow error in this line of code.
694
       */
695
17.5M
      s += state.last_dc_val[ci];
696
17.5M
      state.last_dc_val[ci] = s;
697
17.5M
      if (block)
698
17.5M
        (*block)[0] = (JCOEF)s;
699
17.5M
    }
700
701
17.6M
    if (entropy->ac_needed[blkn] && block) {
702
703
118M
      for (k = 1; k < DCTSIZE2; k++) {
704
117M
        HUFF_DECODE_FAST(s, l, actbl);
705
117M
        r = s >> 4;
706
117M
        s &= 15;
707
708
117M
        if (s) {
709
101M
          k += r;
710
101M
          FILL_BIT_BUFFER_FAST
711
101M
          r = GET_BITS(s);
712
101M
          s = HUFF_EXTEND(r, s);
713
101M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
714
101M
        } else {
715
16.1M
          if (r != 15) break;
716
80.7k
          k += 15;
717
80.7k
        }
718
117M
      }
719
720
17.5M
    } else {
721
722
2.00M
      for (k = 1; k < DCTSIZE2; k++) {
723
1.97M
        HUFF_DECODE_FAST(s, l, actbl);
724
1.97M
        r = s >> 4;
725
1.97M
        s &= 15;
726
727
1.97M
        if (s) {
728
1.95M
          k += r;
729
1.95M
          FILL_BIT_BUFFER_FAST
730
1.95M
          DROP_BITS(s);
731
1.95M
        } else {
732
16.5k
          if (r != 15) break;
733
1.05k
          k += 15;
734
1.05k
        }
735
1.97M
      }
736
46.6k
    }
737
17.6M
  }
738
739
15.0M
  if (cinfo->unread_marker != 0) {
740
520k
    cinfo->unread_marker = 0;
741
520k
    return FALSE;
742
520k
  }
743
744
14.4M
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745
14.4M
  br_state.next_input_byte = buffer;
746
14.4M
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747
14.4M
  entropy->saved = state;
748
14.4M
  return TRUE;
749
15.0M
}
750
751
752
/*
753
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754
 * The coefficients are reordered from zigzag order into natural array order,
755
 * but are not dequantized.
756
 *
757
 * The i'th block of the MCU is stored into the block pointed to by
758
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759
 * (Wholesale zeroing is usually a little faster than retail...)
760
 *
761
 * Returns FALSE if data source requested suspension.  In that case no
762
 * changes have been made to permanent state.  (Exception: some output
763
 * coefficients may already have been assigned.  This is harmless for
764
 * this module, since we'll just re-assign them on the next call.)
765
 */
766
767
185M
#define BUFSIZE  (DCTSIZE2 * 8)
768
769
METHODDEF(boolean)
770
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
771
185M
{
772
185M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
773
185M
  int usefast = 1;
774
775
  /* Process restart marker if needed; may have to suspend */
776
185M
  if (cinfo->restart_interval) {
777
13.6M
    if (entropy->restarts_to_go == 0)
778
4.53M
      if (!process_restart(cinfo))
779
0
        return FALSE;
780
13.6M
    usefast = 0;
781
13.6M
  }
782
783
185M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784
185M
      cinfo->unread_marker != 0)
785
169M
    usefast = 0;
786
787
  /* If we've run out of data, just leave the MCU set to zeroes.
788
   * This way, we return uniform gray for the remainder of the segment.
789
   */
790
185M
  if (!entropy->pub.insufficient_data) {
791
792
16.2M
    if (usefast) {
793
15.0M
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
794
15.0M
    } else {
795
1.72M
use_slow:
796
1.72M
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
797
1.72M
    }
798
799
16.2M
  }
800
801
  /* Account for restart interval (no-op if not using restarts) */
802
185M
  if (cinfo->restart_interval)
803
13.6M
    entropy->restarts_to_go--;
804
805
185M
  return TRUE;
806
185M
}
807
808
809
/*
810
 * Module initialization routine for Huffman entropy decoding.
811
 */
812
813
GLOBAL(void)
814
jinit_huff_decoder(j_decompress_ptr cinfo)
815
43.4k
{
816
43.4k
  huff_entropy_ptr entropy;
817
43.4k
  int i;
818
819
  /* Motion JPEG frames typically do not include the Huffman tables if they
820
     are the default tables.  Thus, if the tables are not set by the time
821
     the Huffman decoder is initialized (usually within the body of
822
     jpeg_start_decompress()), we set them to default values. */
823
43.4k
  std_huff_tables((j_common_ptr)cinfo);
824
825
43.4k
  entropy = (huff_entropy_ptr)
826
43.4k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827
43.4k
                                sizeof(huff_entropy_decoder));
828
43.4k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829
43.4k
  entropy->pub.start_pass = start_pass_huff_decoder;
830
43.4k
  entropy->pub.decode_mcu = decode_mcu;
831
832
  /* Mark tables unallocated */
833
217k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
834
173k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
835
173k
  }
836
43.4k
}