Coverage Report

Created: 2024-06-09 08:57

/src/openssl/crypto/lhash/lhash.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <string.h>
12
#include <stdlib.h>
13
#include <openssl/crypto.h>
14
#include <openssl/lhash.h>
15
#include <openssl/err.h>
16
#include "crypto/ctype.h"
17
#include "crypto/lhash.h"
18
#include "lhash_local.h"
19
20
/*
21
 * A hashing implementation that appears to be based on the linear hashing
22
 * algorithm:
23
 * https://en.wikipedia.org/wiki/Linear_hashing
24
 *
25
 * Litwin, Witold (1980), "Linear hashing: A new tool for file and table
26
 * addressing", Proc. 6th Conference on Very Large Databases: 212-223
27
 * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf
28
 *
29
 * From the Wikipedia article "Linear hashing is used in the BDB Berkeley
30
 * database system, which in turn is used by many software systems such as
31
 * OpenLDAP, using a C implementation derived from the CACM article and first
32
 * published on the Usenet in 1988 by Esmond Pitt."
33
 *
34
 * The CACM paper is available here:
35
 * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf
36
 */
37
38
#undef MIN_NODES
39
67.6k
#define MIN_NODES       16
40
22.5k
#define UP_LOAD         (2*LH_LOAD_MULT) /* load times 256 (default 2) */
41
22.5k
#define DOWN_LOAD       (LH_LOAD_MULT) /* load times 256 (default 1) */
42
43
static int expand(OPENSSL_LHASH *lh);
44
static void contract(OPENSSL_LHASH *lh);
45
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash);
46
47
OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c)
48
22.5k
{
49
22.5k
    OPENSSL_LHASH *ret;
50
51
22.5k
    if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
52
        /*
53
         * Do not set the error code, because the ERR code uses LHASH
54
         * and we want to avoid possible endless error loop.
55
         * CRYPTOerr(CRYPTO_F_OPENSSL_LH_NEW, ERR_R_MALLOC_FAILURE);
56
         */
57
0
        return NULL;
58
0
    }
59
22.5k
    if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL)
60
0
        goto err;
61
22.5k
    ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);
62
22.5k
    ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h);
63
22.5k
    ret->num_nodes = MIN_NODES / 2;
64
22.5k
    ret->num_alloc_nodes = MIN_NODES;
65
22.5k
    ret->pmax = MIN_NODES / 2;
66
22.5k
    ret->up_load = UP_LOAD;
67
22.5k
    ret->down_load = DOWN_LOAD;
68
22.5k
    return ret;
69
70
0
err:
71
0
    OPENSSL_free(ret->b);
72
0
    OPENSSL_free(ret);
73
0
    return NULL;
74
22.5k
}
75
76
void OPENSSL_LH_free(OPENSSL_LHASH *lh)
77
15.0k
{
78
15.0k
    if (lh == NULL)
79
3.76k
        return;
80
81
11.3k
    OPENSSL_LH_flush(lh);
82
11.3k
    OPENSSL_free(lh->b);
83
11.3k
    OPENSSL_free(lh);
84
11.3k
}
85
86
void OPENSSL_LH_flush(OPENSSL_LHASH *lh)
87
11.3k
{
88
11.3k
    unsigned int i;
89
11.3k
    OPENSSL_LH_NODE *n, *nn;
90
91
11.3k
    if (lh == NULL)
92
0
        return;
93
94
2.53M
    for (i = 0; i < lh->num_nodes; i++) {
95
2.52M
        n = lh->b[i];
96
7.48M
        while (n != NULL) {
97
4.96M
            nn = n->next;
98
4.96M
            OPENSSL_free(n);
99
4.96M
            n = nn;
100
4.96M
        }
101
2.52M
        lh->b[i] = NULL;
102
2.52M
    }
103
11.3k
}
104
105
void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data)
106
27.7M
{
107
27.7M
    unsigned long hash;
108
27.7M
    OPENSSL_LH_NODE *nn, **rn;
109
27.7M
    void *ret;
110
111
27.7M
    lh->error = 0;
112
27.7M
    if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh))
113
0
        return NULL;        /* 'lh->error++' already done in 'expand' */
114
115
27.7M
    rn = getrn(lh, data, &hash);
116
117
27.7M
    if (*rn == NULL) {
118
9.89M
        if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) {
119
0
            lh->error++;
120
0
            return NULL;
121
0
        }
122
9.89M
        nn->data = data;
123
9.89M
        nn->next = NULL;
124
9.89M
        nn->hash = hash;
125
9.89M
        *rn = nn;
126
9.89M
        ret = NULL;
127
9.89M
        lh->num_insert++;
128
9.89M
        lh->num_items++;
129
17.8M
    } else {                    /* replace same key */
130
17.8M
        ret = (*rn)->data;
131
17.8M
        (*rn)->data = data;
132
17.8M
        lh->num_replace++;
133
17.8M
    }
134
27.7M
    return ret;
135
27.7M
}
136
137
void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data)
138
0
{
139
0
    unsigned long hash;
140
0
    OPENSSL_LH_NODE *nn, **rn;
141
0
    void *ret;
142
143
0
    lh->error = 0;
144
0
    rn = getrn(lh, data, &hash);
145
146
0
    if (*rn == NULL) {
147
0
        lh->num_no_delete++;
148
0
        return NULL;
149
0
    } else {
150
0
        nn = *rn;
151
0
        *rn = nn->next;
152
0
        ret = nn->data;
153
0
        OPENSSL_free(nn);
154
0
        lh->num_delete++;
155
0
    }
156
157
0
    lh->num_items--;
158
0
    if ((lh->num_nodes > MIN_NODES) &&
159
0
        (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)))
160
0
        contract(lh);
161
162
0
    return ret;
163
0
}
164
165
void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data)
166
763k
{
167
763k
    unsigned long hash;
168
763k
    OPENSSL_LH_NODE **rn;
169
763k
    void *ret;
170
171
763k
    tsan_store((TSAN_QUALIFIER int *)&lh->error, 0);
172
173
763k
    rn = getrn(lh, data, &hash);
174
175
763k
    if (*rn == NULL) {
176
593k
        tsan_counter(&lh->num_retrieve_miss);
177
593k
        return NULL;
178
593k
    } else {
179
169k
        ret = (*rn)->data;
180
169k
        tsan_counter(&lh->num_retrieve);
181
169k
    }
182
183
169k
    return ret;
184
763k
}
185
186
static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg,
187
                          OPENSSL_LH_DOALL_FUNC func,
188
                          OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg)
189
7.53k
{
190
7.53k
    int i;
191
7.53k
    OPENSSL_LH_NODE *a, *n;
192
193
7.53k
    if (lh == NULL)
194
0
        return;
195
196
    /*
197
     * reverse the order so we search from 'top to bottom' We were having
198
     * memory leaks otherwise
199
     */
200
67.8k
    for (i = lh->num_nodes - 1; i >= 0; i--) {
201
60.3k
        a = lh->b[i];
202
97.9k
        while (a != NULL) {
203
37.6k
            n = a->next;
204
37.6k
            if (use_arg)
205
0
                func_arg(a->data, arg);
206
37.6k
            else
207
37.6k
                func(a->data);
208
37.6k
            a = n;
209
37.6k
        }
210
60.3k
    }
211
7.53k
}
212
213
void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func)
214
7.53k
{
215
7.53k
    doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL);
216
7.53k
}
217
218
void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg)
219
0
{
220
0
    doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg);
221
0
}
222
223
static int expand(OPENSSL_LHASH *lh)
224
4.85M
{
225
4.85M
    OPENSSL_LH_NODE **n, **n1, **n2, *np;
226
4.85M
    unsigned int p, pmax, nni, j;
227
4.85M
    unsigned long hash;
228
229
4.85M
    nni = lh->num_alloc_nodes;
230
4.85M
    p = lh->p;
231
4.85M
    pmax = lh->pmax;
232
4.85M
    if (p + 1 >= pmax) {
233
45.1k
        j = nni * 2;
234
45.1k
        n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j);
235
45.1k
        if (n == NULL) {
236
0
            lh->error++;
237
0
            return 0;
238
0
        }
239
45.1k
        lh->b = n;
240
45.1k
        memset(n + nni, 0, sizeof(*n) * (j - nni));
241
45.1k
        lh->pmax = nni;
242
45.1k
        lh->num_alloc_nodes = j;
243
45.1k
        lh->num_expand_reallocs++;
244
45.1k
        lh->p = 0;
245
4.80M
    } else {
246
4.80M
        lh->p++;
247
4.80M
    }
248
249
4.85M
    lh->num_nodes++;
250
4.85M
    lh->num_expands++;
251
4.85M
    n1 = &(lh->b[p]);
252
4.85M
    n2 = &(lh->b[p + pmax]);
253
4.85M
    *n2 = NULL;
254
255
21.0M
    for (np = *n1; np != NULL;) {
256
16.2M
        hash = np->hash;
257
16.2M
        if ((hash % nni) != p) { /* move it */
258
2.76M
            *n1 = (*n1)->next;
259
2.76M
            np->next = *n2;
260
2.76M
            *n2 = np;
261
2.76M
        } else
262
13.4M
            n1 = &((*n1)->next);
263
16.2M
        np = *n1;
264
16.2M
    }
265
266
4.85M
    return 1;
267
4.85M
}
268
269
static void contract(OPENSSL_LHASH *lh)
270
0
{
271
0
    OPENSSL_LH_NODE **n, *n1, *np;
272
273
0
    np = lh->b[lh->p + lh->pmax - 1];
274
0
    lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */
275
0
    if (lh->p == 0) {
276
0
        n = OPENSSL_realloc(lh->b,
277
0
                            (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax));
278
0
        if (n == NULL) {
279
            /* fputs("realloc error in lhash",stderr); */
280
0
            lh->error++;
281
0
            return;
282
0
        }
283
0
        lh->num_contract_reallocs++;
284
0
        lh->num_alloc_nodes /= 2;
285
0
        lh->pmax /= 2;
286
0
        lh->p = lh->pmax - 1;
287
0
        lh->b = n;
288
0
    } else
289
0
        lh->p--;
290
291
0
    lh->num_nodes--;
292
0
    lh->num_contracts++;
293
294
0
    n1 = lh->b[(int)lh->p];
295
0
    if (n1 == NULL)
296
0
        lh->b[(int)lh->p] = np;
297
0
    else {
298
0
        while (n1->next != NULL)
299
0
            n1 = n1->next;
300
0
        n1->next = np;
301
0
    }
302
0
}
303
304
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh,
305
                               const void *data, unsigned long *rhash)
306
28.5M
{
307
28.5M
    OPENSSL_LH_NODE **ret, *n1;
308
28.5M
    unsigned long hash, nn;
309
28.5M
    OPENSSL_LH_COMPFUNC cf;
310
311
28.5M
    hash = (*(lh->hash)) (data);
312
28.5M
    tsan_counter(&lh->num_hash_calls);
313
28.5M
    *rhash = hash;
314
315
28.5M
    nn = hash % lh->pmax;
316
28.5M
    if (nn < lh->p)
317
13.6M
        nn = hash % lh->num_alloc_nodes;
318
319
28.5M
    cf = lh->comp;
320
28.5M
    ret = &(lh->b[(int)nn]);
321
69.5M
    for (n1 = *ret; n1 != NULL; n1 = n1->next) {
322
59.0M
        tsan_counter(&lh->num_hash_comps);
323
59.0M
        if (n1->hash != hash) {
324
39.8M
            ret = &(n1->next);
325
39.8M
            continue;
326
39.8M
        }
327
59.0M
        tsan_counter(&lh->num_comp_calls);
328
19.1M
        if (cf(n1->data, data) == 0)
329
18.0M
            break;
330
1.11M
        ret = &(n1->next);
331
1.11M
    }
332
28.5M
    return ret;
333
28.5M
}
334
335
/*
336
 * The following hash seems to work very well on normal text strings no
337
 * collisions on /usr/dict/words and it distributes on %2^n quite well, not
338
 * as good as MD5, but still good.
339
 */
340
unsigned long OPENSSL_LH_strhash(const char *c)
341
150k
{
342
150k
    unsigned long ret = 0;
343
150k
    long n;
344
150k
    unsigned long v;
345
150k
    int r;
346
347
150k
    if ((c == NULL) || (*c == '\0'))
348
0
        return ret;
349
350
150k
    n = 0x100;
351
947k
    while (*c) {
352
797k
        v = n | (*c);
353
797k
        n += 0x100;
354
797k
        r = (int)((v >> 2) ^ v) & 0x0f;
355
797k
        ret = (ret << r) | (ret >> (32 - r));
356
797k
        ret &= 0xFFFFFFFFL;
357
797k
        ret ^= v * v;
358
797k
        c++;
359
797k
    }
360
150k
    return (ret >> 16) ^ ret;
361
150k
}
362
363
unsigned long openssl_lh_strcasehash(const char *c)
364
0
{
365
0
    unsigned long ret = 0;
366
0
    long n;
367
0
    unsigned long v;
368
0
    int r;
369
370
0
    if (c == NULL || *c == '\0')
371
0
        return ret;
372
373
0
    for (n = 0x100; *c != '\0'; n += 0x100) {
374
0
        v = n | ossl_tolower(*c);
375
0
        r = (int)((v >> 2) ^ v) & 0x0f;
376
0
        ret = (ret << r) | (ret >> (32 - r));
377
0
        ret &= 0xFFFFFFFFL;
378
0
        ret ^= v * v;
379
0
        c++;
380
0
    }
381
0
    return (ret >> 16) ^ ret;
382
0
}
383
384
unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh)
385
3.76k
{
386
3.76k
    return lh ? lh->num_items : 0;
387
3.76k
}
388
389
unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh)
390
0
{
391
0
    return lh->down_load;
392
0
}
393
394
void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load)
395
0
{
396
0
    lh->down_load = down_load;
397
0
}
398
399
int OPENSSL_LH_error(OPENSSL_LHASH *lh)
400
75.2k
{
401
75.2k
    return lh->error;
402
75.2k
}