Coverage Report

Created: 2024-08-15 14:05

/src/re2/re2/prog.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2007 The RE2 Authors.  All Rights Reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4
5
#ifndef RE2_PROG_H_
6
#define RE2_PROG_H_
7
8
// Compiled representation of regular expressions.
9
// See regexp.h for the Regexp class, which represents a regular
10
// expression symbolically.
11
12
#include <stdint.h>
13
#include <functional>
14
#include <mutex>
15
#include <string>
16
#include <vector>
17
#include <type_traits>
18
19
#include "util/util.h"
20
#include "util/logging.h"
21
#include "re2/pod_array.h"
22
#include "re2/re2.h"
23
#include "re2/sparse_array.h"
24
#include "re2/sparse_set.h"
25
26
namespace re2 {
27
28
// Opcodes for Inst
29
enum InstOp {
30
  kInstAlt = 0,      // choose between out_ and out1_
31
  kInstAltMatch,     // Alt: out_ is [00-FF] and back, out1_ is match; or vice versa.
32
  kInstByteRange,    // next (possible case-folded) byte must be in [lo_, hi_]
33
  kInstCapture,      // capturing parenthesis number cap_
34
  kInstEmptyWidth,   // empty-width special (^ $ ...); bit(s) set in empty_
35
  kInstMatch,        // found a match!
36
  kInstNop,          // no-op; occasionally unavoidable
37
  kInstFail,         // never match; occasionally unavoidable
38
  kNumInst,
39
};
40
41
// Bit flags for empty-width specials
42
enum EmptyOp {
43
  kEmptyBeginLine        = 1<<0,      // ^ - beginning of line
44
  kEmptyEndLine          = 1<<1,      // $ - end of line
45
  kEmptyBeginText        = 1<<2,      // \A - beginning of text
46
  kEmptyEndText          = 1<<3,      // \z - end of text
47
  kEmptyWordBoundary     = 1<<4,      // \b - word boundary
48
  kEmptyNonWordBoundary  = 1<<5,      // \B - not \b
49
  kEmptyAllFlags         = (1<<6)-1,
50
};
51
52
class DFA;
53
class Regexp;
54
55
// Compiled form of regexp program.
56
class Prog {
57
 public:
58
  Prog();
59
  ~Prog();
60
61
  // Single instruction in regexp program.
62
  class Inst {
63
   public:
64
    // See the assertion below for why this is so.
65
    Inst() = default;
66
67
    // Copyable.
68
    Inst(const Inst&) = default;
69
    Inst& operator=(const Inst&) = default;
70
71
    // Constructors per opcode
72
    void InitAlt(uint32_t out, uint32_t out1);
73
    void InitByteRange(int lo, int hi, int foldcase, uint32_t out);
74
    void InitCapture(int cap, uint32_t out);
75
    void InitEmptyWidth(EmptyOp empty, uint32_t out);
76
    void InitMatch(int id);
77
    void InitNop(uint32_t out);
78
    void InitFail();
79
80
    // Getters
81
0
    int id(Prog* p) { return static_cast<int>(this - p->inst_.data()); }
82
92.2M
    InstOp opcode() { return static_cast<InstOp>(out_opcode_&7); }
83
32.1M
    int last()      { return (out_opcode_>>3)&1; }
84
57.3M
    int out()       { return out_opcode_>>4; }
85
10.7M
    int out1()      { DCHECK(opcode() == kInstAlt || opcode() == kInstAltMatch); return out1_; }
86
34.4k
    int cap()       { DCHECK_EQ(opcode(), kInstCapture); return cap_; }
87
9.76M
    int lo()        { DCHECK_EQ(opcode(), kInstByteRange); return lo_; }
88
10.9M
    int hi()        { DCHECK_EQ(opcode(), kInstByteRange); return hi_; }
89
9.36M
    int foldcase()  { DCHECK_EQ(opcode(), kInstByteRange); return hint_foldcase_&1; }
90
56.3k
    int hint()      { DCHECK_EQ(opcode(), kInstByteRange); return hint_foldcase_>>1; }
91
0
    int match_id()  { DCHECK_EQ(opcode(), kInstMatch); return match_id_; }
92
143k
    EmptyOp empty() { DCHECK_EQ(opcode(), kInstEmptyWidth); return empty_; }
93
94
0
    bool greedy(Prog* p) {
95
0
      DCHECK_EQ(opcode(), kInstAltMatch);
96
0
      return p->inst(out())->opcode() == kInstByteRange ||
97
0
             (p->inst(out())->opcode() == kInstNop &&
98
0
              p->inst(p->inst(out())->out())->opcode() == kInstByteRange);
99
0
    }
100
101
    // Does this inst (an kInstByteRange) match c?
102
197k
    inline bool Matches(int c) {
103
197k
      DCHECK_EQ(opcode(), kInstByteRange);
104
197k
      if (foldcase() && 'A' <= c && c <= 'Z')
105
3.35k
        c += 'a' - 'A';
106
197k
      return lo_ <= c && c <= hi_;
107
197k
    }
108
109
    // Returns string representation for debugging.
110
    std::string Dump();
111
112
    // Maximum instruction id.
113
    // (Must fit in out_opcode_. PatchList/last steal another bit.)
114
    static const int kMaxInst = (1<<28) - 1;
115
116
   private:
117
447k
    void set_opcode(InstOp opcode) {
118
447k
      out_opcode_ = (out()<<4) | (last()<<3) | opcode;
119
447k
    }
120
121
3.37M
    void set_last() {
122
3.37M
      out_opcode_ = (out()<<4) | (1<<3) | opcode();
123
3.37M
    }
124
125
20.3M
    void set_out(int out) {
126
20.3M
      out_opcode_ = (out<<4) | (last()<<3) | opcode();
127
20.3M
    }
128
129
5.74M
    void set_out_opcode(int out, InstOp opcode) {
130
5.74M
      out_opcode_ = (out<<4) | (last()<<3) | opcode;
131
5.74M
    }
132
133
    uint32_t out_opcode_;  // 28 bits: out, 1 bit: last, 3 (low) bits: opcode
134
    union {                // additional instruction arguments:
135
      uint32_t out1_;      // opcode == kInstAlt
136
                           //   alternate next instruction
137
138
      int32_t cap_;        // opcode == kInstCapture
139
                           //   Index of capture register (holds text
140
                           //   position recorded by capturing parentheses).
141
                           //   For \n (the submatch for the nth parentheses),
142
                           //   the left parenthesis captures into register 2*n
143
                           //   and the right one captures into register 2*n+1.
144
145
      int32_t match_id_;   // opcode == kInstMatch
146
                           //   Match ID to identify this match (for re2::Set).
147
148
      struct {             // opcode == kInstByteRange
149
        uint8_t lo_;       //   byte range is lo_-hi_ inclusive
150
        uint8_t hi_;       //
151
        uint16_t hint_foldcase_;  // 15 bits: hint, 1 (low) bit: foldcase
152
                           //   hint to execution engines: the delta to the
153
                           //   next instruction (in the current list) worth
154
                           //   exploring iff this instruction matched; 0
155
                           //   means there are no remaining possibilities,
156
                           //   which is most likely for character classes.
157
                           //   foldcase: A-Z -> a-z before checking range.
158
      };
159
160
      EmptyOp empty_;       // opcode == kInstEmptyWidth
161
                            //   empty_ is bitwise OR of kEmpty* flags above.
162
    };
163
164
    friend class Compiler;
165
    friend struct PatchList;
166
    friend class Prog;
167
  };
168
169
  // Inst must be trivial so that we can freely clear it with memset(3).
170
  // Arrays of Inst are initialised by copying the initial elements with
171
  // memmove(3) and then clearing any remaining elements with memset(3).
172
  static_assert(std::is_trivial<Inst>::value, "Inst must be trivial");
173
174
  // Whether to anchor the search.
175
  enum Anchor {
176
    kUnanchored,  // match anywhere
177
    kAnchored,    // match only starting at beginning of text
178
  };
179
180
  // Kind of match to look for (for anchor != kFullMatch)
181
  //
182
  // kLongestMatch mode finds the overall longest
183
  // match but still makes its submatch choices the way
184
  // Perl would, not in the way prescribed by POSIX.
185
  // The POSIX rules are much more expensive to implement,
186
  // and no one has needed them.
187
  //
188
  // kFullMatch is not strictly necessary -- we could use
189
  // kLongestMatch and then check the length of the match -- but
190
  // the matching code can run faster if it knows to consider only
191
  // full matches.
192
  enum MatchKind {
193
    kFirstMatch,     // like Perl, PCRE
194
    kLongestMatch,   // like egrep or POSIX
195
    kFullMatch,      // match only entire text; implies anchor==kAnchored
196
    kManyMatch       // for SearchDFA, records set of matches
197
  };
198
199
45.7M
  Inst *inst(int id) { return &inst_[id]; }
200
3.38M
  int start() { return start_; }
201
6.46k
  void set_start(int start) { start_ = start; }
202
3.44M
  int start_unanchored() { return start_unanchored_; }
203
6.46k
  void set_start_unanchored(int start) { start_unanchored_ = start; }
204
4.62M
  int size() { return size_; }
205
6.55k
  bool reversed() { return reversed_; }
206
3.27k
  void set_reversed(bool reversed) { reversed_ = reversed; }
207
2.99k
  int list_count() { return list_count_; }
208
21.7k
  int inst_count(InstOp op) { return inst_count_[op]; }
209
0
  uint16_t* list_heads() { return list_heads_.data(); }
210
3.22k
  size_t bit_state_text_max_size() { return bit_state_text_max_size_; }
211
0
  int64_t dfa_mem() { return dfa_mem_; }
212
3.27k
  void set_dfa_mem(int64_t dfa_mem) { dfa_mem_ = dfa_mem; }
213
16.6k
  bool anchor_start() { return anchor_start_; }
214
3.27k
  void set_anchor_start(bool b) { anchor_start_ = b; }
215
10.3k
  bool anchor_end() { return anchor_end_; }
216
3.27k
  void set_anchor_end(bool b) { anchor_end_ = b; }
217
73.4k
  int bytemap_range() { return bytemap_range_; }
218
70.0k
  const uint8_t* bytemap() { return bytemap_; }
219
2.81k
  bool can_prefix_accel() { return prefix_size_ != 0; }
220
221
  // Accelerates to the first likely occurrence of the prefix.
222
  // Returns a pointer to the first byte or NULL if not found.
223
0
  const void* PrefixAccel(const void* data, size_t size) {
224
0
    DCHECK(can_prefix_accel());
225
0
    if (prefix_foldcase_) {
226
0
      return PrefixAccel_ShiftDFA(data, size);
227
0
    } else if (prefix_size_ != 1) {
228
0
      return PrefixAccel_FrontAndBack(data, size);
229
0
    } else {
230
0
      return memchr(data, prefix_front_, size);
231
0
    }
232
0
  }
233
234
  // Configures prefix accel using the analysis performed during compilation.
235
  void ConfigurePrefixAccel(const std::string& prefix, bool prefix_foldcase);
236
237
  // An implementation of prefix accel that uses prefix_dfa_ to perform
238
  // case-insensitive search.
239
  const void* PrefixAccel_ShiftDFA(const void* data, size_t size);
240
241
  // An implementation of prefix accel that looks for prefix_front_ and
242
  // prefix_back_ to return fewer false positives than memchr(3) alone.
243
  const void* PrefixAccel_FrontAndBack(const void* data, size_t size);
244
245
  // Returns string representation of program for debugging.
246
  std::string Dump();
247
  std::string DumpUnanchored();
248
  std::string DumpByteMap();
249
250
  // Returns the set of kEmpty flags that are in effect at
251
  // position p within context.
252
  static uint32_t EmptyFlags(const StringPiece& context, const char* p);
253
254
  // Returns whether byte c is a word character: ASCII only.
255
  // Used by the implementation of \b and \B.
256
  // This is not right for Unicode, but:
257
  //   - it's hard to get right in a byte-at-a-time matching world
258
  //     (the DFA has only one-byte lookahead).
259
  //   - even if the lookahead were possible, the Progs would be huge.
260
  // This crude approximation is the same one PCRE uses.
261
243k
  static bool IsWordChar(uint8_t c) {
262
243k
    return ('A' <= c && c <= 'Z') ||
263
243k
           ('a' <= c && c <= 'z') ||
264
243k
           ('0' <= c && c <= '9') ||
265
243k
           c == '_';
266
243k
  }
267
268
  // Execution engines.  They all search for the regexp (run the prog)
269
  // in text, which is in the larger context (used for ^ $ \b etc).
270
  // Anchor and kind control the kind of search.
271
  // Returns true if match found, false if not.
272
  // If match found, fills match[0..nmatch-1] with submatch info.
273
  // match[0] is overall match, match[1] is first set of parens, etc.
274
  // If a particular submatch is not matched during the regexp match,
275
  // it is set to NULL.
276
  //
277
  // Matching text == StringPiece(NULL, 0) is treated as any other empty
278
  // string, but note that on return, it will not be possible to distinguish
279
  // submatches that matched that empty string from submatches that didn't
280
  // match anything.  Either way, match[i] == NULL.
281
282
  // Search using NFA: can find submatches but kind of slow.
283
  bool SearchNFA(const StringPiece& text, const StringPiece& context,
284
                 Anchor anchor, MatchKind kind,
285
                 StringPiece* match, int nmatch);
286
287
  // Search using DFA: much faster than NFA but only finds
288
  // end of match and can use a lot more memory.
289
  // Returns whether a match was found.
290
  // If the DFA runs out of memory, sets *failed to true and returns false.
291
  // If matches != NULL and kind == kManyMatch and there is a match,
292
  // SearchDFA fills matches with the match IDs of the final matching state.
293
  bool SearchDFA(const StringPiece& text, const StringPiece& context,
294
                 Anchor anchor, MatchKind kind, StringPiece* match0,
295
                 bool* failed, SparseSet* matches);
296
297
  // The callback issued after building each DFA state with BuildEntireDFA().
298
  // If next is null, then the memory budget has been exhausted and building
299
  // will halt. Otherwise, the state has been built and next points to an array
300
  // of bytemap_range()+1 slots holding the next states as per the bytemap and
301
  // kByteEndText. The number of the state is implied by the callback sequence:
302
  // the first callback is for state 0, the second callback is for state 1, ...
303
  // match indicates whether the state is a matching state.
304
  using DFAStateCallback = std::function<void(const int* next, bool match)>;
305
306
  // Build the entire DFA for the given match kind.
307
  // Usually the DFA is built out incrementally, as needed, which
308
  // avoids lots of unnecessary work.
309
  // If cb is not empty, it receives one callback per state built.
310
  // Returns the number of states built.
311
  // FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
312
  int BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb);
313
314
  // Compute bytemap.
315
  void ComputeByteMap();
316
317
  // Run peep-hole optimizer on program.
318
  void Optimize();
319
320
  // One-pass NFA: only correct if IsOnePass() is true,
321
  // but much faster than NFA (competitive with PCRE)
322
  // for those expressions.
323
  bool IsOnePass();
324
  bool SearchOnePass(const StringPiece& text, const StringPiece& context,
325
                     Anchor anchor, MatchKind kind,
326
                     StringPiece* match, int nmatch);
327
328
  // Bit-state backtracking.  Fast on small cases but uses memory
329
  // proportional to the product of the list count and the text size.
330
6.50k
  bool CanBitState() { return list_heads_.data() != NULL; }
331
  bool SearchBitState(const StringPiece& text, const StringPiece& context,
332
                      Anchor anchor, MatchKind kind,
333
                      StringPiece* match, int nmatch);
334
335
  static const int kMaxOnePassCapture = 5;  // $0 through $4
336
337
  // Backtracking search: the gold standard against which the other
338
  // implementations are checked.  FOR TESTING ONLY.
339
  // It allocates a ton of memory to avoid running forever.
340
  // It is also recursive, so can't use in production (will overflow stacks).
341
  // The name "Unsafe" here is supposed to be a flag that
342
  // you should not be using this function.
343
  bool UnsafeSearchBacktrack(const StringPiece& text,
344
                             const StringPiece& context,
345
                             Anchor anchor, MatchKind kind,
346
                             StringPiece* match, int nmatch);
347
348
  // Computes range for any strings matching regexp. The min and max can in
349
  // some cases be arbitrarily precise, so the caller gets to specify the
350
  // maximum desired length of string returned.
351
  //
352
  // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
353
  // string s that is an anchored match for this regexp satisfies
354
  //   min <= s && s <= max.
355
  //
356
  // Note that PossibleMatchRange() will only consider the first copy of an
357
  // infinitely repeated element (i.e., any regexp element followed by a '*' or
358
  // '+' operator). Regexps with "{N}" constructions are not affected, as those
359
  // do not compile down to infinite repetitions.
360
  //
361
  // Returns true on success, false on error.
362
  bool PossibleMatchRange(std::string* min, std::string* max, int maxlen);
363
364
  // Outputs the program fanout into the given sparse array.
365
  void Fanout(SparseArray<int>* fanout);
366
367
  // Compiles a collection of regexps to Prog.  Each regexp will have
368
  // its own Match instruction recording the index in the output vector.
369
  static Prog* CompileSet(Regexp* re, RE2::Anchor anchor, int64_t max_mem);
370
371
  // Flattens the Prog from "tree" form to "list" form. This is an in-place
372
  // operation in the sense that the old instructions are lost.
373
  void Flatten();
374
375
  // Walks the Prog; the "successor roots" or predecessors of the reachable
376
  // instructions are marked in rootmap or predmap/predvec, respectively.
377
  // reachable and stk are preallocated scratch structures.
378
  void MarkSuccessors(SparseArray<int>* rootmap,
379
                      SparseArray<int>* predmap,
380
                      std::vector<std::vector<int>>* predvec,
381
                      SparseSet* reachable, std::vector<int>* stk);
382
383
  // Walks the Prog from the given "root" instruction; the "dominator root"
384
  // of the reachable instructions (if such exists) is marked in rootmap.
385
  // reachable and stk are preallocated scratch structures.
386
  void MarkDominator(int root, SparseArray<int>* rootmap,
387
                     SparseArray<int>* predmap,
388
                     std::vector<std::vector<int>>* predvec,
389
                     SparseSet* reachable, std::vector<int>* stk);
390
391
  // Walks the Prog from the given "root" instruction; the reachable
392
  // instructions are emitted in "list" form and appended to flat.
393
  // reachable and stk are preallocated scratch structures.
394
  void EmitList(int root, SparseArray<int>* rootmap,
395
                std::vector<Inst>* flat,
396
                SparseSet* reachable, std::vector<int>* stk);
397
398
  // Computes hints for ByteRange instructions in [begin, end).
399
  void ComputeHints(std::vector<Inst>* flat, int begin, int end);
400
401
  // Controls whether the DFA should bail out early if the NFA would be faster.
402
  // FOR TESTING ONLY.
403
  static void TESTING_ONLY_set_dfa_should_bail_when_slow(bool b);
404
405
 private:
406
  friend class Compiler;
407
408
  DFA* GetDFA(MatchKind kind);
409
  void DeleteDFA(DFA* dfa);
410
411
  bool anchor_start_;       // regexp has explicit start anchor
412
  bool anchor_end_;         // regexp has explicit end anchor
413
  bool reversed_;           // whether program runs backward over input
414
  bool did_flatten_;        // has Flatten been called?
415
  bool did_onepass_;        // has IsOnePass been called?
416
417
  int start_;               // entry point for program
418
  int start_unanchored_;    // unanchored entry point for program
419
  int size_;                // number of instructions
420
  int bytemap_range_;       // bytemap_[x] < bytemap_range_
421
422
  bool prefix_foldcase_;    // whether prefix is case-insensitive
423
  size_t prefix_size_;      // size of prefix (0 if no prefix)
424
  union {
425
    uint64_t* prefix_dfa_;  // "Shift DFA" for prefix
426
    struct {
427
      int prefix_front_;    // first byte of prefix
428
      int prefix_back_;     // last byte of prefix
429
    };
430
  };
431
432
  int list_count_;                  // count of lists (see above)
433
  int inst_count_[kNumInst];        // count of instructions by opcode
434
  PODArray<uint16_t> list_heads_;   // sparse array enumerating list heads
435
                                    // not populated if size_ is overly large
436
  size_t bit_state_text_max_size_;  // upper bound (inclusive) on text.size()
437
438
  PODArray<Inst> inst_;              // pointer to instruction array
439
  PODArray<uint8_t> onepass_nodes_;  // data for OnePass nodes
440
441
  int64_t dfa_mem_;         // Maximum memory for DFAs.
442
  DFA* dfa_first_;          // DFA cached for kFirstMatch/kManyMatch
443
  DFA* dfa_longest_;        // DFA cached for kLongestMatch/kFullMatch
444
445
  uint8_t bytemap_[256];    // map from input bytes to byte classes
446
447
  std::once_flag dfa_first_once_;
448
  std::once_flag dfa_longest_once_;
449
450
  Prog(const Prog&) = delete;
451
  Prog& operator=(const Prog&) = delete;
452
};
453
454
// std::string_view in MSVC has iterators that aren't just pointers and
455
// that don't allow comparisons between different objects - not even if
456
// those objects are views into the same string! Thus, we provide these
457
// conversion functions for convenience.
458
11.6k
static inline const char* BeginPtr(const StringPiece& s) {
459
11.6k
  return s.data();
460
11.6k
}
Unexecuted instantiation: re2.cc:re2::BeginPtr(re2::StringPiece const&)
Unexecuted instantiation: bitstate.cc:re2::BeginPtr(re2::StringPiece const&)
Unexecuted instantiation: compile.cc:re2::BeginPtr(re2::StringPiece const&)
dfa.cc:re2::BeginPtr(re2::StringPiece const&)
Line
Count
Source
458
11.3k
static inline const char* BeginPtr(const StringPiece& s) {
459
11.3k
  return s.data();
460
11.3k
}
nfa.cc:re2::BeginPtr(re2::StringPiece const&)
Line
Count
Source
458
294
static inline const char* BeginPtr(const StringPiece& s) {
459
294
  return s.data();
460
294
}
onepass.cc:re2::BeginPtr(re2::StringPiece const&)
Line
Count
Source
458
16
static inline const char* BeginPtr(const StringPiece& s) {
459
16
  return s.data();
460
16
}
Unexecuted instantiation: prog.cc:re2::BeginPtr(re2::StringPiece const&)
461
6.85k
static inline const char* EndPtr(const StringPiece& s) {
462
6.85k
  return s.data() + s.size();
463
6.85k
}
Unexecuted instantiation: re2.cc:re2::EndPtr(re2::StringPiece const&)
Unexecuted instantiation: bitstate.cc:re2::EndPtr(re2::StringPiece const&)
Unexecuted instantiation: compile.cc:re2::EndPtr(re2::StringPiece const&)
dfa.cc:re2::EndPtr(re2::StringPiece const&)
Line
Count
Source
461
6.50k
static inline const char* EndPtr(const StringPiece& s) {
462
6.50k
  return s.data() + s.size();
463
6.50k
}
nfa.cc:re2::EndPtr(re2::StringPiece const&)
Line
Count
Source
461
344
static inline const char* EndPtr(const StringPiece& s) {
462
344
  return s.data() + s.size();
463
344
}
onepass.cc:re2::EndPtr(re2::StringPiece const&)
Line
Count
Source
461
12
static inline const char* EndPtr(const StringPiece& s) {
462
12
  return s.data() + s.size();
463
12
}
Unexecuted instantiation: prog.cc:re2::EndPtr(re2::StringPiece const&)
464
465
}  // namespace re2
466
467
#endif  // RE2_PROG_H_