Coverage Report

Created: 2024-08-17 06:42

/src/libjpeg-turbo.main/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
73.7k
{
79
73.7k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
73.7k
  int ci, blkn, dctbl, actbl;
81
73.7k
  d_derived_tbl **pdtbl;
82
73.7k
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
73.7k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
73.7k
      cinfo->Ah != 0 || cinfo->Al != 0)
90
71.9k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
152k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
79.2k
    compptr = cinfo->cur_comp_info[ci];
94
79.2k
    dctbl = compptr->dc_tbl_no;
95
79.2k
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
79.2k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
79.2k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
79.2k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
79.2k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
79.2k
    entropy->saved.last_dc_val[ci] = 0;
104
79.2k
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
163k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
89.5k
    ci = cinfo->MCU_membership[blkn];
109
89.5k
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
89.5k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
89.5k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
89.5k
    if (compptr->component_needed) {
115
63.7k
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
63.7k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
63.7k
    } else {
119
25.8k
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
25.8k
    }
121
89.5k
  }
122
123
  /* Initialize bitread state variables */
124
73.7k
  entropy->bitstate.bits_left = 0;
125
73.7k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
73.7k
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
73.7k
  entropy->restarts_to_go = cinfo->restart_interval;
130
73.7k
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
198k
{
144
198k
  JHUFF_TBL *htbl;
145
198k
  d_derived_tbl *dtbl;
146
198k
  int p, i, l, si, numsymbols;
147
198k
  int lookbits, ctr;
148
198k
  char huffsize[257];
149
198k
  unsigned int huffcode[257];
150
198k
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
198k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
341
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
198k
  htbl =
160
198k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
198k
  if (htbl == NULL)
162
42
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
198k
  if (*pdtbl == NULL)
166
21.0k
    *pdtbl = (d_derived_tbl *)
167
21.0k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
21.0k
                                  sizeof(d_derived_tbl));
169
198k
  dtbl = *pdtbl;
170
198k
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
198k
  p = 0;
175
3.36M
  for (l = 1; l <= 16; l++) {
176
3.16M
    i = (int)htbl->bits[l];
177
3.16M
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
6.39M
    while (i--)
180
3.23M
      huffsize[p++] = (char)l;
181
3.16M
  }
182
198k
  huffsize[p] = 0;
183
198k
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
198k
  code = 0;
189
198k
  si = huffsize[0];
190
198k
  p = 0;
191
1.45M
  while (huffsize[p]) {
192
4.48M
    while (((int)huffsize[p]) == si) {
193
3.22M
      huffcode[p++] = code;
194
3.22M
      code++;
195
3.22M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
1.25M
    if (((JLONG)code) >= (((JLONG)1) << si))
200
80
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
1.25M
    code <<= 1;
202
1.25M
    si++;
203
1.25M
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
198k
  p = 0;
208
3.35M
  for (l = 1; l <= 16; l++) {
209
3.16M
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
1.01M
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
1.01M
      p += htbl->bits[l];
215
1.01M
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
2.14M
    } else {
217
2.14M
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
2.14M
    }
219
3.16M
  }
220
198k
  dtbl->valoffset[17] = 0;
221
198k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
50.7M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
50.5M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
198k
  p = 0;
234
1.77M
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
4.25M
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
2.67M
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
45.6M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
42.9M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
42.9M
        lookbits++;
242
42.9M
      }
243
2.67M
    }
244
1.58M
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
198k
  if (isDC) {
253
682k
    for (i = 0; i < numsymbols; i++) {
254
593k
      int sym = htbl->huffval[i];
255
593k
      if (sym < 0 || sym > 15)
256
279
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
593k
    }
258
88.9k
  }
259
198k
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
6.09M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
1.79M
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
1.79M
  register const JOCTET *next_input_byte = state->next_input_byte;
292
1.79M
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
1.79M
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
1.79M
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
5.29M
    while (bits_left < MIN_GET_BITS) {
301
4.72M
      register int c;
302
303
      /* Attempt to read a byte */
304
4.72M
      if (bytes_in_buffer == 0) {
305
1.81k
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
0
          return FALSE;
307
1.81k
        next_input_byte = cinfo->src->next_input_byte;
308
1.81k
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
1.81k
      }
310
4.72M
      bytes_in_buffer--;
311
4.72M
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
4.72M
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
124k
        do {
321
124k
          if (bytes_in_buffer == 0) {
322
41
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
0
              return FALSE;
324
41
            next_input_byte = cinfo->src->next_input_byte;
325
41
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
41
          }
327
124k
          bytes_in_buffer--;
328
124k
          c = *next_input_byte++;
329
124k
        } while (c == 0xFF);
330
331
111k
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
4.04k
          c = 0xFF;
334
107k
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
107k
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
107k
          goto no_more_bytes;
346
107k
        }
347
111k
      }
348
349
      /* OK, load c into get_buffer */
350
4.61M
      get_buffer = (get_buffer << 8) | c;
351
4.61M
      bits_left += 8;
352
4.61M
    } /* end while */
353
1.12M
  } else {
354
1.22M
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
1.22M
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
402k
      if (!cinfo->entropy->insufficient_data) {
366
116k
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
116k
        cinfo->entropy->insufficient_data = TRUE;
368
116k
      }
369
      /* Fill the buffer with zero bits */
370
402k
      get_buffer <<= MIN_GET_BITS - bits_left;
371
402k
      bits_left = MIN_GET_BITS;
372
402k
    }
373
1.22M
  }
374
375
  /* Unload the local registers */
376
1.79M
  state->next_input_byte = next_input_byte;
377
1.79M
  state->bytes_in_buffer = bytes_in_buffer;
378
1.79M
  state->get_buffer = get_buffer;
379
1.79M
  state->bits_left = bits_left;
380
381
1.79M
  return TRUE;
382
1.79M
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
1.88M
#define GET_BYTE { \
390
1.88M
  register int c0, c1; \
391
1.88M
  c0 = *buffer++; \
392
1.88M
  c1 = *buffer; \
393
1.88M
  /* Pre-execute most common case */ \
394
1.88M
  get_buffer = (get_buffer << 8) | c0; \
395
1.88M
  bits_left += 8; \
396
1.88M
  if (c0 == 0xFF) { \
397
466k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
466k
    buffer++; \
399
466k
    if (c1 != 0) { \
400
457k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
457k
      cinfo->unread_marker = c1; \
402
457k
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
457k
      buffer -= 2; \
404
457k
      get_buffer &= ~0xFF; \
405
457k
    } \
406
466k
  } \
407
1.88M
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
5.70M
  if (bits_left <= 16) { \
414
313k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
313k
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
930k
{
438
930k
  register int l = min_bits;
439
930k
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
930k
  CHECK_BIT_BUFFER(*state, l, return -1);
445
930k
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
3.49M
  while (code > htbl->maxcode[l]) {
451
2.56M
    code <<= 1;
452
2.56M
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
2.56M
    code |= GET_BITS(1);
454
2.56M
    l++;
455
2.56M
  }
456
457
  /* Unload the local registers */
458
930k
  state->get_buffer = get_buffer;
459
930k
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
930k
  if (l > 16) {
464
186k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
186k
    return 0;                   /* fake a zero as the safest result */
466
186k
  }
467
468
744k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
930k
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
6.38M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
6.38M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
445k
{
512
445k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
445k
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
445k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
445k
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
445k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
0
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
893k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
447k
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
445k
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
445k
  if (cinfo->unread_marker == 0)
537
12.9k
    entropy->pub.insufficient_data = FALSE;
538
539
445k
  return TRUE;
540
445k
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
188k
{
552
188k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
188k
  BITREAD_STATE_VARS;
554
188k
  int blkn;
555
188k
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
188k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
188k
  state = entropy->saved;
561
562
475k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
287k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
287k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
287k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
287k
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
287k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
287k
    if (s) {
573
215k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
215k
      r = GET_BITS(s);
575
215k
      s = HUFF_EXTEND(r, s);
576
215k
    }
577
578
287k
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
217k
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
217k
      s += state.last_dc_val[ci];
590
217k
      state.last_dc_val[ci] = s;
591
217k
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
217k
        (*block)[0] = (JCOEF)s;
594
217k
      }
595
217k
    }
596
597
287k
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
4.49M
      for (k = 1; k < DCTSIZE2; k++) {
602
4.42M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
4.42M
        r = s >> 4;
605
4.42M
        s &= 15;
606
607
4.42M
        if (s) {
608
4.24M
          k += r;
609
4.24M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
4.24M
          r = GET_BITS(s);
611
4.24M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
4.24M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
4.24M
        } else {
618
178k
          if (r != 15)
619
150k
            break;
620
28.6k
          k += 15;
621
28.6k
        }
622
4.42M
      }
623
624
217k
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
1.84M
      for (k = 1; k < DCTSIZE2; k++) {
629
1.81M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
1.81M
        r = s >> 4;
632
1.81M
        s &= 15;
633
634
1.81M
        if (s) {
635
1.77M
          k += r;
636
1.77M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
1.77M
          DROP_BITS(s);
638
1.77M
        } else {
639
43.6k
          if (r != 15)
640
41.7k
            break;
641
1.92k
          k += 15;
642
1.92k
        }
643
1.81M
      }
644
70.2k
    }
645
287k
  }
646
647
  /* Completed MCU, so update state */
648
188k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
188k
  entropy->saved = state;
650
188k
  return TRUE;
651
188k
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
221k
{
663
221k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
221k
  BITREAD_STATE_VARS;
665
221k
  JOCTET *buffer;
666
221k
  int blkn;
667
221k
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
221k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
221k
  buffer = (JOCTET *)br_state.next_input_byte;
673
221k
  state = entropy->saved;
674
675
449k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
228k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
228k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
228k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
228k
    register int s, k, r, l;
680
681
228k
    HUFF_DECODE_FAST(s, l, dctbl);
682
228k
    if (s) {
683
196k
      FILL_BIT_BUFFER_FAST
684
196k
      r = GET_BITS(s);
685
196k
      s = HUFF_EXTEND(r, s);
686
196k
    }
687
688
228k
    if (entropy->dc_needed[blkn]) {
689
155k
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
155k
      s += state.last_dc_val[ci];
694
155k
      state.last_dc_val[ci] = s;
695
155k
      if (block)
696
155k
        (*block)[0] = (JCOEF)s;
697
155k
    }
698
699
228k
    if (entropy->ac_needed[blkn] && block) {
700
701
1.87M
      for (k = 1; k < DCTSIZE2; k++) {
702
1.84M
        HUFF_DECODE_FAST(s, l, actbl);
703
1.84M
        r = s >> 4;
704
1.84M
        s &= 15;
705
706
1.84M
        if (s) {
707
1.72M
          k += r;
708
1.72M
          FILL_BIT_BUFFER_FAST
709
1.72M
          r = GET_BITS(s);
710
1.72M
          s = HUFF_EXTEND(r, s);
711
1.72M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
1.72M
        } else {
713
121k
          if (r != 15) break;
714
1.24k
          k += 15;
715
1.24k
        }
716
1.84M
      }
717
718
155k
    } else {
719
720
904k
      for (k = 1; k < DCTSIZE2; k++) {
721
887k
        HUFF_DECODE_FAST(s, l, actbl);
722
887k
        r = s >> 4;
723
887k
        s &= 15;
724
725
887k
        if (s) {
726
831k
          k += r;
727
831k
          FILL_BIT_BUFFER_FAST
728
831k
          DROP_BITS(s);
729
831k
        } else {
730
55.6k
          if (r != 15) break;
731
483
          k += 15;
732
483
        }
733
887k
      }
734
72.5k
    }
735
228k
  }
736
737
221k
  if (cinfo->unread_marker != 0) {
738
37.2k
    cinfo->unread_marker = 0;
739
37.2k
    return FALSE;
740
37.2k
  }
741
742
184k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
184k
  br_state.next_input_byte = buffer;
744
184k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
184k
  entropy->saved = state;
746
184k
  return TRUE;
747
221k
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
2.57M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
2.57M
{
770
2.57M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
2.57M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
2.57M
  if (cinfo->restart_interval) {
775
1.38M
    if (entropy->restarts_to_go == 0)
776
445k
      if (!process_restart(cinfo))
777
0
        return FALSE;
778
1.38M
    usefast = 0;
779
1.38M
  }
780
781
2.57M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
2.57M
      cinfo->unread_marker != 0)
783
2.31M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
2.57M
  if (!entropy->pub.insufficient_data) {
789
790
372k
    if (usefast) {
791
221k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
221k
    } else {
793
188k
use_slow:
794
188k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
188k
    }
796
797
372k
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
2.57M
  if (cinfo->restart_interval)
801
1.38M
    entropy->restarts_to_go--;
802
803
2.57M
  return TRUE;
804
2.57M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
5.66k
{
814
5.66k
  huff_entropy_ptr entropy;
815
5.66k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
5.66k
  std_huff_tables((j_common_ptr)cinfo);
822
823
5.66k
  entropy = (huff_entropy_ptr)
824
5.66k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
5.66k
                                sizeof(huff_entropy_decoder));
826
5.66k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
5.66k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
5.66k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
28.3k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
22.6k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
22.6k
  }
834
5.66k
}