/src/libjpeg-turbo.main/jmemmgr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jmemmgr.c |
3 | | * |
4 | | * This file was part of the Independent JPEG Group's software: |
5 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
6 | | * libjpeg-turbo Modifications: |
7 | | * Copyright (C) 2016, 2021-2022, D. R. Commander. |
8 | | * For conditions of distribution and use, see the accompanying README.ijg |
9 | | * file. |
10 | | * |
11 | | * This file contains the JPEG system-independent memory management |
12 | | * routines. This code is usable across a wide variety of machines; most |
13 | | * of the system dependencies have been isolated in a separate file. |
14 | | * The major functions provided here are: |
15 | | * * pool-based allocation and freeing of memory; |
16 | | * * policy decisions about how to divide available memory among the |
17 | | * virtual arrays; |
18 | | * * control logic for swapping virtual arrays between main memory and |
19 | | * backing storage. |
20 | | * The separate system-dependent file provides the actual backing-storage |
21 | | * access code, and it contains the policy decision about how much total |
22 | | * main memory to use. |
23 | | * This file is system-dependent in the sense that some of its functions |
24 | | * are unnecessary in some systems. For example, if there is enough virtual |
25 | | * memory so that backing storage will never be used, much of the virtual |
26 | | * array control logic could be removed. (Of course, if you have that much |
27 | | * memory then you shouldn't care about a little bit of unused code...) |
28 | | */ |
29 | | |
30 | | #define JPEG_INTERNALS |
31 | | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
32 | | #include "jinclude.h" |
33 | | #include "jpeglib.h" |
34 | | #include "jmemsys.h" /* import the system-dependent declarations */ |
35 | | #if !defined(_MSC_VER) || _MSC_VER > 1600 |
36 | | #include <stdint.h> |
37 | | #endif |
38 | | #include <limits.h> |
39 | | |
40 | | |
41 | | LOCAL(size_t) |
42 | | round_up_pow2(size_t a, size_t b) |
43 | | /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ |
44 | | /* Assumes a >= 0, b > 0, and b is a power of 2 */ |
45 | 1.01M | { |
46 | 1.01M | return ((a + b - 1) & (~(b - 1))); |
47 | 1.01M | } |
48 | | |
49 | | |
50 | | /* |
51 | | * Some important notes: |
52 | | * The allocation routines provided here must never return NULL. |
53 | | * They should exit to error_exit if unsuccessful. |
54 | | * |
55 | | * It's not a good idea to try to merge the sarray and barray routines, |
56 | | * even though they are textually almost the same, because samples are |
57 | | * usually stored as bytes while coefficients are shorts or ints. Thus, |
58 | | * in machines where byte pointers have a different representation from |
59 | | * word pointers, the resulting machine code could not be the same. |
60 | | */ |
61 | | |
62 | | |
63 | | /* |
64 | | * Many machines require storage alignment: longs must start on 4-byte |
65 | | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
66 | | * always returns pointers that are multiples of the worst-case alignment |
67 | | * requirement, and we had better do so too. |
68 | | * There isn't any really portable way to determine the worst-case alignment |
69 | | * requirement. This module assumes that the alignment requirement is |
70 | | * multiples of ALIGN_SIZE. |
71 | | * By default, we define ALIGN_SIZE as the maximum of sizeof(double) and |
72 | | * sizeof(void *). This is necessary on some workstations (where doubles |
73 | | * really do need 8-byte alignment) and will work fine on nearly everything. |
74 | | * We use the maximum of sizeof(double) and sizeof(void *) since sizeof(double) |
75 | | * may be insufficient, for example, on CHERI-enabled platforms with 16-byte |
76 | | * pointers and a 16-byte alignment requirement. If your machine has lesser |
77 | | * alignment needs, you can save a few bytes by making ALIGN_SIZE smaller. |
78 | | * The only place I know of where this will NOT work is certain Macintosh |
79 | | * 680x0 compilers that define double as a 10-byte IEEE extended float. |
80 | | * Doing 10-byte alignment is counterproductive because longwords won't be |
81 | | * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have |
82 | | * such a compiler. |
83 | | */ |
84 | | |
85 | | #ifndef ALIGN_SIZE /* so can override from jconfig.h */ |
86 | | #ifndef WITH_SIMD |
87 | | #define ALIGN_SIZE MAX(sizeof(void *), sizeof(double)) |
88 | | #else |
89 | 5.47M | #define ALIGN_SIZE 32 /* Most of the SIMD instructions we support require |
90 | | 16-byte (128-bit) alignment, but AVX2 requires |
91 | | 32-byte alignment. */ |
92 | | #endif |
93 | | #endif |
94 | | |
95 | | /* |
96 | | * We allocate objects from "pools", where each pool is gotten with a single |
97 | | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
98 | | * overhead within a pool, except for alignment padding. Each pool has a |
99 | | * header with a link to the next pool of the same class. |
100 | | * Small and large pool headers are identical. |
101 | | */ |
102 | | |
103 | | typedef struct small_pool_struct *small_pool_ptr; |
104 | | |
105 | | typedef struct small_pool_struct { |
106 | | small_pool_ptr next; /* next in list of pools */ |
107 | | size_t bytes_used; /* how many bytes already used within pool */ |
108 | | size_t bytes_left; /* bytes still available in this pool */ |
109 | | } small_pool_hdr; |
110 | | |
111 | | typedef struct large_pool_struct *large_pool_ptr; |
112 | | |
113 | | typedef struct large_pool_struct { |
114 | | large_pool_ptr next; /* next in list of pools */ |
115 | | size_t bytes_used; /* how many bytes already used within pool */ |
116 | | size_t bytes_left; /* bytes still available in this pool */ |
117 | | } large_pool_hdr; |
118 | | |
119 | | /* |
120 | | * Here is the full definition of a memory manager object. |
121 | | */ |
122 | | |
123 | | typedef struct { |
124 | | struct jpeg_memory_mgr pub; /* public fields */ |
125 | | |
126 | | /* Each pool identifier (lifetime class) names a linked list of pools. */ |
127 | | small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
128 | | large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
129 | | |
130 | | /* Since we only have one lifetime class of virtual arrays, only one |
131 | | * linked list is necessary (for each datatype). Note that the virtual |
132 | | * array control blocks being linked together are actually stored somewhere |
133 | | * in the small-pool list. |
134 | | */ |
135 | | jvirt_sarray_ptr virt_sarray_list; |
136 | | jvirt_barray_ptr virt_barray_list; |
137 | | |
138 | | /* This counts total space obtained from jpeg_get_small/large */ |
139 | | size_t total_space_allocated; |
140 | | |
141 | | /* alloc_sarray and alloc_barray set this value for use by virtual |
142 | | * array routines. |
143 | | */ |
144 | | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
145 | | } my_memory_mgr; |
146 | | |
147 | | typedef my_memory_mgr *my_mem_ptr; |
148 | | |
149 | | |
150 | | /* |
151 | | * The control blocks for virtual arrays. |
152 | | * Note that these blocks are allocated in the "small" pool area. |
153 | | * System-dependent info for the associated backing store (if any) is hidden |
154 | | * inside the backing_store_info struct. |
155 | | */ |
156 | | |
157 | | struct jvirt_sarray_control { |
158 | | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
159 | | JDIMENSION rows_in_array; /* total virtual array height */ |
160 | | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
161 | | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
162 | | JDIMENSION rows_in_mem; /* height of memory buffer */ |
163 | | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
164 | | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
165 | | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
166 | | boolean pre_zero; /* pre-zero mode requested? */ |
167 | | boolean dirty; /* do current buffer contents need written? */ |
168 | | boolean b_s_open; /* is backing-store data valid? */ |
169 | | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
170 | | backing_store_info b_s_info; /* System-dependent control info */ |
171 | | }; |
172 | | |
173 | | struct jvirt_barray_control { |
174 | | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
175 | | JDIMENSION rows_in_array; /* total virtual array height */ |
176 | | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
177 | | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
178 | | JDIMENSION rows_in_mem; /* height of memory buffer */ |
179 | | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
180 | | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
181 | | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
182 | | boolean pre_zero; /* pre-zero mode requested? */ |
183 | | boolean dirty; /* do current buffer contents need written? */ |
184 | | boolean b_s_open; /* is backing-store data valid? */ |
185 | | jvirt_barray_ptr next; /* link to next virtual barray control block */ |
186 | | backing_store_info b_s_info; /* System-dependent control info */ |
187 | | }; |
188 | | |
189 | | |
190 | | #ifdef MEM_STATS /* optional extra stuff for statistics */ |
191 | | |
192 | | LOCAL(void) |
193 | | print_mem_stats(j_common_ptr cinfo, int pool_id) |
194 | | { |
195 | | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
196 | | small_pool_ptr shdr_ptr; |
197 | | large_pool_ptr lhdr_ptr; |
198 | | |
199 | | /* Since this is only a debugging stub, we can cheat a little by using |
200 | | * fprintf directly rather than going through the trace message code. |
201 | | * This is helpful because message parm array can't handle longs. |
202 | | */ |
203 | | fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
204 | | pool_id, mem->total_space_allocated); |
205 | | |
206 | | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
207 | | lhdr_ptr = lhdr_ptr->next) { |
208 | | fprintf(stderr, " Large chunk used %ld\n", (long)lhdr_ptr->bytes_used); |
209 | | } |
210 | | |
211 | | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
212 | | shdr_ptr = shdr_ptr->next) { |
213 | | fprintf(stderr, " Small chunk used %ld free %ld\n", |
214 | | (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left); |
215 | | } |
216 | | } |
217 | | |
218 | | #endif /* MEM_STATS */ |
219 | | |
220 | | |
221 | | LOCAL(void) |
222 | | out_of_memory(j_common_ptr cinfo, int which) |
223 | | /* Report an out-of-memory error and stop execution */ |
224 | | /* If we compiled MEM_STATS support, report alloc requests before dying */ |
225 | 0 | { |
226 | | #ifdef MEM_STATS |
227 | | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
228 | | #endif |
229 | 0 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
230 | 0 | } |
231 | | |
232 | | |
233 | | /* |
234 | | * Allocation of "small" objects. |
235 | | * |
236 | | * For these, we use pooled storage. When a new pool must be created, |
237 | | * we try to get enough space for the current request plus a "slop" factor, |
238 | | * where the slop will be the amount of leftover space in the new pool. |
239 | | * The speed vs. space tradeoff is largely determined by the slop values. |
240 | | * A different slop value is provided for each pool class (lifetime), |
241 | | * and we also distinguish the first pool of a class from later ones. |
242 | | * NOTE: the values given work fairly well on both 16- and 32-bit-int |
243 | | * machines, but may be too small if longs are 64 bits or more. |
244 | | * |
245 | | * Since we do not know what alignment malloc() gives us, we have to |
246 | | * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment |
247 | | * adjustment. |
248 | | */ |
249 | | |
250 | | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = { |
251 | | 1600, /* first PERMANENT pool */ |
252 | | 16000 /* first IMAGE pool */ |
253 | | }; |
254 | | |
255 | | static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = { |
256 | | 0, /* additional PERMANENT pools */ |
257 | | 5000 /* additional IMAGE pools */ |
258 | | }; |
259 | | |
260 | 0 | #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
261 | | |
262 | | |
263 | | METHODDEF(void *) |
264 | | alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
265 | | /* Allocate a "small" object */ |
266 | 767k | { |
267 | 767k | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
268 | 767k | small_pool_ptr hdr_ptr, prev_hdr_ptr; |
269 | 767k | char *data_ptr; |
270 | 767k | size_t min_request, slop; |
271 | | |
272 | | /* |
273 | | * Round up the requested size to a multiple of ALIGN_SIZE in order |
274 | | * to assure alignment for the next object allocated in the same pool |
275 | | * and so that algorithms can straddle outside the proper area up |
276 | | * to the next alignment. |
277 | | */ |
278 | 767k | if (sizeofobject > MAX_ALLOC_CHUNK) { |
279 | | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
280 | | is close to SIZE_MAX. */ |
281 | 0 | out_of_memory(cinfo, 7); |
282 | 0 | } |
283 | 767k | sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
284 | | |
285 | | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
286 | 767k | if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
287 | 767k | MAX_ALLOC_CHUNK) |
288 | 0 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
289 | | |
290 | | /* See if space is available in any existing pool */ |
291 | 767k | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
292 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
293 | 767k | prev_hdr_ptr = NULL; |
294 | 767k | hdr_ptr = mem->small_list[pool_id]; |
295 | 772k | while (hdr_ptr != NULL) { |
296 | 708k | if (hdr_ptr->bytes_left >= sizeofobject) |
297 | 702k | break; /* found pool with enough space */ |
298 | 5.26k | prev_hdr_ptr = hdr_ptr; |
299 | 5.26k | hdr_ptr = hdr_ptr->next; |
300 | 5.26k | } |
301 | | |
302 | | /* Time to make a new pool? */ |
303 | 767k | if (hdr_ptr == NULL) { |
304 | | /* min_request is what we need now, slop is what will be leftover */ |
305 | 64.2k | min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; |
306 | 64.2k | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
307 | 59.8k | slop = first_pool_slop[pool_id]; |
308 | 4.35k | else |
309 | 4.35k | slop = extra_pool_slop[pool_id]; |
310 | | /* Don't ask for more than MAX_ALLOC_CHUNK */ |
311 | 64.2k | if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request)) |
312 | 0 | slop = (size_t)(MAX_ALLOC_CHUNK - min_request); |
313 | | /* Try to get space, if fail reduce slop and try again */ |
314 | 64.2k | for (;;) { |
315 | 64.2k | hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop); |
316 | 64.2k | if (hdr_ptr != NULL) |
317 | 64.2k | break; |
318 | 0 | slop /= 2; |
319 | 0 | if (slop < MIN_SLOP) /* give up when it gets real small */ |
320 | 0 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
321 | 0 | } |
322 | 64.2k | mem->total_space_allocated += min_request + slop; |
323 | | /* Success, initialize the new pool header and add to end of list */ |
324 | 64.2k | hdr_ptr->next = NULL; |
325 | 64.2k | hdr_ptr->bytes_used = 0; |
326 | 64.2k | hdr_ptr->bytes_left = sizeofobject + slop; |
327 | 64.2k | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
328 | 59.8k | mem->small_list[pool_id] = hdr_ptr; |
329 | 4.35k | else |
330 | 4.35k | prev_hdr_ptr->next = hdr_ptr; |
331 | 64.2k | } |
332 | | |
333 | | /* OK, allocate the object from the current pool */ |
334 | 767k | data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ |
335 | 767k | data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
336 | 767k | if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
337 | 767k | data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
338 | 767k | data_ptr += hdr_ptr->bytes_used; /* point to place for object */ |
339 | 767k | hdr_ptr->bytes_used += sizeofobject; |
340 | 767k | hdr_ptr->bytes_left -= sizeofobject; |
341 | | |
342 | 767k | return (void *)data_ptr; |
343 | 767k | } |
344 | | |
345 | | |
346 | | /* |
347 | | * Allocation of "large" objects. |
348 | | * |
349 | | * The external semantics of these are the same as "small" objects. However, |
350 | | * the pool management heuristics are quite different. We assume that each |
351 | | * request is large enough that it may as well be passed directly to |
352 | | * jpeg_get_large; the pool management just links everything together |
353 | | * so that we can free it all on demand. |
354 | | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
355 | | * structures. The routines that create these structures (see below) |
356 | | * deliberately bunch rows together to ensure a large request size. |
357 | | */ |
358 | | |
359 | | METHODDEF(void *) |
360 | | alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
361 | | /* Allocate a "large" object */ |
362 | 151k | { |
363 | 151k | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
364 | 151k | large_pool_ptr hdr_ptr; |
365 | 151k | char *data_ptr; |
366 | | |
367 | | /* |
368 | | * Round up the requested size to a multiple of ALIGN_SIZE so that |
369 | | * algorithms can straddle outside the proper area up to the next |
370 | | * alignment. |
371 | | */ |
372 | 151k | if (sizeofobject > MAX_ALLOC_CHUNK) { |
373 | | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
374 | | is close to SIZE_MAX. */ |
375 | 0 | out_of_memory(cinfo, 8); |
376 | 0 | } |
377 | 151k | sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
378 | | |
379 | | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
380 | 151k | if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
381 | 151k | MAX_ALLOC_CHUNK) |
382 | 0 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
383 | | |
384 | | /* Always make a new pool */ |
385 | 151k | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
386 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
387 | | |
388 | 151k | hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject + |
389 | 151k | sizeof(large_pool_hdr) + |
390 | 151k | ALIGN_SIZE - 1); |
391 | 151k | if (hdr_ptr == NULL) |
392 | 0 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
393 | 151k | mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + |
394 | 151k | ALIGN_SIZE - 1; |
395 | | |
396 | | /* Success, initialize the new pool header and add to list */ |
397 | 151k | hdr_ptr->next = mem->large_list[pool_id]; |
398 | | /* We maintain space counts in each pool header for statistical purposes, |
399 | | * even though they are not needed for allocation. |
400 | | */ |
401 | 151k | hdr_ptr->bytes_used = sizeofobject; |
402 | 151k | hdr_ptr->bytes_left = 0; |
403 | 151k | mem->large_list[pool_id] = hdr_ptr; |
404 | | |
405 | 151k | data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ |
406 | 151k | data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
407 | 151k | if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
408 | 151k | data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
409 | | |
410 | 151k | return (void *)data_ptr; |
411 | 151k | } |
412 | | |
413 | | |
414 | | /* |
415 | | * Creation of 2-D sample arrays. |
416 | | * |
417 | | * To minimize allocation overhead and to allow I/O of large contiguous |
418 | | * blocks, we allocate the sample rows in groups of as many rows as possible |
419 | | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
420 | | * NB: the virtual array control routines, later in this file, know about |
421 | | * this chunking of rows. The rowsperchunk value is left in the mem manager |
422 | | * object so that it can be saved away if this sarray is the workspace for |
423 | | * a virtual array. |
424 | | * |
425 | | * Since we are often upsampling with a factor 2, we align the size (not |
426 | | * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have |
427 | | * to be as careful about size. |
428 | | */ |
429 | | |
430 | | METHODDEF(JSAMPARRAY) |
431 | | alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, |
432 | | JDIMENSION numrows) |
433 | | /* Allocate a 2-D sample array */ |
434 | 97.5k | { |
435 | 97.5k | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
436 | 97.5k | JSAMPARRAY result; |
437 | 97.5k | JSAMPROW workspace; |
438 | 97.5k | JDIMENSION rowsperchunk, currow, i; |
439 | 97.5k | long ltemp; |
440 | | |
441 | | /* Make sure each row is properly aligned */ |
442 | 97.5k | if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) |
443 | 0 | out_of_memory(cinfo, 5); /* safety check */ |
444 | | |
445 | 97.5k | if (samplesperrow > MAX_ALLOC_CHUNK) { |
446 | | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
447 | | is close to SIZE_MAX. */ |
448 | 0 | out_of_memory(cinfo, 9); |
449 | 0 | } |
450 | 97.5k | samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / |
451 | 97.5k | sizeof(JSAMPLE)); |
452 | | |
453 | | /* Calculate max # of rows allowed in one allocation chunk */ |
454 | 97.5k | ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / |
455 | 97.5k | ((long)samplesperrow * sizeof(JSAMPLE)); |
456 | 97.5k | if (ltemp <= 0) |
457 | 0 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
458 | 97.5k | if (ltemp < (long)numrows) |
459 | 0 | rowsperchunk = (JDIMENSION)ltemp; |
460 | 97.5k | else |
461 | 97.5k | rowsperchunk = numrows; |
462 | 97.5k | mem->last_rowsperchunk = rowsperchunk; |
463 | | |
464 | | /* Get space for row pointers (small object) */ |
465 | 97.5k | result = (JSAMPARRAY)alloc_small(cinfo, pool_id, |
466 | 97.5k | (size_t)(numrows * sizeof(JSAMPROW))); |
467 | | |
468 | | /* Get the rows themselves (large objects) */ |
469 | 97.5k | currow = 0; |
470 | 195k | while (currow < numrows) { |
471 | 97.5k | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
472 | 97.5k | workspace = (JSAMPROW)alloc_large(cinfo, pool_id, |
473 | 97.5k | (size_t)((size_t)rowsperchunk * (size_t)samplesperrow * |
474 | 97.5k | sizeof(JSAMPLE))); |
475 | 1.09M | for (i = rowsperchunk; i > 0; i--) { |
476 | 994k | result[currow++] = workspace; |
477 | 994k | workspace += samplesperrow; |
478 | 994k | } |
479 | 97.5k | } |
480 | | |
481 | 97.5k | return result; |
482 | 97.5k | } |
483 | | |
484 | | |
485 | | /* |
486 | | * Creation of 2-D coefficient-block arrays. |
487 | | * This is essentially the same as the code for sample arrays, above. |
488 | | */ |
489 | | |
490 | | METHODDEF(JBLOCKARRAY) |
491 | | alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, |
492 | | JDIMENSION numrows) |
493 | | /* Allocate a 2-D coefficient-block array */ |
494 | 46.5k | { |
495 | 46.5k | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
496 | 46.5k | JBLOCKARRAY result; |
497 | 46.5k | JBLOCKROW workspace; |
498 | 46.5k | JDIMENSION rowsperchunk, currow, i; |
499 | 46.5k | long ltemp; |
500 | | |
501 | | /* Make sure each row is properly aligned */ |
502 | 46.5k | if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) |
503 | 0 | out_of_memory(cinfo, 6); /* safety check */ |
504 | | |
505 | | /* Calculate max # of rows allowed in one allocation chunk */ |
506 | 46.5k | ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / |
507 | 46.5k | ((long)blocksperrow * sizeof(JBLOCK)); |
508 | 46.5k | if (ltemp <= 0) |
509 | 0 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
510 | 46.5k | if (ltemp < (long)numrows) |
511 | 0 | rowsperchunk = (JDIMENSION)ltemp; |
512 | 46.5k | else |
513 | 46.5k | rowsperchunk = numrows; |
514 | 46.5k | mem->last_rowsperchunk = rowsperchunk; |
515 | | |
516 | | /* Get space for row pointers (small object) */ |
517 | 46.5k | result = (JBLOCKARRAY)alloc_small(cinfo, pool_id, |
518 | 46.5k | (size_t)(numrows * sizeof(JBLOCKROW))); |
519 | | |
520 | | /* Get the rows themselves (large objects) */ |
521 | 46.5k | currow = 0; |
522 | 93.1k | while (currow < numrows) { |
523 | 46.5k | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
524 | 46.5k | workspace = (JBLOCKROW)alloc_large(cinfo, pool_id, |
525 | 46.5k | (size_t)((size_t)rowsperchunk * (size_t)blocksperrow * |
526 | 46.5k | sizeof(JBLOCK))); |
527 | 3.89M | for (i = rowsperchunk; i > 0; i--) { |
528 | 3.85M | result[currow++] = workspace; |
529 | 3.85M | workspace += blocksperrow; |
530 | 3.85M | } |
531 | 46.5k | } |
532 | | |
533 | 46.5k | return result; |
534 | 46.5k | } |
535 | | |
536 | | |
537 | | /* |
538 | | * About virtual array management: |
539 | | * |
540 | | * The above "normal" array routines are only used to allocate strip buffers |
541 | | * (as wide as the image, but just a few rows high). Full-image-sized buffers |
542 | | * are handled as "virtual" arrays. The array is still accessed a strip at a |
543 | | * time, but the memory manager must save the whole array for repeated |
544 | | * accesses. The intended implementation is that there is a strip buffer in |
545 | | * memory (as high as is possible given the desired memory limit), plus a |
546 | | * backing file that holds the rest of the array. |
547 | | * |
548 | | * The request_virt_array routines are told the total size of the image and |
549 | | * the maximum number of rows that will be accessed at once. The in-memory |
550 | | * buffer must be at least as large as the maxaccess value. |
551 | | * |
552 | | * The request routines create control blocks but not the in-memory buffers. |
553 | | * That is postponed until realize_virt_arrays is called. At that time the |
554 | | * total amount of space needed is known (approximately, anyway), so free |
555 | | * memory can be divided up fairly. |
556 | | * |
557 | | * The access_virt_array routines are responsible for making a specific strip |
558 | | * area accessible (after reading or writing the backing file, if necessary). |
559 | | * Note that the access routines are told whether the caller intends to modify |
560 | | * the accessed strip; during a read-only pass this saves having to rewrite |
561 | | * data to disk. The access routines are also responsible for pre-zeroing |
562 | | * any newly accessed rows, if pre-zeroing was requested. |
563 | | * |
564 | | * In current usage, the access requests are usually for nonoverlapping |
565 | | * strips; that is, successive access start_row numbers differ by exactly |
566 | | * num_rows = maxaccess. This means we can get good performance with simple |
567 | | * buffer dump/reload logic, by making the in-memory buffer be a multiple |
568 | | * of the access height; then there will never be accesses across bufferload |
569 | | * boundaries. The code will still work with overlapping access requests, |
570 | | * but it doesn't handle bufferload overlaps very efficiently. |
571 | | */ |
572 | | |
573 | | |
574 | | METHODDEF(jvirt_sarray_ptr) |
575 | | request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero, |
576 | | JDIMENSION samplesperrow, JDIMENSION numrows, |
577 | | JDIMENSION maxaccess) |
578 | | /* Request a virtual 2-D sample array */ |
579 | 0 | { |
580 | 0 | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
581 | 0 | jvirt_sarray_ptr result; |
582 | | |
583 | | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
584 | 0 | if (pool_id != JPOOL_IMAGE) |
585 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
586 | | |
587 | | /* get control block */ |
588 | 0 | result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id, |
589 | 0 | sizeof(struct jvirt_sarray_control)); |
590 | |
|
591 | 0 | result->mem_buffer = NULL; /* marks array not yet realized */ |
592 | 0 | result->rows_in_array = numrows; |
593 | 0 | result->samplesperrow = samplesperrow; |
594 | 0 | result->maxaccess = maxaccess; |
595 | 0 | result->pre_zero = pre_zero; |
596 | 0 | result->b_s_open = FALSE; /* no associated backing-store object */ |
597 | 0 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
598 | 0 | mem->virt_sarray_list = result; |
599 | |
|
600 | 0 | return result; |
601 | 0 | } |
602 | | |
603 | | |
604 | | METHODDEF(jvirt_barray_ptr) |
605 | | request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero, |
606 | | JDIMENSION blocksperrow, JDIMENSION numrows, |
607 | | JDIMENSION maxaccess) |
608 | | /* Request a virtual 2-D coefficient-block array */ |
609 | 46.5k | { |
610 | 46.5k | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
611 | 46.5k | jvirt_barray_ptr result; |
612 | | |
613 | | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
614 | 46.5k | if (pool_id != JPOOL_IMAGE) |
615 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
616 | | |
617 | | /* get control block */ |
618 | 46.5k | result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id, |
619 | 46.5k | sizeof(struct jvirt_barray_control)); |
620 | | |
621 | 46.5k | result->mem_buffer = NULL; /* marks array not yet realized */ |
622 | 46.5k | result->rows_in_array = numrows; |
623 | 46.5k | result->blocksperrow = blocksperrow; |
624 | 46.5k | result->maxaccess = maxaccess; |
625 | 46.5k | result->pre_zero = pre_zero; |
626 | 46.5k | result->b_s_open = FALSE; /* no associated backing-store object */ |
627 | 46.5k | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
628 | 46.5k | mem->virt_barray_list = result; |
629 | | |
630 | 46.5k | return result; |
631 | 46.5k | } |
632 | | |
633 | | |
634 | | METHODDEF(void) |
635 | | realize_virt_arrays(j_common_ptr cinfo) |
636 | | /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
637 | 21.6k | { |
638 | 21.6k | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
639 | 21.6k | size_t space_per_minheight, maximum_space, avail_mem; |
640 | 21.6k | size_t minheights, max_minheights; |
641 | 21.6k | jvirt_sarray_ptr sptr; |
642 | 21.6k | jvirt_barray_ptr bptr; |
643 | | |
644 | | /* Compute the minimum space needed (maxaccess rows in each buffer) |
645 | | * and the maximum space needed (full image height in each buffer). |
646 | | * These may be of use to the system-dependent jpeg_mem_available routine. |
647 | | */ |
648 | 21.6k | space_per_minheight = 0; |
649 | 21.6k | maximum_space = 0; |
650 | 21.6k | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
651 | 0 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
652 | 0 | size_t new_space = (long)sptr->rows_in_array * |
653 | 0 | (long)sptr->samplesperrow * sizeof(JSAMPLE); |
654 | |
|
655 | 0 | space_per_minheight += (long)sptr->maxaccess * |
656 | 0 | (long)sptr->samplesperrow * sizeof(JSAMPLE); |
657 | 0 | if (SIZE_MAX - maximum_space < new_space) |
658 | 0 | out_of_memory(cinfo, 10); |
659 | 0 | maximum_space += new_space; |
660 | 0 | } |
661 | 0 | } |
662 | 68.2k | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
663 | 46.5k | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
664 | 46.5k | size_t new_space = (long)bptr->rows_in_array * |
665 | 46.5k | (long)bptr->blocksperrow * sizeof(JBLOCK); |
666 | | |
667 | 46.5k | space_per_minheight += (long)bptr->maxaccess * |
668 | 46.5k | (long)bptr->blocksperrow * sizeof(JBLOCK); |
669 | 46.5k | if (SIZE_MAX - maximum_space < new_space) |
670 | 0 | out_of_memory(cinfo, 11); |
671 | 46.5k | maximum_space += new_space; |
672 | 46.5k | } |
673 | 46.5k | } |
674 | | |
675 | 21.6k | if (space_per_minheight <= 0) |
676 | 6.04k | return; /* no unrealized arrays, no work */ |
677 | | |
678 | | /* Determine amount of memory to actually use; this is system-dependent. */ |
679 | 15.6k | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
680 | 15.6k | mem->total_space_allocated); |
681 | | |
682 | | /* If the maximum space needed is available, make all the buffers full |
683 | | * height; otherwise parcel it out with the same number of minheights |
684 | | * in each buffer. |
685 | | */ |
686 | 15.6k | if (avail_mem >= maximum_space) |
687 | 15.6k | max_minheights = 1000000000L; |
688 | 0 | else { |
689 | 0 | max_minheights = avail_mem / space_per_minheight; |
690 | | /* If there doesn't seem to be enough space, try to get the minimum |
691 | | * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
692 | | */ |
693 | 0 | if (max_minheights <= 0) |
694 | 0 | max_minheights = 1; |
695 | 0 | } |
696 | | |
697 | | /* Allocate the in-memory buffers and initialize backing store as needed. */ |
698 | | |
699 | 15.6k | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
700 | 0 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
701 | 0 | minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
702 | 0 | if (minheights <= max_minheights) { |
703 | | /* This buffer fits in memory */ |
704 | 0 | sptr->rows_in_mem = sptr->rows_in_array; |
705 | 0 | } else { |
706 | | /* It doesn't fit in memory, create backing store. */ |
707 | 0 | sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess); |
708 | 0 | jpeg_open_backing_store(cinfo, &sptr->b_s_info, |
709 | 0 | (long)sptr->rows_in_array * |
710 | 0 | (long)sptr->samplesperrow * |
711 | 0 | (long)sizeof(JSAMPLE)); |
712 | 0 | sptr->b_s_open = TRUE; |
713 | 0 | } |
714 | 0 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
715 | 0 | sptr->samplesperrow, sptr->rows_in_mem); |
716 | 0 | sptr->rowsperchunk = mem->last_rowsperchunk; |
717 | 0 | sptr->cur_start_row = 0; |
718 | 0 | sptr->first_undef_row = 0; |
719 | 0 | sptr->dirty = FALSE; |
720 | 0 | } |
721 | 0 | } |
722 | | |
723 | 62.2k | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
724 | 46.5k | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
725 | 46.5k | minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
726 | 46.5k | if (minheights <= max_minheights) { |
727 | | /* This buffer fits in memory */ |
728 | 46.5k | bptr->rows_in_mem = bptr->rows_in_array; |
729 | 46.5k | } else { |
730 | | /* It doesn't fit in memory, create backing store. */ |
731 | 0 | bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess); |
732 | 0 | jpeg_open_backing_store(cinfo, &bptr->b_s_info, |
733 | 0 | (long)bptr->rows_in_array * |
734 | 0 | (long)bptr->blocksperrow * |
735 | 0 | (long)sizeof(JBLOCK)); |
736 | 0 | bptr->b_s_open = TRUE; |
737 | 0 | } |
738 | 46.5k | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
739 | 46.5k | bptr->blocksperrow, bptr->rows_in_mem); |
740 | 46.5k | bptr->rowsperchunk = mem->last_rowsperchunk; |
741 | 46.5k | bptr->cur_start_row = 0; |
742 | 46.5k | bptr->first_undef_row = 0; |
743 | 46.5k | bptr->dirty = FALSE; |
744 | 46.5k | } |
745 | 46.5k | } |
746 | 15.6k | } |
747 | | |
748 | | |
749 | | LOCAL(void) |
750 | | do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
751 | | /* Do backing store read or write of a virtual sample array */ |
752 | 0 | { |
753 | 0 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
754 | |
|
755 | 0 | bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE); |
756 | 0 | file_offset = ptr->cur_start_row * bytesperrow; |
757 | | /* Loop to read or write each allocation chunk in mem_buffer */ |
758 | 0 | for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { |
759 | | /* One chunk, but check for short chunk at end of buffer */ |
760 | 0 | rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); |
761 | | /* Transfer no more than is currently defined */ |
762 | 0 | thisrow = (long)ptr->cur_start_row + i; |
763 | 0 | rows = MIN(rows, (long)ptr->first_undef_row - thisrow); |
764 | | /* Transfer no more than fits in file */ |
765 | 0 | rows = MIN(rows, (long)ptr->rows_in_array - thisrow); |
766 | 0 | if (rows <= 0) /* this chunk might be past end of file! */ |
767 | 0 | break; |
768 | 0 | byte_count = rows * bytesperrow; |
769 | 0 | if (writing) |
770 | 0 | (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, |
771 | 0 | (void *)ptr->mem_buffer[i], |
772 | 0 | file_offset, byte_count); |
773 | 0 | else |
774 | 0 | (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, |
775 | 0 | (void *)ptr->mem_buffer[i], |
776 | 0 | file_offset, byte_count); |
777 | 0 | file_offset += byte_count; |
778 | 0 | } |
779 | 0 | } |
780 | | |
781 | | |
782 | | LOCAL(void) |
783 | | do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
784 | | /* Do backing store read or write of a virtual coefficient-block array */ |
785 | 0 | { |
786 | 0 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
787 | |
|
788 | 0 | bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK); |
789 | 0 | file_offset = ptr->cur_start_row * bytesperrow; |
790 | | /* Loop to read or write each allocation chunk in mem_buffer */ |
791 | 0 | for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { |
792 | | /* One chunk, but check for short chunk at end of buffer */ |
793 | 0 | rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); |
794 | | /* Transfer no more than is currently defined */ |
795 | 0 | thisrow = (long)ptr->cur_start_row + i; |
796 | 0 | rows = MIN(rows, (long)ptr->first_undef_row - thisrow); |
797 | | /* Transfer no more than fits in file */ |
798 | 0 | rows = MIN(rows, (long)ptr->rows_in_array - thisrow); |
799 | 0 | if (rows <= 0) /* this chunk might be past end of file! */ |
800 | 0 | break; |
801 | 0 | byte_count = rows * bytesperrow; |
802 | 0 | if (writing) |
803 | 0 | (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, |
804 | 0 | (void *)ptr->mem_buffer[i], |
805 | 0 | file_offset, byte_count); |
806 | 0 | else |
807 | 0 | (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, |
808 | 0 | (void *)ptr->mem_buffer[i], |
809 | 0 | file_offset, byte_count); |
810 | 0 | file_offset += byte_count; |
811 | 0 | } |
812 | 0 | } |
813 | | |
814 | | |
815 | | METHODDEF(JSAMPARRAY) |
816 | | access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
817 | | JDIMENSION start_row, JDIMENSION num_rows, boolean writable) |
818 | | /* Access the part of a virtual sample array starting at start_row */ |
819 | | /* and extending for num_rows rows. writable is true if */ |
820 | | /* caller intends to modify the accessed area. */ |
821 | 0 | { |
822 | 0 | JDIMENSION end_row = start_row + num_rows; |
823 | 0 | JDIMENSION undef_row; |
824 | | |
825 | | /* debugging check */ |
826 | 0 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
827 | 0 | ptr->mem_buffer == NULL) |
828 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
829 | | |
830 | | /* Make the desired part of the virtual array accessible */ |
831 | 0 | if (start_row < ptr->cur_start_row || |
832 | 0 | end_row > ptr->cur_start_row + ptr->rows_in_mem) { |
833 | 0 | if (!ptr->b_s_open) |
834 | 0 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
835 | | /* Flush old buffer contents if necessary */ |
836 | 0 | if (ptr->dirty) { |
837 | 0 | do_sarray_io(cinfo, ptr, TRUE); |
838 | 0 | ptr->dirty = FALSE; |
839 | 0 | } |
840 | | /* Decide what part of virtual array to access. |
841 | | * Algorithm: if target address > current window, assume forward scan, |
842 | | * load starting at target address. If target address < current window, |
843 | | * assume backward scan, load so that target area is top of window. |
844 | | * Note that when switching from forward write to forward read, will have |
845 | | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
846 | | */ |
847 | 0 | if (start_row > ptr->cur_start_row) { |
848 | 0 | ptr->cur_start_row = start_row; |
849 | 0 | } else { |
850 | | /* use long arithmetic here to avoid overflow & unsigned problems */ |
851 | 0 | long ltemp; |
852 | |
|
853 | 0 | ltemp = (long)end_row - (long)ptr->rows_in_mem; |
854 | 0 | if (ltemp < 0) |
855 | 0 | ltemp = 0; /* don't fall off front end of file */ |
856 | 0 | ptr->cur_start_row = (JDIMENSION)ltemp; |
857 | 0 | } |
858 | | /* Read in the selected part of the array. |
859 | | * During the initial write pass, we will do no actual read |
860 | | * because the selected part is all undefined. |
861 | | */ |
862 | 0 | do_sarray_io(cinfo, ptr, FALSE); |
863 | 0 | } |
864 | | /* Ensure the accessed part of the array is defined; prezero if needed. |
865 | | * To improve locality of access, we only prezero the part of the array |
866 | | * that the caller is about to access, not the entire in-memory array. |
867 | | */ |
868 | 0 | if (ptr->first_undef_row < end_row) { |
869 | 0 | if (ptr->first_undef_row < start_row) { |
870 | 0 | if (writable) /* writer skipped over a section of array */ |
871 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
872 | 0 | undef_row = start_row; /* but reader is allowed to read ahead */ |
873 | 0 | } else { |
874 | 0 | undef_row = ptr->first_undef_row; |
875 | 0 | } |
876 | 0 | if (writable) |
877 | 0 | ptr->first_undef_row = end_row; |
878 | 0 | if (ptr->pre_zero) { |
879 | 0 | size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE); |
880 | 0 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
881 | 0 | end_row -= ptr->cur_start_row; |
882 | 0 | while (undef_row < end_row) { |
883 | 0 | jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); |
884 | 0 | undef_row++; |
885 | 0 | } |
886 | 0 | } else { |
887 | 0 | if (!writable) /* reader looking at undefined data */ |
888 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
889 | 0 | } |
890 | 0 | } |
891 | | /* Flag the buffer dirty if caller will write in it */ |
892 | 0 | if (writable) |
893 | 0 | ptr->dirty = TRUE; |
894 | | /* Return address of proper part of the buffer */ |
895 | 0 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
896 | 0 | } |
897 | | |
898 | | |
899 | | METHODDEF(JBLOCKARRAY) |
900 | | access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr, |
901 | | JDIMENSION start_row, JDIMENSION num_rows, boolean writable) |
902 | | /* Access the part of a virtual block array starting at start_row */ |
903 | | /* and extending for num_rows rows. writable is true if */ |
904 | | /* caller intends to modify the accessed area. */ |
905 | 5.43M | { |
906 | 5.43M | JDIMENSION end_row = start_row + num_rows; |
907 | 5.43M | JDIMENSION undef_row; |
908 | | |
909 | | /* debugging check */ |
910 | 5.43M | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
911 | 5.43M | ptr->mem_buffer == NULL) |
912 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
913 | | |
914 | | /* Make the desired part of the virtual array accessible */ |
915 | 5.43M | if (start_row < ptr->cur_start_row || |
916 | 5.43M | end_row > ptr->cur_start_row + ptr->rows_in_mem) { |
917 | 0 | if (!ptr->b_s_open) |
918 | 0 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
919 | | /* Flush old buffer contents if necessary */ |
920 | 0 | if (ptr->dirty) { |
921 | 0 | do_barray_io(cinfo, ptr, TRUE); |
922 | 0 | ptr->dirty = FALSE; |
923 | 0 | } |
924 | | /* Decide what part of virtual array to access. |
925 | | * Algorithm: if target address > current window, assume forward scan, |
926 | | * load starting at target address. If target address < current window, |
927 | | * assume backward scan, load so that target area is top of window. |
928 | | * Note that when switching from forward write to forward read, will have |
929 | | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
930 | | */ |
931 | 0 | if (start_row > ptr->cur_start_row) { |
932 | 0 | ptr->cur_start_row = start_row; |
933 | 0 | } else { |
934 | | /* use long arithmetic here to avoid overflow & unsigned problems */ |
935 | 0 | long ltemp; |
936 | |
|
937 | 0 | ltemp = (long)end_row - (long)ptr->rows_in_mem; |
938 | 0 | if (ltemp < 0) |
939 | 0 | ltemp = 0; /* don't fall off front end of file */ |
940 | 0 | ptr->cur_start_row = (JDIMENSION)ltemp; |
941 | 0 | } |
942 | | /* Read in the selected part of the array. |
943 | | * During the initial write pass, we will do no actual read |
944 | | * because the selected part is all undefined. |
945 | | */ |
946 | 0 | do_barray_io(cinfo, ptr, FALSE); |
947 | 0 | } |
948 | | /* Ensure the accessed part of the array is defined; prezero if needed. |
949 | | * To improve locality of access, we only prezero the part of the array |
950 | | * that the caller is about to access, not the entire in-memory array. |
951 | | */ |
952 | 5.43M | if (ptr->first_undef_row < end_row) { |
953 | 1.48M | if (ptr->first_undef_row < start_row) { |
954 | 115k | if (writable) /* writer skipped over a section of array */ |
955 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
956 | 115k | undef_row = start_row; /* but reader is allowed to read ahead */ |
957 | 1.36M | } else { |
958 | 1.36M | undef_row = ptr->first_undef_row; |
959 | 1.36M | } |
960 | 1.48M | if (writable) |
961 | 1.35M | ptr->first_undef_row = end_row; |
962 | 1.48M | if (ptr->pre_zero) { |
963 | 1.48M | size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK); |
964 | 1.48M | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
965 | 1.48M | end_row -= ptr->cur_start_row; |
966 | 4.46M | while (undef_row < end_row) { |
967 | 2.98M | jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); |
968 | 2.98M | undef_row++; |
969 | 2.98M | } |
970 | 1.48M | } else { |
971 | 0 | if (!writable) /* reader looking at undefined data */ |
972 | 0 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
973 | 0 | } |
974 | 1.48M | } |
975 | | /* Flag the buffer dirty if caller will write in it */ |
976 | 5.43M | if (writable) |
977 | 4.65M | ptr->dirty = TRUE; |
978 | | /* Return address of proper part of the buffer */ |
979 | 5.43M | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
980 | 5.43M | } |
981 | | |
982 | | |
983 | | /* |
984 | | * Release all objects belonging to a specified pool. |
985 | | */ |
986 | | |
987 | | METHODDEF(void) |
988 | | free_pool(j_common_ptr cinfo, int pool_id) |
989 | 78.1k | { |
990 | 78.1k | my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
991 | 78.1k | small_pool_ptr shdr_ptr; |
992 | 78.1k | large_pool_ptr lhdr_ptr; |
993 | 78.1k | size_t space_freed; |
994 | | |
995 | 78.1k | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
996 | 0 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
997 | | |
998 | | #ifdef MEM_STATS |
999 | | if (cinfo->err->trace_level > 1) |
1000 | | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
1001 | | #endif |
1002 | | |
1003 | | /* If freeing IMAGE pool, close any virtual arrays first */ |
1004 | 78.1k | if (pool_id == JPOOL_IMAGE) { |
1005 | 58.7k | jvirt_sarray_ptr sptr; |
1006 | 58.7k | jvirt_barray_ptr bptr; |
1007 | | |
1008 | 58.7k | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
1009 | 0 | if (sptr->b_s_open) { /* there may be no backing store */ |
1010 | 0 | sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
1011 | 0 | (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info); |
1012 | 0 | } |
1013 | 0 | } |
1014 | 58.7k | mem->virt_sarray_list = NULL; |
1015 | 105k | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
1016 | 46.5k | if (bptr->b_s_open) { /* there may be no backing store */ |
1017 | 0 | bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
1018 | 0 | (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info); |
1019 | 0 | } |
1020 | 46.5k | } |
1021 | 58.7k | mem->virt_barray_list = NULL; |
1022 | 58.7k | } |
1023 | | |
1024 | | /* Release large objects */ |
1025 | 78.1k | lhdr_ptr = mem->large_list[pool_id]; |
1026 | 78.1k | mem->large_list[pool_id] = NULL; |
1027 | | |
1028 | 229k | while (lhdr_ptr != NULL) { |
1029 | 151k | large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; |
1030 | 151k | space_freed = lhdr_ptr->bytes_used + |
1031 | 151k | lhdr_ptr->bytes_left + |
1032 | 151k | sizeof(large_pool_hdr) + ALIGN_SIZE - 1; |
1033 | 151k | jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed); |
1034 | 151k | mem->total_space_allocated -= space_freed; |
1035 | 151k | lhdr_ptr = next_lhdr_ptr; |
1036 | 151k | } |
1037 | | |
1038 | | /* Release small objects */ |
1039 | 78.1k | shdr_ptr = mem->small_list[pool_id]; |
1040 | 78.1k | mem->small_list[pool_id] = NULL; |
1041 | | |
1042 | 142k | while (shdr_ptr != NULL) { |
1043 | 64.2k | small_pool_ptr next_shdr_ptr = shdr_ptr->next; |
1044 | 64.2k | space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left + |
1045 | 64.2k | sizeof(small_pool_hdr) + ALIGN_SIZE - 1; |
1046 | 64.2k | jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed); |
1047 | 64.2k | mem->total_space_allocated -= space_freed; |
1048 | 64.2k | shdr_ptr = next_shdr_ptr; |
1049 | 64.2k | } |
1050 | 78.1k | } |
1051 | | |
1052 | | |
1053 | | /* |
1054 | | * Close up shop entirely. |
1055 | | * Note that this cannot be called unless cinfo->mem is non-NULL. |
1056 | | */ |
1057 | | |
1058 | | METHODDEF(void) |
1059 | | self_destruct(j_common_ptr cinfo) |
1060 | 19.4k | { |
1061 | 19.4k | int pool; |
1062 | | |
1063 | | /* Close all backing store, release all memory. |
1064 | | * Releasing pools in reverse order might help avoid fragmentation |
1065 | | * with some (brain-damaged) malloc libraries. |
1066 | | */ |
1067 | 58.4k | for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { |
1068 | 38.9k | free_pool(cinfo, pool); |
1069 | 38.9k | } |
1070 | | |
1071 | | /* Release the memory manager control block too. */ |
1072 | 19.4k | jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr)); |
1073 | 19.4k | cinfo->mem = NULL; /* ensures I will be called only once */ |
1074 | | |
1075 | 19.4k | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1076 | 19.4k | } |
1077 | | |
1078 | | |
1079 | | /* |
1080 | | * Memory manager initialization. |
1081 | | * When this is called, only the error manager pointer is valid in cinfo! |
1082 | | */ |
1083 | | |
1084 | | GLOBAL(void) |
1085 | | jinit_memory_mgr(j_common_ptr cinfo) |
1086 | 19.4k | { |
1087 | 19.4k | my_mem_ptr mem; |
1088 | 19.4k | long max_to_use; |
1089 | 19.4k | int pool; |
1090 | 19.4k | size_t test_mac; |
1091 | | |
1092 | 19.4k | cinfo->mem = NULL; /* for safety if init fails */ |
1093 | | |
1094 | | /* Check for configuration errors. |
1095 | | * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
1096 | | * doesn't reflect any real hardware alignment requirement. |
1097 | | * The test is a little tricky: for X>0, X and X-1 have no one-bits |
1098 | | * in common if and only if X is a power of 2, ie has only one one-bit. |
1099 | | * Some compilers may give an "unreachable code" warning here; ignore it. |
1100 | | */ |
1101 | 19.4k | if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0) |
1102 | 0 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
1103 | | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
1104 | | * a multiple of ALIGN_SIZE. |
1105 | | * Again, an "unreachable code" warning may be ignored here. |
1106 | | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
1107 | | */ |
1108 | 19.4k | test_mac = (size_t)MAX_ALLOC_CHUNK; |
1109 | 19.4k | if ((long)test_mac != MAX_ALLOC_CHUNK || |
1110 | 19.4k | (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) |
1111 | 0 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
1112 | | |
1113 | 19.4k | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
1114 | | |
1115 | | /* Attempt to allocate memory manager's control block */ |
1116 | 19.4k | mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr)); |
1117 | | |
1118 | 19.4k | if (mem == NULL) { |
1119 | 0 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1120 | 0 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
1121 | 0 | } |
1122 | | |
1123 | | /* OK, fill in the method pointers */ |
1124 | 19.4k | mem->pub.alloc_small = alloc_small; |
1125 | 19.4k | mem->pub.alloc_large = alloc_large; |
1126 | 19.4k | mem->pub.alloc_sarray = alloc_sarray; |
1127 | 19.4k | mem->pub.alloc_barray = alloc_barray; |
1128 | 19.4k | mem->pub.request_virt_sarray = request_virt_sarray; |
1129 | 19.4k | mem->pub.request_virt_barray = request_virt_barray; |
1130 | 19.4k | mem->pub.realize_virt_arrays = realize_virt_arrays; |
1131 | 19.4k | mem->pub.access_virt_sarray = access_virt_sarray; |
1132 | 19.4k | mem->pub.access_virt_barray = access_virt_barray; |
1133 | 19.4k | mem->pub.free_pool = free_pool; |
1134 | 19.4k | mem->pub.self_destruct = self_destruct; |
1135 | | |
1136 | | /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
1137 | 19.4k | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
1138 | | |
1139 | | /* Initialize working state */ |
1140 | 19.4k | mem->pub.max_memory_to_use = max_to_use; |
1141 | | |
1142 | 58.4k | for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { |
1143 | 38.9k | mem->small_list[pool] = NULL; |
1144 | 38.9k | mem->large_list[pool] = NULL; |
1145 | 38.9k | } |
1146 | 19.4k | mem->virt_sarray_list = NULL; |
1147 | 19.4k | mem->virt_barray_list = NULL; |
1148 | | |
1149 | 19.4k | mem->total_space_allocated = sizeof(my_memory_mgr); |
1150 | | |
1151 | | /* Declare ourselves open for business */ |
1152 | 19.4k | cinfo->mem = &mem->pub; |
1153 | | |
1154 | | /* Check for an environment variable JPEGMEM; if found, override the |
1155 | | * default max_memory setting from jpeg_mem_init. Note that the |
1156 | | * surrounding application may again override this value. |
1157 | | * If your system doesn't support getenv(), define NO_GETENV to disable |
1158 | | * this feature. |
1159 | | */ |
1160 | 19.4k | #ifndef NO_GETENV |
1161 | 19.4k | { |
1162 | 19.4k | char memenv[30] = { 0 }; |
1163 | | |
1164 | 19.4k | if (!GETENV_S(memenv, 30, "JPEGMEM") && strlen(memenv) > 0) { |
1165 | 0 | char ch = 'x'; |
1166 | |
|
1167 | | #ifdef _MSC_VER |
1168 | | if (sscanf_s(memenv, "%ld%c", &max_to_use, &ch, 1) > 0) { |
1169 | | #else |
1170 | 0 | if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
1171 | 0 | #endif |
1172 | 0 | if (ch == 'm' || ch == 'M') |
1173 | 0 | max_to_use *= 1000L; |
1174 | 0 | mem->pub.max_memory_to_use = max_to_use * 1000L; |
1175 | 0 | } |
1176 | 0 | } |
1177 | 19.4k | } |
1178 | 19.4k | #endif |
1179 | | |
1180 | 19.4k | } |