Coverage Report

Created: 2024-08-17 06:42

/src/libpcap/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
#include <limits.h> /* for SIZE_MAX */
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
#include "diag-control.h"
43
44
#ifdef HAVE_OS_PROTO_H
45
#include "os-proto.h"
46
#endif
47
48
#ifdef BDEBUG
49
/*
50
 * The internal "debug printout" flag for the filter expression optimizer.
51
 * The code to print that stuff is present only if BDEBUG is defined, so
52
 * the flag, and the routine to set it, are defined only if BDEBUG is
53
 * defined.
54
 */
55
static int pcap_optimizer_debug;
56
57
/*
58
 * Routine to set that flag.
59
 *
60
 * This is intended for libpcap developers, not for general use.
61
 * If you want to set these in a program, you'll have to declare this
62
 * routine yourself, with the appropriate DLL import attribute on Windows;
63
 * it's not declared in any header file, and won't be declared in any
64
 * header file provided by libpcap.
65
 */
66
PCAP_API void pcap_set_optimizer_debug(int value);
67
68
PCAP_API_DEF void
69
pcap_set_optimizer_debug(int value)
70
{
71
  pcap_optimizer_debug = value;
72
}
73
74
/*
75
 * The internal "print dot graph" flag for the filter expression optimizer.
76
 * The code to print that stuff is present only if BDEBUG is defined, so
77
 * the flag, and the routine to set it, are defined only if BDEBUG is
78
 * defined.
79
 */
80
static int pcap_print_dot_graph;
81
82
/*
83
 * Routine to set that flag.
84
 *
85
 * This is intended for libpcap developers, not for general use.
86
 * If you want to set these in a program, you'll have to declare this
87
 * routine yourself, with the appropriate DLL import attribute on Windows;
88
 * it's not declared in any header file, and won't be declared in any
89
 * header file provided by libpcap.
90
 */
91
PCAP_API void pcap_set_print_dot_graph(int value);
92
93
PCAP_API_DEF void
94
pcap_set_print_dot_graph(int value)
95
{
96
  pcap_print_dot_graph = value;
97
}
98
99
#endif
100
101
/*
102
 * lowest_set_bit().
103
 *
104
 * Takes a 32-bit integer as an argument.
105
 *
106
 * If handed a non-zero value, returns the index of the lowest set bit,
107
 * counting upwards from zero.
108
 *
109
 * If handed zero, the results are platform- and compiler-dependent.
110
 * Keep it out of the light, don't give it any water, don't feed it
111
 * after midnight, and don't pass zero to it.
112
 *
113
 * This is the same as the count of trailing zeroes in the word.
114
 */
115
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116
  /*
117
   * GCC 3.4 and later; we have __builtin_ctz().
118
   */
119
6.80k
  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120
#elif defined(_MSC_VER)
121
  /*
122
   * Visual Studio; we support only 2005 and later, so use
123
   * _BitScanForward().
124
   */
125
#include <intrin.h>
126
127
#ifndef __clang__
128
#pragma intrinsic(_BitScanForward)
129
#endif
130
131
static __forceinline u_int
132
lowest_set_bit(int mask)
133
{
134
  unsigned long bit;
135
136
  /*
137
   * Don't sign-extend mask if long is longer than int.
138
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139
   */
140
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141
    abort();  /* mask is zero */
142
  return (u_int)bit;
143
}
144
#elif defined(MSDOS) && defined(__DJGPP__)
145
  /*
146
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147
   * we've already included.
148
   */
149
  #define lowest_set_bit(mask)  ((u_int)(ffs((mask)) - 1))
150
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151
  /*
152
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153
   * or some other platform (UN*X conforming to a sufficient recent version
154
   * of the Single UNIX Specification).
155
   */
156
  #include <strings.h>
157
  #define lowest_set_bit(mask)  (u_int)((ffs((mask)) - 1))
158
#else
159
/*
160
 * None of the above.
161
 * Use a perfect-hash-function-based function.
162
 */
163
static u_int
164
lowest_set_bit(int mask)
165
{
166
  unsigned int v = (unsigned int)mask;
167
168
  static const u_int MultiplyDeBruijnBitPosition[32] = {
169
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171
  };
172
173
  /*
174
   * We strip off all but the lowermost set bit (v & ~v),
175
   * and perform a minimal perfect hash on it to look up the
176
   * number of low-order zero bits in a table.
177
   *
178
   * See:
179
   *
180
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181
   *
182
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
183
   */
184
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185
}
186
#endif
187
188
/*
189
 * Represents a deleted instruction.
190
 */
191
575k
#define NOP -1
192
193
/*
194
 * Register numbers for use-def values.
195
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196
 * location.  A_ATOM is the accumulator and X_ATOM is the index
197
 * register.
198
 */
199
234k
#define A_ATOM BPF_MEMWORDS
200
57.6k
#define X_ATOM (BPF_MEMWORDS+1)
201
202
/*
203
 * This define is used to represent *both* the accumulator and
204
 * x register in use-def computations.
205
 * Currently, the use-def code assumes only one definition per instruction.
206
 */
207
104k
#define AX_ATOM N_ATOMS
208
209
/*
210
 * These data structures are used in a Cocke and Shwarz style
211
 * value numbering scheme.  Since the flowgraph is acyclic,
212
 * exit values can be propagated from a node's predecessors
213
 * provided it is uniquely defined.
214
 */
215
struct valnode {
216
  int code;
217
  bpf_u_int32 v0, v1;
218
  int val;    /* the value number */
219
  struct valnode *next;
220
};
221
222
/* Integer constants mapped with the load immediate opcode. */
223
25.1k
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225
struct vmapinfo {
226
  int is_const;
227
  bpf_u_int32 const_val;
228
};
229
230
typedef struct {
231
  /*
232
   * Place to longjmp to on an error.
233
   */
234
  jmp_buf top_ctx;
235
236
  /*
237
   * The buffer into which to put error message.
238
   */
239
  char *errbuf;
240
241
  /*
242
   * A flag to indicate that further optimization is needed.
243
   * Iterative passes are continued until a given pass yields no
244
   * code simplification or branch movement.
245
   */
246
  int done;
247
248
  /*
249
   * XXX - detect loops that do nothing but repeated AND/OR pullups
250
   * and edge moves.
251
   * If 100 passes in a row do nothing but that, treat that as a
252
   * sign that we're in a loop that just shuffles in a cycle in
253
   * which each pass just shuffles the code and we eventually
254
   * get back to the original configuration.
255
   *
256
   * XXX - we need a non-heuristic way of detecting, or preventing,
257
   * such a cycle.
258
   */
259
  int non_branch_movement_performed;
260
261
  u_int n_blocks;   /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262
  struct block **blocks;
263
  u_int n_edges;    /* twice n_blocks, so guaranteed to be > 0 */
264
  struct edge **edges;
265
266
  /*
267
   * A bit vector set representation of the dominators.
268
   * We round up the set size to the next power of two.
269
   */
270
  u_int nodewords;  /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271
  u_int edgewords;  /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272
  struct block **levels;
273
  bpf_u_int32 *space;
274
275
117k
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276
/*
277
 * True if a is in uset {p}
278
 */
279
4.79k
#define SET_MEMBER(p, a) \
280
4.79k
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282
/*
283
 * Add 'a' to uset p.
284
 */
285
49.1k
#define SET_INSERT(p, a) \
286
49.1k
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288
/*
289
 * Delete 'a' from uset p.
290
 */
291
#define SET_DELETE(p, a) \
292
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294
/*
295
 * a := a intersect b
296
 * n must be guaranteed to be > 0
297
 */
298
39.3k
#define SET_INTERSECT(a, b, n)\
299
39.3k
{\
300
39.3k
  register bpf_u_int32 *_x = a, *_y = b;\
301
39.3k
  register u_int _n = n;\
302
40.2k
  do *_x++ &= *_y++; while (--_n != 0);\
303
39.3k
}
304
305
/*
306
 * a := a - b
307
 * n must be guaranteed to be > 0
308
 */
309
#define SET_SUBTRACT(a, b, n)\
310
{\
311
  register bpf_u_int32 *_x = a, *_y = b;\
312
  register u_int _n = n;\
313
  do *_x++ &=~ *_y++; while (--_n != 0);\
314
}
315
316
/*
317
 * a := a union b
318
 * n must be guaranteed to be > 0
319
 */
320
13.1k
#define SET_UNION(a, b, n)\
321
13.1k
{\
322
13.1k
  register bpf_u_int32 *_x = a, *_y = b;\
323
13.1k
  register u_int _n = n;\
324
13.1k
  do *_x++ |= *_y++; while (--_n != 0);\
325
13.1k
}
326
327
  uset all_dom_sets;
328
  uset all_closure_sets;
329
  uset all_edge_sets;
330
331
38.4k
#define MODULUS 213
332
  struct valnode *hashtbl[MODULUS];
333
  bpf_u_int32 curval;
334
  bpf_u_int32 maxval;
335
336
  struct vmapinfo *vmap;
337
  struct valnode *vnode_base;
338
  struct valnode *next_vnode;
339
} opt_state_t;
340
341
typedef struct {
342
  /*
343
   * Place to longjmp to on an error.
344
   */
345
  jmp_buf top_ctx;
346
347
  /*
348
   * The buffer into which to put error message.
349
   */
350
  char *errbuf;
351
352
  /*
353
   * Some pointers used to convert the basic block form of the code,
354
   * into the array form that BPF requires.  'fstart' will point to
355
   * the malloc'd array while 'ftail' is used during the recursive
356
   * traversal.
357
   */
358
  struct bpf_insn *fstart;
359
  struct bpf_insn *ftail;
360
} conv_state_t;
361
362
static void opt_init(opt_state_t *, struct icode *);
363
static void opt_cleanup(opt_state_t *);
364
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365
    PCAP_PRINTFLIKE(2, 3);
366
367
static void intern_blocks(opt_state_t *, struct icode *);
368
369
static void find_inedges(opt_state_t *, struct block *);
370
#ifdef BDEBUG
371
static void opt_dump(opt_state_t *, struct icode *);
372
#endif
373
374
#ifndef MAX
375
6.55k
#define MAX(a,b) ((a)>(b)?(a):(b))
376
#endif
377
378
static void
379
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380
16.7k
{
381
16.7k
  int level;
382
383
16.7k
  if (isMarked(ic, b))
384
4.43k
    return;
385
386
12.2k
  Mark(ic, b);
387
12.2k
  b->link = 0;
388
389
12.2k
  if (JT(b)) {
390
6.55k
    find_levels_r(opt_state, ic, JT(b));
391
6.55k
    find_levels_r(opt_state, ic, JF(b));
392
6.55k
    level = MAX(JT(b)->level, JF(b)->level) + 1;
393
6.55k
  } else
394
5.72k
    level = 0;
395
12.2k
  b->level = level;
396
12.2k
  b->link = opt_state->levels[level];
397
12.2k
  opt_state->levels[level] = b;
398
12.2k
}
399
400
/*
401
 * Level graph.  The levels go from 0 at the leaves to
402
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403
 * first node of the level list, whose elements are linked
404
 * with the 'link' field of the struct block.
405
 */
406
static void
407
find_levels(opt_state_t *opt_state, struct icode *ic)
408
3.60k
{
409
3.60k
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410
3.60k
  unMarkAll(ic);
411
3.60k
  find_levels_r(opt_state, ic, ic->root);
412
3.60k
}
413
414
/*
415
 * Find dominator relationships.
416
 * Assumes graph has been leveled.
417
 */
418
static void
419
find_dom(opt_state_t *opt_state, struct block *root)
420
3.60k
{
421
3.60k
  u_int i;
422
3.60k
  int level;
423
3.60k
  struct block *b;
424
3.60k
  bpf_u_int32 *x;
425
426
  /*
427
   * Initialize sets to contain all nodes.
428
   */
429
3.60k
  x = opt_state->all_dom_sets;
430
  /*
431
   * In opt_init(), we've made sure the product doesn't overflow.
432
   */
433
3.60k
  i = opt_state->n_blocks * opt_state->nodewords;
434
18.1k
  while (i != 0) {
435
14.5k
    --i;
436
14.5k
    *x++ = 0xFFFFFFFFU;
437
14.5k
  }
438
  /* Root starts off empty. */
439
7.20k
  for (i = opt_state->nodewords; i != 0;) {
440
3.60k
    --i;
441
3.60k
    root->dom[i] = 0;
442
3.60k
  }
443
444
  /* root->level is the highest level no found. */
445
13.7k
  for (level = root->level; level >= 0; --level) {
446
22.4k
    for (b = opt_state->levels[level]; b; b = b->link) {
447
12.2k
      SET_INSERT(b->dom, b->id);
448
12.2k
      if (JT(b) == 0)
449
5.72k
        continue;
450
6.55k
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451
6.55k
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452
6.55k
    }
453
10.1k
  }
454
3.60k
}
455
456
static void
457
propedom(opt_state_t *opt_state, struct edge *ep)
458
24.5k
{
459
24.5k
  SET_INSERT(ep->edom, ep->id);
460
24.5k
  if (ep->succ) {
461
13.1k
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462
13.1k
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463
13.1k
  }
464
24.5k
}
465
466
/*
467
 * Compute edge dominators.
468
 * Assumes graph has been leveled and predecessors established.
469
 */
470
static void
471
find_edom(opt_state_t *opt_state, struct block *root)
472
3.60k
{
473
3.60k
  u_int i;
474
3.60k
  uset x;
475
3.60k
  int level;
476
3.60k
  struct block *b;
477
478
3.60k
  x = opt_state->all_edge_sets;
479
  /*
480
   * In opt_init(), we've made sure the product doesn't overflow.
481
   */
482
33.4k
  for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483
29.8k
    --i;
484
29.8k
    x[i] = 0xFFFFFFFFU;
485
29.8k
  }
486
487
  /* root->level is the highest level no found. */
488
3.60k
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489
3.60k
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490
13.7k
  for (level = root->level; level >= 0; --level) {
491
22.4k
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
492
12.2k
      propedom(opt_state, &b->et);
493
12.2k
      propedom(opt_state, &b->ef);
494
12.2k
    }
495
10.1k
  }
496
3.60k
}
497
498
/*
499
 * Find the backwards transitive closure of the flow graph.  These sets
500
 * are backwards in the sense that we find the set of nodes that reach
501
 * a given node, not the set of nodes that can be reached by a node.
502
 *
503
 * Assumes graph has been leveled.
504
 */
505
static void
506
find_closure(opt_state_t *opt_state, struct block *root)
507
3.60k
{
508
3.60k
  int level;
509
3.60k
  struct block *b;
510
511
  /*
512
   * Initialize sets to contain no nodes.
513
   */
514
3.60k
  memset((char *)opt_state->all_closure_sets, 0,
515
3.60k
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517
  /* root->level is the highest level no found. */
518
13.7k
  for (level = root->level; level >= 0; --level) {
519
22.4k
    for (b = opt_state->levels[level]; b; b = b->link) {
520
12.2k
      SET_INSERT(b->closure, b->id);
521
12.2k
      if (JT(b) == 0)
522
5.72k
        continue;
523
6.55k
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524
6.55k
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525
6.55k
    }
526
10.1k
  }
527
3.60k
}
528
529
/*
530
 * Return the register number that is used by s.
531
 *
532
 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533
 * are used, the scratch memory location's number if a scratch memory
534
 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535
 *
536
 * The implementation should probably change to an array access.
537
 */
538
static int
539
atomuse(struct stmt *s)
540
153k
{
541
153k
  register int c = s->code;
542
543
153k
  if (c == NOP)
544
26.7k
    return -1;
545
546
126k
  switch (BPF_CLASS(c)) {
547
548
3.43k
  case BPF_RET:
549
3.43k
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550
3.43k
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552
46.9k
  case BPF_LD:
553
54.6k
  case BPF_LDX:
554
    /*
555
     * As there are fewer than 2^31 memory locations,
556
     * s->k should be convertible to int without problems.
557
     */
558
54.6k
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559
54.6k
      (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561
26.5k
  case BPF_ST:
562
26.5k
    return A_ATOM;
563
564
0
  case BPF_STX:
565
0
    return X_ATOM;
566
567
13.0k
  case BPF_JMP:
568
33.0k
  case BPF_ALU:
569
33.0k
    if (BPF_SRC(c) == BPF_X)
570
13.1k
      return AX_ATOM;
571
19.8k
    return A_ATOM;
572
573
8.93k
  case BPF_MISC:
574
8.93k
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575
126k
  }
576
0
  abort();
577
  /* NOTREACHED */
578
126k
}
579
580
/*
581
 * Return the register number that is defined by 's'.  We assume that
582
 * a single stmt cannot define more than one register.  If no register
583
 * is defined, return -1.
584
 *
585
 * The implementation should probably change to an array access.
586
 */
587
static int
588
atomdef(struct stmt *s)
589
146k
{
590
146k
  if (s->code == NOP)
591
26.7k
    return -1;
592
593
120k
  switch (BPF_CLASS(s->code)) {
594
595
46.9k
  case BPF_LD:
596
66.9k
  case BPF_ALU:
597
66.9k
    return A_ATOM;
598
599
7.60k
  case BPF_LDX:
600
7.60k
    return X_ATOM;
601
602
26.5k
  case BPF_ST:
603
26.5k
  case BPF_STX:
604
26.5k
    return s->k;
605
606
8.93k
  case BPF_MISC:
607
8.93k
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608
120k
  }
609
9.93k
  return -1;
610
120k
}
611
612
/*
613
 * Compute the sets of registers used, defined, and killed by 'b'.
614
 *
615
 * "Used" means that a statement in 'b' uses the register before any
616
 * statement in 'b' defines it, i.e. it uses the value left in
617
 * that register by a predecessor block of this block.
618
 * "Defined" means that a statement in 'b' defines it.
619
 * "Killed" means that a statement in 'b' defines it before any
620
 * statement in 'b' uses it, i.e. it kills the value left in that
621
 * register by a predecessor block of this block.
622
 */
623
static void
624
compute_local_ud(struct block *b)
625
12.2k
{
626
12.2k
  struct slist *s;
627
12.2k
  atomset def = 0, use = 0, killed = 0;
628
12.2k
  int atom;
629
630
95.6k
  for (s = b->stmts; s; s = s->next) {
631
83.3k
    if (s->s.code == NOP)
632
24.3k
      continue;
633
59.0k
    atom = atomuse(&s->s);
634
59.0k
    if (atom >= 0) {
635
43.0k
      if (atom == AX_ATOM) {
636
6.62k
        if (!ATOMELEM(def, X_ATOM))
637
0
          use |= ATOMMASK(X_ATOM);
638
6.62k
        if (!ATOMELEM(def, A_ATOM))
639
0
          use |= ATOMMASK(A_ATOM);
640
6.62k
      }
641
36.4k
      else if (atom < N_ATOMS) {
642
36.4k
        if (!ATOMELEM(def, atom))
643
30
          use |= ATOMMASK(atom);
644
36.4k
      }
645
0
      else
646
0
        abort();
647
43.0k
    }
648
59.0k
    atom = atomdef(&s->s);
649
59.0k
    if (atom >= 0) {
650
59.0k
      if (!ATOMELEM(use, atom))
651
59.0k
        killed |= ATOMMASK(atom);
652
59.0k
      def |= ATOMMASK(atom);
653
59.0k
    }
654
59.0k
  }
655
12.2k
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
656
    /*
657
     * XXX - what about RET?
658
     */
659
6.55k
    atom = atomuse(&b->s);
660
6.55k
    if (atom >= 0) {
661
6.55k
      if (atom == AX_ATOM) {
662
952
        if (!ATOMELEM(def, X_ATOM))
663
0
          use |= ATOMMASK(X_ATOM);
664
952
        if (!ATOMELEM(def, A_ATOM))
665
0
          use |= ATOMMASK(A_ATOM);
666
952
      }
667
5.60k
      else if (atom < N_ATOMS) {
668
5.60k
        if (!ATOMELEM(def, atom))
669
0
          use |= ATOMMASK(atom);
670
5.60k
      }
671
0
      else
672
0
        abort();
673
6.55k
    }
674
6.55k
  }
675
676
12.2k
  b->def = def;
677
12.2k
  b->kill = killed;
678
12.2k
  b->in_use = use;
679
12.2k
}
680
681
/*
682
 * Assume graph is already leveled.
683
 */
684
static void
685
find_ud(opt_state_t *opt_state, struct block *root)
686
3.60k
{
687
3.60k
  int i, maxlevel;
688
3.60k
  struct block *p;
689
690
  /*
691
   * root->level is the highest level no found;
692
   * count down from there.
693
   */
694
3.60k
  maxlevel = root->level;
695
13.7k
  for (i = maxlevel; i >= 0; --i)
696
22.4k
    for (p = opt_state->levels[i]; p; p = p->link) {
697
12.2k
      compute_local_ud(p);
698
12.2k
      p->out_use = 0;
699
12.2k
    }
700
701
10.1k
  for (i = 1; i <= maxlevel; ++i) {
702
13.0k
    for (p = opt_state->levels[i]; p; p = p->link) {
703
6.55k
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
704
6.55k
      p->in_use |= p->out_use &~ p->kill;
705
6.55k
    }
706
6.53k
  }
707
3.60k
}
708
static void
709
init_val(opt_state_t *opt_state)
710
3.60k
{
711
3.60k
  opt_state->curval = 0;
712
3.60k
  opt_state->next_vnode = opt_state->vnode_base;
713
3.60k
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714
3.60k
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715
3.60k
}
716
717
/*
718
 * Because we really don't have an IR, this stuff is a little messy.
719
 *
720
 * This routine looks in the table of existing value number for a value
721
 * with generated from an operation with the specified opcode and
722
 * the specified values.  If it finds it, it returns its value number,
723
 * otherwise it makes a new entry in the table and returns the
724
 * value number of that entry.
725
 */
726
static bpf_u_int32
727
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728
38.4k
{
729
38.4k
  u_int hash;
730
38.4k
  bpf_u_int32 val;
731
38.4k
  struct valnode *p;
732
733
38.4k
  hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734
38.4k
  hash %= MODULUS;
735
736
40.8k
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
737
15.7k
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
738
13.2k
      return p->val;
739
740
  /*
741
   * Not found.  Allocate a new value, and assign it a new
742
   * value number.
743
   *
744
   * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745
   * increment it before using it as the new value number, which
746
   * means we never assign VAL_UNKNOWN.
747
   *
748
   * XXX - unless we overflow, but we probably won't have 2^32-1
749
   * values; we treat 32 bits as effectively infinite.
750
   */
751
25.1k
  val = ++opt_state->curval;
752
25.1k
  if (BPF_MODE(code) == BPF_IMM &&
753
25.1k
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754
13.7k
    opt_state->vmap[val].const_val = v0;
755
13.7k
    opt_state->vmap[val].is_const = 1;
756
13.7k
  }
757
25.1k
  p = opt_state->next_vnode++;
758
25.1k
  p->val = val;
759
25.1k
  p->code = code;
760
25.1k
  p->v0 = v0;
761
25.1k
  p->v1 = v1;
762
25.1k
  p->next = opt_state->hashtbl[hash];
763
25.1k
  opt_state->hashtbl[hash] = p;
764
765
25.1k
  return val;
766
38.4k
}
767
768
static inline void
769
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770
45.9k
{
771
45.9k
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
772
3.85k
    s->code = NOP;
773
42.0k
  else
774
42.0k
    *valp = newval;
775
45.9k
}
776
777
/*
778
 * Do constant-folding on binary operators.
779
 * (Unary operators are handled elsewhere.)
780
 */
781
static void
782
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783
1.35k
{
784
1.35k
  bpf_u_int32 a, b;
785
786
1.35k
  a = opt_state->vmap[v0].const_val;
787
1.35k
  b = opt_state->vmap[v1].const_val;
788
789
1.35k
  switch (BPF_OP(s->code)) {
790
147
  case BPF_ADD:
791
147
    a += b;
792
147
    break;
793
794
34
  case BPF_SUB:
795
34
    a -= b;
796
34
    break;
797
798
41
  case BPF_MUL:
799
41
    a *= b;
800
41
    break;
801
802
324
  case BPF_DIV:
803
324
    if (b == 0)
804
6
      opt_error(opt_state, "division by zero");
805
318
    a /= b;
806
318
    break;
807
808
75
  case BPF_MOD:
809
75
    if (b == 0)
810
56
      opt_error(opt_state, "modulus by zero");
811
19
    a %= b;
812
19
    break;
813
814
716
  case BPF_AND:
815
716
    a &= b;
816
716
    break;
817
818
3
  case BPF_OR:
819
3
    a |= b;
820
3
    break;
821
822
18
  case BPF_XOR:
823
18
    a ^= b;
824
18
    break;
825
826
1
  case BPF_LSH:
827
    /*
828
     * A left shift of more than the width of the type
829
     * is undefined in C; we'll just treat it as shifting
830
     * all the bits out.
831
     *
832
     * XXX - the BPF interpreter doesn't check for this,
833
     * so its behavior is dependent on the behavior of
834
     * the processor on which it's running.  There are
835
     * processors on which it shifts all the bits out
836
     * and processors on which it does no shift.
837
     */
838
1
    if (b < 32)
839
1
      a <<= b;
840
0
    else
841
0
      a = 0;
842
1
    break;
843
844
0
  case BPF_RSH:
845
    /*
846
     * A right shift of more than the width of the type
847
     * is undefined in C; we'll just treat it as shifting
848
     * all the bits out.
849
     *
850
     * XXX - the BPF interpreter doesn't check for this,
851
     * so its behavior is dependent on the behavior of
852
     * the processor on which it's running.  There are
853
     * processors on which it shifts all the bits out
854
     * and processors on which it does no shift.
855
     */
856
0
    if (b < 32)
857
0
      a >>= b;
858
0
    else
859
0
      a = 0;
860
0
    break;
861
862
0
  default:
863
0
    abort();
864
1.35k
  }
865
1.29k
  s->k = a;
866
1.29k
  s->code = BPF_LD|BPF_IMM;
867
  /*
868
   * XXX - optimizer loop detection.
869
   */
870
1.29k
  opt_state->non_branch_movement_performed = 1;
871
1.29k
  opt_state->done = 0;
872
1.29k
}
873
874
static inline struct slist *
875
this_op(struct slist *s)
876
102k
{
877
129k
  while (s != 0 && s->s.code == NOP)
878
26.6k
    s = s->next;
879
102k
  return s;
880
102k
}
881
882
static void
883
opt_not(struct block *b)
884
0
{
885
0
  struct block *tmp = JT(b);
886
887
0
  JT(b) = JF(b);
888
0
  JF(b) = tmp;
889
0
}
890
891
static void
892
opt_peep(opt_state_t *opt_state, struct block *b)
893
9.93k
{
894
9.93k
  struct slist *s;
895
9.93k
  struct slist *next, *last;
896
9.93k
  bpf_u_int32 val;
897
898
9.93k
  s = b->stmts;
899
9.93k
  if (s == 0)
900
3.43k
    return;
901
902
6.49k
  last = s;
903
51.4k
  for (/*empty*/; /*empty*/; s = next) {
904
    /*
905
     * Skip over nops.
906
     */
907
51.4k
    s = this_op(s);
908
51.4k
    if (s == 0)
909
265
      break;  /* nothing left in the block */
910
911
    /*
912
     * Find the next real instruction after that one
913
     * (skipping nops).
914
     */
915
51.1k
    next = this_op(s->next);
916
51.1k
    if (next == 0)
917
6.23k
      break;  /* no next instruction */
918
44.9k
    last = next;
919
920
    /*
921
     * st  M[k] --> st  M[k]
922
     * ldx M[k]   tax
923
     */
924
44.9k
    if (s->s.code == BPF_ST &&
925
44.9k
        next->s.code == (BPF_LDX|BPF_MEM) &&
926
44.9k
        s->s.k == next->s.k) {
927
      /*
928
       * XXX - optimizer loop detection.
929
       */
930
1.95k
      opt_state->non_branch_movement_performed = 1;
931
1.95k
      opt_state->done = 0;
932
1.95k
      next->s.code = BPF_MISC|BPF_TAX;
933
1.95k
    }
934
    /*
935
     * ld  #k --> ldx  #k
936
     * tax      txa
937
     */
938
44.9k
    if (s->s.code == (BPF_LD|BPF_IMM) &&
939
44.9k
        next->s.code == (BPF_MISC|BPF_TAX)) {
940
1.36k
      s->s.code = BPF_LDX|BPF_IMM;
941
1.36k
      next->s.code = BPF_MISC|BPF_TXA;
942
      /*
943
       * XXX - optimizer loop detection.
944
       */
945
1.36k
      opt_state->non_branch_movement_performed = 1;
946
1.36k
      opt_state->done = 0;
947
1.36k
    }
948
    /*
949
     * This is an ugly special case, but it happens
950
     * when you say tcp[k] or udp[k] where k is a constant.
951
     */
952
44.9k
    if (s->s.code == (BPF_LD|BPF_IMM)) {
953
7.44k
      struct slist *add, *tax, *ild;
954
955
      /*
956
       * Check that X isn't used on exit from this
957
       * block (which the optimizer might cause).
958
       * We know the code generator won't generate
959
       * any local dependencies.
960
       */
961
7.44k
      if (ATOMELEM(b->out_use, X_ATOM))
962
0
        continue;
963
964
      /*
965
       * Check that the instruction following the ldi
966
       * is an addx, or it's an ldxms with an addx
967
       * following it (with 0 or more nops between the
968
       * ldxms and addx).
969
       */
970
7.44k
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971
7.44k
        add = next;
972
0
      else
973
0
        add = this_op(next->next);
974
7.44k
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975
7.44k
        continue;
976
977
      /*
978
       * Check that a tax follows that (with 0 or more
979
       * nops between them).
980
       */
981
0
      tax = this_op(add->next);
982
0
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983
0
        continue;
984
985
      /*
986
       * Check that an ild follows that (with 0 or more
987
       * nops between them).
988
       */
989
0
      ild = this_op(tax->next);
990
0
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991
0
          BPF_MODE(ild->s.code) != BPF_IND)
992
0
        continue;
993
      /*
994
       * We want to turn this sequence:
995
       *
996
       * (004) ldi     #0x2   {s}
997
       * (005) ldxms   [14]   {next}  -- optional
998
       * (006) addx     {add}
999
       * (007) tax      {tax}
1000
       * (008) ild     [x+0]    {ild}
1001
       *
1002
       * into this sequence:
1003
       *
1004
       * (004) nop
1005
       * (005) ldxms   [14]
1006
       * (006) nop
1007
       * (007) nop
1008
       * (008) ild     [x+2]
1009
       *
1010
       * XXX We need to check that X is not
1011
       * subsequently used, because we want to change
1012
       * what'll be in it after this sequence.
1013
       *
1014
       * We know we can eliminate the accumulator
1015
       * modifications earlier in the sequence since
1016
       * it is defined by the last stmt of this sequence
1017
       * (i.e., the last statement of the sequence loads
1018
       * a value into the accumulator, so we can eliminate
1019
       * earlier operations on the accumulator).
1020
       */
1021
0
      ild->s.k += s->s.k;
1022
0
      s->s.code = NOP;
1023
0
      add->s.code = NOP;
1024
0
      tax->s.code = NOP;
1025
      /*
1026
       * XXX - optimizer loop detection.
1027
       */
1028
0
      opt_state->non_branch_movement_performed = 1;
1029
0
      opt_state->done = 0;
1030
0
    }
1031
44.9k
  }
1032
  /*
1033
   * If the comparison at the end of a block is an equality
1034
   * comparison against a constant, and nobody uses the value
1035
   * we leave in the A register at the end of a block, and
1036
   * the operation preceding the comparison is an arithmetic
1037
   * operation, we can sometime optimize it away.
1038
   */
1039
6.49k
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040
6.49k
      !ATOMELEM(b->out_use, A_ATOM)) {
1041
    /*
1042
     * We can optimize away certain subtractions of the
1043
     * X register.
1044
     */
1045
5.13k
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046
100
      val = b->val[X_ATOM];
1047
100
      if (opt_state->vmap[val].is_const) {
1048
        /*
1049
         * If we have a subtract to do a comparison,
1050
         * and the X register is a known constant,
1051
         * we can merge this value into the
1052
         * comparison:
1053
         *
1054
         * sub x  ->  nop
1055
         * jeq #y jeq #(x+y)
1056
         */
1057
28
        b->s.k += opt_state->vmap[val].const_val;
1058
28
        last->s.code = NOP;
1059
        /*
1060
         * XXX - optimizer loop detection.
1061
         */
1062
28
        opt_state->non_branch_movement_performed = 1;
1063
28
        opt_state->done = 0;
1064
72
      } else if (b->s.k == 0) {
1065
        /*
1066
         * If the X register isn't a constant,
1067
         * and the comparison in the test is
1068
         * against 0, we can compare with the
1069
         * X register, instead:
1070
         *
1071
         * sub x  ->  nop
1072
         * jeq #0 jeq x
1073
         */
1074
72
        last->s.code = NOP;
1075
72
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076
        /*
1077
         * XXX - optimizer loop detection.
1078
         */
1079
72
        opt_state->non_branch_movement_performed = 1;
1080
72
        opt_state->done = 0;
1081
72
      }
1082
100
    }
1083
    /*
1084
     * Likewise, a constant subtract can be simplified:
1085
     *
1086
     * sub #x ->  nop
1087
     * jeq #y ->  jeq #(x+y)
1088
     */
1089
5.03k
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090
0
      last->s.code = NOP;
1091
0
      b->s.k += last->s.k;
1092
      /*
1093
       * XXX - optimizer loop detection.
1094
       */
1095
0
      opt_state->non_branch_movement_performed = 1;
1096
0
      opt_state->done = 0;
1097
0
    }
1098
    /*
1099
     * And, similarly, a constant AND can be simplified
1100
     * if we're testing against 0, i.e.:
1101
     *
1102
     * and #k nop
1103
     * jeq #0  -> jset #k
1104
     */
1105
5.03k
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106
5.03k
        b->s.k == 0) {
1107
0
      b->s.k = last->s.k;
1108
0
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109
0
      last->s.code = NOP;
1110
      /*
1111
       * XXX - optimizer loop detection.
1112
       */
1113
0
      opt_state->non_branch_movement_performed = 1;
1114
0
      opt_state->done = 0;
1115
0
      opt_not(b);
1116
0
    }
1117
5.13k
  }
1118
  /*
1119
   * jset #0        ->   never
1120
   * jset #ffffffff ->   always
1121
   */
1122
6.49k
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123
0
    if (b->s.k == 0)
1124
0
      JT(b) = JF(b);
1125
0
    if (b->s.k == 0xffffffffU)
1126
0
      JF(b) = JT(b);
1127
0
  }
1128
  /*
1129
   * If we're comparing against the index register, and the index
1130
   * register is a known constant, we can just compare against that
1131
   * constant.
1132
   */
1133
6.49k
  val = b->val[X_ATOM];
1134
6.49k
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135
228
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1136
228
    b->s.code &= ~BPF_X;
1137
228
    b->s.k = v;
1138
228
  }
1139
  /*
1140
   * If the accumulator is a known constant, we can compute the
1141
   * comparison result.
1142
   */
1143
6.49k
  val = b->val[A_ATOM];
1144
6.49k
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145
1.02k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1146
1.02k
    switch (BPF_OP(b->s.code)) {
1147
1148
564
    case BPF_JEQ:
1149
564
      v = v == b->s.k;
1150
564
      break;
1151
1152
52
    case BPF_JGT:
1153
52
      v = v > b->s.k;
1154
52
      break;
1155
1156
407
    case BPF_JGE:
1157
407
      v = v >= b->s.k;
1158
407
      break;
1159
1160
0
    case BPF_JSET:
1161
0
      v &= b->s.k;
1162
0
      break;
1163
1164
0
    default:
1165
0
      abort();
1166
1.02k
    }
1167
1.02k
    if (JF(b) != JT(b)) {
1168
      /*
1169
       * XXX - optimizer loop detection.
1170
       */
1171
391
      opt_state->non_branch_movement_performed = 1;
1172
391
      opt_state->done = 0;
1173
391
    }
1174
1.02k
    if (v)
1175
506
      JF(b) = JT(b);
1176
517
    else
1177
517
      JT(b) = JF(b);
1178
1.02k
  }
1179
6.49k
}
1180
1181
/*
1182
 * Compute the symbolic value of expression of 's', and update
1183
 * anything it defines in the value table 'val'.  If 'alter' is true,
1184
 * do various optimizations.  This code would be cleaner if symbolic
1185
 * evaluation and code transformations weren't folded together.
1186
 */
1187
static void
1188
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189
80.6k
{
1190
80.6k
  int op;
1191
80.6k
  bpf_u_int32 v;
1192
1193
80.6k
  switch (s->code) {
1194
1195
1.58k
  case BPF_LD|BPF_ABS|BPF_W:
1196
2.29k
  case BPF_LD|BPF_ABS|BPF_H:
1197
4.63k
  case BPF_LD|BPF_ABS|BPF_B:
1198
4.63k
    v = F(opt_state, s->code, s->k, 0L);
1199
4.63k
    vstore(s, &val[A_ATOM], v, alter);
1200
4.63k
    break;
1201
1202
0
  case BPF_LD|BPF_IND|BPF_W:
1203
0
  case BPF_LD|BPF_IND|BPF_H:
1204
30
  case BPF_LD|BPF_IND|BPF_B:
1205
30
    v = val[X_ATOM];
1206
30
    if (alter && opt_state->vmap[v].is_const) {
1207
0
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208
0
      s->k += opt_state->vmap[v].const_val;
1209
0
      v = F(opt_state, s->code, s->k, 0L);
1210
      /*
1211
       * XXX - optimizer loop detection.
1212
       */
1213
0
      opt_state->non_branch_movement_performed = 1;
1214
0
      opt_state->done = 0;
1215
0
    }
1216
30
    else
1217
30
      v = F(opt_state, s->code, s->k, v);
1218
30
    vstore(s, &val[A_ATOM], v, alter);
1219
30
    break;
1220
1221
0
  case BPF_LD|BPF_LEN:
1222
0
    v = F(opt_state, s->code, 0L, 0L);
1223
0
    vstore(s, &val[A_ATOM], v, alter);
1224
0
    break;
1225
1226
8.82k
  case BPF_LD|BPF_IMM:
1227
8.82k
    v = K(s->k);
1228
8.82k
    vstore(s, &val[A_ATOM], v, alter);
1229
8.82k
    break;
1230
1231
2.28k
  case BPF_LDX|BPF_IMM:
1232
2.28k
    v = K(s->k);
1233
2.28k
    vstore(s, &val[X_ATOM], v, alter);
1234
2.28k
    break;
1235
1236
0
  case BPF_LDX|BPF_MSH|BPF_B:
1237
0
    v = F(opt_state, s->code, s->k, 0L);
1238
0
    vstore(s, &val[X_ATOM], v, alter);
1239
0
    break;
1240
1241
3.89k
  case BPF_ALU|BPF_NEG:
1242
3.89k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243
777
      s->code = BPF_LD|BPF_IMM;
1244
      /*
1245
       * Do this negation as unsigned arithmetic; that's
1246
       * what modern BPF engines do, and it guarantees
1247
       * that all possible values can be negated.  (Yeah,
1248
       * negating 0x80000000, the minimum signed 32-bit
1249
       * two's-complement value, results in 0x80000000,
1250
       * so it's still negative, but we *should* be doing
1251
       * all unsigned arithmetic here, to match what
1252
       * modern BPF engines do.)
1253
       *
1254
       * Express it as 0U - (unsigned value) so that we
1255
       * don't get compiler warnings about negating an
1256
       * unsigned value and don't get UBSan warnings
1257
       * about the result of negating 0x80000000 being
1258
       * undefined.
1259
       */
1260
777
      s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261
777
      val[A_ATOM] = K(s->k);
1262
777
    }
1263
3.11k
    else
1264
3.11k
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265
3.89k
    break;
1266
1267
23
  case BPF_ALU|BPF_ADD|BPF_K:
1268
23
  case BPF_ALU|BPF_SUB|BPF_K:
1269
23
  case BPF_ALU|BPF_MUL|BPF_K:
1270
23
  case BPF_ALU|BPF_DIV|BPF_K:
1271
23
  case BPF_ALU|BPF_MOD|BPF_K:
1272
549
  case BPF_ALU|BPF_AND|BPF_K:
1273
549
  case BPF_ALU|BPF_OR|BPF_K:
1274
549
  case BPF_ALU|BPF_XOR|BPF_K:
1275
549
  case BPF_ALU|BPF_LSH|BPF_K:
1276
549
  case BPF_ALU|BPF_RSH|BPF_K:
1277
549
    op = BPF_OP(s->code);
1278
549
    if (alter) {
1279
155
      if (s->k == 0) {
1280
        /*
1281
         * Optimize operations where the constant
1282
         * is zero.
1283
         *
1284
         * Don't optimize away "sub #0"
1285
         * as it may be needed later to
1286
         * fixup the generated math code.
1287
         *
1288
         * Fail if we're dividing by zero or taking
1289
         * a modulus by zero.
1290
         */
1291
0
        if (op == BPF_ADD ||
1292
0
            op == BPF_LSH || op == BPF_RSH ||
1293
0
            op == BPF_OR || op == BPF_XOR) {
1294
0
          s->code = NOP;
1295
0
          break;
1296
0
        }
1297
0
        if (op == BPF_MUL || op == BPF_AND) {
1298
0
          s->code = BPF_LD|BPF_IMM;
1299
0
          val[A_ATOM] = K(s->k);
1300
0
          break;
1301
0
        }
1302
0
        if (op == BPF_DIV)
1303
0
          opt_error(opt_state,
1304
0
              "division by zero");
1305
0
        if (op == BPF_MOD)
1306
0
          opt_error(opt_state,
1307
0
              "modulus by zero");
1308
0
      }
1309
155
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1310
0
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311
0
        val[A_ATOM] = K(s->k);
1312
0
        break;
1313
0
      }
1314
155
    }
1315
549
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316
549
    break;
1317
1318
692
  case BPF_ALU|BPF_ADD|BPF_X:
1319
931
  case BPF_ALU|BPF_SUB|BPF_X:
1320
1.09k
  case BPF_ALU|BPF_MUL|BPF_X:
1321
2.64k
  case BPF_ALU|BPF_DIV|BPF_X:
1322
2.96k
  case BPF_ALU|BPF_MOD|BPF_X:
1323
6.25k
  case BPF_ALU|BPF_AND|BPF_X:
1324
6.26k
  case BPF_ALU|BPF_OR|BPF_X:
1325
6.33k
  case BPF_ALU|BPF_XOR|BPF_X:
1326
6.34k
  case BPF_ALU|BPF_LSH|BPF_X:
1327
6.34k
  case BPF_ALU|BPF_RSH|BPF_X:
1328
6.34k
    op = BPF_OP(s->code);
1329
6.34k
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330
1.35k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1331
1.35k
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332
1.35k
        val[A_ATOM] = K(s->k);
1333
1.35k
      }
1334
0
      else {
1335
0
        s->code = BPF_ALU|BPF_K|op;
1336
0
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337
0
        if ((op == BPF_LSH || op == BPF_RSH) &&
1338
0
            s->k > 31)
1339
0
          opt_error(opt_state,
1340
0
              "shift by more than 31 bits");
1341
        /*
1342
         * XXX - optimizer loop detection.
1343
         */
1344
0
        opt_state->non_branch_movement_performed = 1;
1345
0
        opt_state->done = 0;
1346
0
        val[A_ATOM] =
1347
0
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1348
0
      }
1349
1.35k
      break;
1350
1.35k
    }
1351
    /*
1352
     * Check if we're doing something to an accumulator
1353
     * that is 0, and simplify.  This may not seem like
1354
     * much of a simplification but it could open up further
1355
     * optimizations.
1356
     * XXX We could also check for mul by 1, etc.
1357
     */
1358
4.98k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359
4.98k
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360
0
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361
0
        s->code = BPF_MISC|BPF_TXA;
1362
0
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363
0
        break;
1364
0
      }
1365
0
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366
0
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367
0
        s->code = BPF_LD|BPF_IMM;
1368
0
        s->k = 0;
1369
0
        vstore(s, &val[A_ATOM], K(s->k), alter);
1370
0
        break;
1371
0
      }
1372
0
      else if (op == BPF_NEG) {
1373
0
        s->code = NOP;
1374
0
        break;
1375
0
      }
1376
0
    }
1377
4.98k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378
4.98k
    break;
1379
1380
104
  case BPF_MISC|BPF_TXA:
1381
104
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382
104
    break;
1383
1384
11.2k
  case BPF_LD|BPF_MEM:
1385
11.2k
    v = val[s->k];
1386
11.2k
    if (alter && opt_state->vmap[v].is_const) {
1387
2.37k
      s->code = BPF_LD|BPF_IMM;
1388
2.37k
      s->k = opt_state->vmap[v].const_val;
1389
      /*
1390
       * XXX - optimizer loop detection.
1391
       */
1392
2.37k
      opt_state->non_branch_movement_performed = 1;
1393
2.37k
      opt_state->done = 0;
1394
2.37k
    }
1395
11.2k
    vstore(s, &val[A_ATOM], v, alter);
1396
11.2k
    break;
1397
1398
3.42k
  case BPF_MISC|BPF_TAX:
1399
3.42k
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400
3.42k
    break;
1401
1402
1.98k
  case BPF_LDX|BPF_MEM:
1403
1.98k
    v = val[s->k];
1404
1.98k
    if (alter && opt_state->vmap[v].is_const) {
1405
0
      s->code = BPF_LDX|BPF_IMM;
1406
0
      s->k = opt_state->vmap[v].const_val;
1407
      /*
1408
       * XXX - optimizer loop detection.
1409
       */
1410
0
      opt_state->non_branch_movement_performed = 1;
1411
0
      opt_state->done = 0;
1412
0
    }
1413
1.98k
    vstore(s, &val[X_ATOM], v, alter);
1414
1.98k
    break;
1415
1416
13.3k
  case BPF_ST:
1417
13.3k
    vstore(s, &val[s->k], val[A_ATOM], alter);
1418
13.3k
    break;
1419
1420
0
  case BPF_STX:
1421
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1422
0
    break;
1423
80.6k
  }
1424
80.6k
}
1425
1426
static void
1427
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428
87.7k
{
1429
87.7k
  register int atom;
1430
1431
87.7k
  atom = atomuse(s);
1432
87.7k
  if (atom >= 0) {
1433
41.8k
    if (atom == AX_ATOM) {
1434
5.61k
      last[X_ATOM] = 0;
1435
5.61k
      last[A_ATOM] = 0;
1436
5.61k
    }
1437
36.2k
    else
1438
36.2k
      last[atom] = 0;
1439
41.8k
  }
1440
87.7k
  atom = atomdef(s);
1441
87.7k
  if (atom >= 0) {
1442
51.0k
    if (last[atom]) {
1443
      /*
1444
       * XXX - optimizer loop detection.
1445
       */
1446
5.37k
      opt_state->non_branch_movement_performed = 1;
1447
5.37k
      opt_state->done = 0;
1448
5.37k
      last[atom]->code = NOP;
1449
5.37k
    }
1450
51.0k
    last[atom] = s;
1451
51.0k
  }
1452
87.7k
}
1453
1454
static void
1455
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456
9.93k
{
1457
9.93k
  register struct slist *s;
1458
9.93k
  register int atom;
1459
9.93k
  struct stmt *last[N_ATOMS];
1460
1461
9.93k
  memset((char *)last, 0, sizeof last);
1462
1463
87.7k
  for (s = b->stmts; s != 0; s = s->next)
1464
77.8k
    deadstmt(opt_state, &s->s, last);
1465
9.93k
  deadstmt(opt_state, &b->s, last);
1466
1467
188k
  for (atom = 0; atom < N_ATOMS; ++atom)
1468
178k
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469
1.83k
      last[atom]->code = NOP;
1470
      /*
1471
       * XXX - optimizer loop detection.
1472
       */
1473
1.83k
      opt_state->non_branch_movement_performed = 1;
1474
1.83k
      opt_state->done = 0;
1475
1.83k
    }
1476
9.93k
}
1477
1478
static void
1479
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480
12.1k
{
1481
12.1k
  struct slist *s;
1482
12.1k
  struct edge *p;
1483
12.1k
  int i;
1484
12.1k
  bpf_u_int32 aval, xval;
1485
1486
#if 0
1487
  for (s = b->stmts; s && s->next; s = s->next)
1488
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489
      do_stmts = 0;
1490
      break;
1491
    }
1492
#endif
1493
1494
  /*
1495
   * Initialize the atom values.
1496
   */
1497
12.1k
  p = b->in_edges;
1498
12.1k
  if (p == 0) {
1499
    /*
1500
     * We have no predecessors, so everything is undefined
1501
     * upon entry to this block.
1502
     */
1503
3.60k
    memset((char *)b->val, 0, sizeof(b->val));
1504
8.56k
  } else {
1505
    /*
1506
     * Inherit values from our predecessors.
1507
     *
1508
     * First, get the values from the predecessor along the
1509
     * first edge leading to this node.
1510
     */
1511
8.56k
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512
    /*
1513
     * Now look at all the other nodes leading to this node.
1514
     * If, for the predecessor along that edge, a register
1515
     * has a different value from the one we have (i.e.,
1516
     * control paths are merging, and the merging paths
1517
     * assign different values to that register), give the
1518
     * register the undefined value of 0.
1519
     */
1520
12.9k
    while ((p = p->next) != NULL) {
1521
83.1k
      for (i = 0; i < N_ATOMS; ++i)
1522
78.7k
        if (b->val[i] != p->pred->val[i])
1523
9.94k
          b->val[i] = 0;
1524
4.37k
    }
1525
8.56k
  }
1526
12.1k
  aval = b->val[A_ATOM];
1527
12.1k
  xval = b->val[X_ATOM];
1528
92.8k
  for (s = b->stmts; s; s = s->next)
1529
80.6k
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531
  /*
1532
   * This is a special case: if we don't use anything from this
1533
   * block, and we load the accumulator or index register with a
1534
   * value that is already there, or if this block is a return,
1535
   * eliminate all the statements.
1536
   *
1537
   * XXX - what if it does a store?  Presumably that falls under
1538
   * the heading of "if we don't use anything from this block",
1539
   * i.e., if we use any memory location set to a different
1540
   * value by this block, then we use something from this block.
1541
   *
1542
   * XXX - why does it matter whether we use anything from this
1543
   * block?  If the accumulator or index register doesn't change
1544
   * its value, isn't that OK even if we use that value?
1545
   *
1546
   * XXX - if we load the accumulator with a different value,
1547
   * and the block ends with a conditional branch, we obviously
1548
   * can't eliminate it, as the branch depends on that value.
1549
   * For the index register, the conditional branch only depends
1550
   * on the index register value if the test is against the index
1551
   * register value rather than a constant; if nothing uses the
1552
   * value we put into the index register, and we're not testing
1553
   * against the index register's value, and there aren't any
1554
   * other problems that would keep us from eliminating this
1555
   * block, can we eliminate it?
1556
   */
1557
12.1k
  if (do_stmts &&
1558
12.1k
      ((b->out_use == 0 &&
1559
4.46k
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560
4.46k
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561
4.46k
       BPF_CLASS(b->s.code) == BPF_RET)) {
1562
2.17k
    if (b->stmts != 0) {
1563
0
      b->stmts = 0;
1564
      /*
1565
       * XXX - optimizer loop detection.
1566
       */
1567
0
      opt_state->non_branch_movement_performed = 1;
1568
0
      opt_state->done = 0;
1569
0
    }
1570
9.99k
  } else {
1571
9.99k
    opt_peep(opt_state, b);
1572
9.99k
    opt_deadstores(opt_state, b);
1573
9.99k
  }
1574
  /*
1575
   * Set up values for branch optimizer.
1576
   */
1577
12.1k
  if (BPF_SRC(b->s.code) == BPF_K)
1578
11.3k
    b->oval = K(b->s.k);
1579
796
  else
1580
796
    b->oval = b->val[X_ATOM];
1581
12.1k
  b->et.code = b->s.code;
1582
12.1k
  b->ef.code = -b->s.code;
1583
12.1k
}
1584
1585
/*
1586
 * Return true if any register that is used on exit from 'succ', has
1587
 * an exit value that is different from the corresponding exit value
1588
 * from 'b'.
1589
 */
1590
static int
1591
use_conflict(struct block *b, struct block *succ)
1592
1.53k
{
1593
1.53k
  int atom;
1594
1.53k
  atomset use = succ->out_use;
1595
1596
1.53k
  if (use == 0)
1597
1.53k
    return 0;
1598
1599
0
  for (atom = 0; atom < N_ATOMS; ++atom)
1600
0
    if (ATOMELEM(use, atom))
1601
0
      if (b->val[atom] != succ->val[atom])
1602
0
        return 1;
1603
0
  return 0;
1604
0
}
1605
1606
/*
1607
 * Given a block that is the successor of an edge, and an edge that
1608
 * dominates that edge, return either a pointer to a child of that
1609
 * block (a block to which that block jumps) if that block is a
1610
 * candidate to replace the successor of the latter edge or NULL
1611
 * if neither of the children of the first block are candidates.
1612
 */
1613
static struct block *
1614
fold_edge(struct block *child, struct edge *ep)
1615
6.80k
{
1616
6.80k
  int sense;
1617
6.80k
  bpf_u_int32 aval0, aval1, oval0, oval1;
1618
6.80k
  int code = ep->code;
1619
1620
6.80k
  if (code < 0) {
1621
    /*
1622
     * This edge is a "branch if false" edge.
1623
     */
1624
1.78k
    code = -code;
1625
1.78k
    sense = 0;
1626
5.02k
  } else {
1627
    /*
1628
     * This edge is a "branch if true" edge.
1629
     */
1630
5.02k
    sense = 1;
1631
5.02k
  }
1632
1633
  /*
1634
   * If the opcode for the branch at the end of the block we
1635
   * were handed isn't the same as the opcode for the branch
1636
   * to which the edge we were handed corresponds, the tests
1637
   * for those branches aren't testing the same conditions,
1638
   * so the blocks to which the first block branches aren't
1639
   * candidates to replace the successor of the edge.
1640
   */
1641
6.80k
  if (child->s.code != code)
1642
1.38k
    return 0;
1643
1644
5.42k
  aval0 = child->val[A_ATOM];
1645
5.42k
  oval0 = child->oval;
1646
5.42k
  aval1 = ep->pred->val[A_ATOM];
1647
5.42k
  oval1 = ep->pred->oval;
1648
1649
  /*
1650
   * If the A register value on exit from the successor block
1651
   * isn't the same as the A register value on exit from the
1652
   * predecessor of the edge, the blocks to which the first
1653
   * block branches aren't candidates to replace the successor
1654
   * of the edge.
1655
   */
1656
5.42k
  if (aval0 != aval1)
1657
3.48k
    return 0;
1658
1659
1.93k
  if (oval0 == oval1)
1660
    /*
1661
     * The operands of the branch instructions are
1662
     * identical, so the branches are testing the
1663
     * same condition, and the result is true if a true
1664
     * branch was taken to get here, otherwise false.
1665
     */
1666
1.24k
    return sense ? JT(child) : JF(child);
1667
1668
690
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669
    /*
1670
     * At this point, we only know the comparison if we
1671
     * came down the true branch, and it was an equality
1672
     * comparison with a constant.
1673
     *
1674
     * I.e., if we came down the true branch, and the branch
1675
     * was an equality comparison with a constant, we know the
1676
     * accumulator contains that constant.  If we came down
1677
     * the false branch, or the comparison wasn't with a
1678
     * constant, we don't know what was in the accumulator.
1679
     *
1680
     * We rely on the fact that distinct constants have distinct
1681
     * value numbers.
1682
     */
1683
16
    return JF(child);
1684
1685
674
  return 0;
1686
690
}
1687
1688
/*
1689
 * If we can make this edge go directly to a child of the edge's current
1690
 * successor, do so.
1691
 */
1692
static void
1693
opt_j(opt_state_t *opt_state, struct edge *ep)
1694
8.41k
{
1695
8.41k
  register u_int i, k;
1696
8.41k
  register struct block *target;
1697
1698
  /*
1699
   * Does this edge go to a block where, if the test
1700
   * at the end of it succeeds, it goes to a block
1701
   * that's a leaf node of the DAG, i.e. a return
1702
   * statement?
1703
   * If so, there's nothing to optimize.
1704
   */
1705
8.41k
  if (JT(ep->succ) == 0)
1706
5.18k
    return;
1707
1708
  /*
1709
   * Does this edge go to a block that goes, in turn, to
1710
   * the same block regardless of whether the test at the
1711
   * end succeeds or fails?
1712
   */
1713
3.22k
  if (JT(ep->succ) == JF(ep->succ)) {
1714
    /*
1715
     * Common branch targets can be eliminated, provided
1716
     * there is no data dependency.
1717
     *
1718
     * Check whether any register used on exit from the
1719
     * block to which the successor of this edge goes
1720
     * has a value at that point that's different from
1721
     * the value it has on exit from the predecessor of
1722
     * this edge.  If not, the predecessor of this edge
1723
     * can just go to the block to which the successor
1724
     * of this edge goes, bypassing the successor of this
1725
     * edge, as the successor of this edge isn't doing
1726
     * any calculations whose results are different
1727
     * from what the blocks before it did and isn't
1728
     * doing any tests the results of which matter.
1729
     */
1730
276
    if (!use_conflict(ep->pred, JT(ep->succ))) {
1731
      /*
1732
       * No, there isn't.
1733
       * Make this edge go to the block to
1734
       * which the successor of that edge
1735
       * goes.
1736
       *
1737
       * XXX - optimizer loop detection.
1738
       */
1739
276
      opt_state->non_branch_movement_performed = 1;
1740
276
      opt_state->done = 0;
1741
276
      ep->succ = JT(ep->succ);
1742
276
    }
1743
276
  }
1744
  /*
1745
   * For each edge dominator that matches the successor of this
1746
   * edge, promote the edge successor to the its grandchild.
1747
   *
1748
   * XXX We violate the set abstraction here in favor a reasonably
1749
   * efficient loop.
1750
   */
1751
3.99k
 top:
1752
6.89k
  for (i = 0; i < opt_state->edgewords; ++i) {
1753
    /* i'th word in the bitset of dominators */
1754
4.15k
    register bpf_u_int32 x = ep->edom[i];
1755
1756
9.70k
    while (x != 0) {
1757
      /* Find the next dominator in that word and mark it as found */
1758
6.80k
      k = lowest_set_bit(x);
1759
6.80k
      x &=~ ((bpf_u_int32)1 << k);
1760
6.80k
      k += i * BITS_PER_WORD;
1761
1762
6.80k
      target = fold_edge(ep->succ, opt_state->edges[k]);
1763
      /*
1764
       * We have a candidate to replace the successor
1765
       * of ep.
1766
       *
1767
       * Check that there is no data dependency between
1768
       * nodes that will be violated if we move the edge;
1769
       * i.e., if any register used on exit from the
1770
       * candidate has a value at that point different
1771
       * from the value it has when we exit the
1772
       * predecessor of that edge, there's a data
1773
       * dependency that will be violated.
1774
       */
1775
6.80k
      if (target != 0 && !use_conflict(ep->pred, target)) {
1776
        /*
1777
         * It's safe to replace the successor of
1778
         * ep; do so, and note that we've made
1779
         * at least one change.
1780
         *
1781
         * XXX - this is one of the operations that
1782
         * happens when the optimizer gets into
1783
         * one of those infinite loops.
1784
         */
1785
1.25k
        opt_state->done = 0;
1786
1.25k
        ep->succ = target;
1787
1.25k
        if (JT(target) != 0)
1788
          /*
1789
           * Start over unless we hit a leaf.
1790
           */
1791
771
          goto top;
1792
486
        return;
1793
1.25k
      }
1794
6.80k
    }
1795
4.15k
  }
1796
3.99k
}
1797
1798
/*
1799
 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800
 * "Predicate Assertion Propagation" in the BPF+ paper?
1801
 *
1802
 * Note that this looks at block dominators, not edge dominators.
1803
 * Don't think so.
1804
 *
1805
 * "A or B" compiles into
1806
 *
1807
 *          A
1808
 *       t / \ f
1809
 *        /   B
1810
 *       / t / \ f
1811
 *      \   /
1812
 *       \ /
1813
 *        X
1814
 *
1815
 *
1816
 */
1817
static void
1818
or_pullup(opt_state_t *opt_state, struct block *b)
1819
4.20k
{
1820
4.20k
  bpf_u_int32 val;
1821
4.20k
  int at_top;
1822
4.20k
  struct block *pull;
1823
4.20k
  struct block **diffp, **samep;
1824
4.20k
  struct edge *ep;
1825
1826
4.20k
  ep = b->in_edges;
1827
4.20k
  if (ep == 0)
1828
1.98k
    return;
1829
1830
  /*
1831
   * Make sure each predecessor loads the same value.
1832
   * XXX why?
1833
   */
1834
2.21k
  val = ep->pred->val[A_ATOM];
1835
2.23k
  for (ep = ep->next; ep != 0; ep = ep->next)
1836
243
    if (val != ep->pred->val[A_ATOM])
1837
226
      return;
1838
1839
  /*
1840
   * For the first edge in the list of edges coming into this block,
1841
   * see whether the predecessor of that edge comes here via a true
1842
   * branch or a false branch.
1843
   */
1844
1.99k
  if (JT(b->in_edges->pred) == b)
1845
1.61k
    diffp = &JT(b->in_edges->pred); /* jt */
1846
375
  else
1847
375
    diffp = &JF(b->in_edges->pred);  /* jf */
1848
1849
  /*
1850
   * diffp is a pointer to a pointer to the block.
1851
   *
1852
   * Go down the false chain looking as far as you can,
1853
   * making sure that each jump-compare is doing the
1854
   * same as the original block.
1855
   *
1856
   * If you reach the bottom before you reach a
1857
   * different jump-compare, just exit.  There's nothing
1858
   * to do here.  XXX - no, this version is checking for
1859
   * the value leaving the block; that's from the BPF+
1860
   * pullup routine.
1861
   */
1862
1.99k
  at_top = 1;
1863
2.44k
  for (;;) {
1864
    /*
1865
     * Done if that's not going anywhere XXX
1866
     */
1867
2.44k
    if (*diffp == 0)
1868
0
      return;
1869
1870
    /*
1871
     * Done if that predecessor blah blah blah isn't
1872
     * going the same place we're going XXX
1873
     *
1874
     * Does the true edge of this block point to the same
1875
     * location as the true edge of b?
1876
     */
1877
2.44k
    if (JT(*diffp) != JT(b))
1878
295
      return;
1879
1880
    /*
1881
     * Done if this node isn't a dominator of that
1882
     * node blah blah blah XXX
1883
     *
1884
     * Does b dominate diffp?
1885
     */
1886
2.14k
    if (!SET_MEMBER((*diffp)->dom, b->id))
1887
0
      return;
1888
1889
    /*
1890
     * Break out of the loop if that node's value of A
1891
     * isn't the value of A above XXX
1892
     */
1893
2.14k
    if ((*diffp)->val[A_ATOM] != val)
1894
1.69k
      break;
1895
1896
    /*
1897
     * Get the JF for that node XXX
1898
     * Go down the false path.
1899
     */
1900
453
    diffp = &JF(*diffp);
1901
453
    at_top = 0;
1902
453
  }
1903
1904
  /*
1905
   * Now that we've found a different jump-compare in a chain
1906
   * below b, search further down until we find another
1907
   * jump-compare that looks at the original value.  This
1908
   * jump-compare should get pulled up.  XXX again we're
1909
   * comparing values not jump-compares.
1910
   */
1911
1.69k
  samep = &JF(*diffp);
1912
1.91k
  for (;;) {
1913
    /*
1914
     * Done if that's not going anywhere XXX
1915
     */
1916
1.91k
    if (*samep == 0)
1917
0
      return;
1918
1919
    /*
1920
     * Done if that predecessor blah blah blah isn't
1921
     * going the same place we're going XXX
1922
     */
1923
1.91k
    if (JT(*samep) != JT(b))
1924
1.56k
      return;
1925
1926
    /*
1927
     * Done if this node isn't a dominator of that
1928
     * node blah blah blah XXX
1929
     *
1930
     * Does b dominate samep?
1931
     */
1932
357
    if (!SET_MEMBER((*samep)->dom, b->id))
1933
134
      return;
1934
1935
    /*
1936
     * Break out of the loop if that node's value of A
1937
     * is the value of A above XXX
1938
     */
1939
223
    if ((*samep)->val[A_ATOM] == val)
1940
0
      break;
1941
1942
    /* XXX Need to check that there are no data dependencies
1943
       between dp0 and dp1.  Currently, the code generator
1944
       will not produce such dependencies. */
1945
223
    samep = &JF(*samep);
1946
223
  }
1947
#ifdef notdef
1948
  /* XXX This doesn't cover everything. */
1949
  for (i = 0; i < N_ATOMS; ++i)
1950
    if ((*samep)->val[i] != pred->val[i])
1951
      return;
1952
#endif
1953
  /* Pull up the node. */
1954
0
  pull = *samep;
1955
0
  *samep = JF(pull);
1956
0
  JF(pull) = *diffp;
1957
1958
  /*
1959
   * At the top of the chain, each predecessor needs to point at the
1960
   * pulled up node.  Inside the chain, there is only one predecessor
1961
   * to worry about.
1962
   */
1963
0
  if (at_top) {
1964
0
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965
0
      if (JT(ep->pred) == b)
1966
0
        JT(ep->pred) = pull;
1967
0
      else
1968
0
        JF(ep->pred) = pull;
1969
0
    }
1970
0
  }
1971
0
  else
1972
0
    *diffp = pull;
1973
1974
  /*
1975
   * XXX - this is one of the operations that happens when the
1976
   * optimizer gets into one of those infinite loops.
1977
   */
1978
0
  opt_state->done = 0;
1979
0
}
1980
1981
static void
1982
and_pullup(opt_state_t *opt_state, struct block *b)
1983
4.20k
{
1984
4.20k
  bpf_u_int32 val;
1985
4.20k
  int at_top;
1986
4.20k
  struct block *pull;
1987
4.20k
  struct block **diffp, **samep;
1988
4.20k
  struct edge *ep;
1989
1990
4.20k
  ep = b->in_edges;
1991
4.20k
  if (ep == 0)
1992
1.98k
    return;
1993
1994
  /*
1995
   * Make sure each predecessor loads the same value.
1996
   */
1997
2.21k
  val = ep->pred->val[A_ATOM];
1998
2.23k
  for (ep = ep->next; ep != 0; ep = ep->next)
1999
243
    if (val != ep->pred->val[A_ATOM])
2000
226
      return;
2001
2002
1.99k
  if (JT(b->in_edges->pred) == b)
2003
1.61k
    diffp = &JT(b->in_edges->pred);
2004
375
  else
2005
375
    diffp = &JF(b->in_edges->pred);
2006
2007
1.99k
  at_top = 1;
2008
2.28k
  for (;;) {
2009
2.28k
    if (*diffp == 0)
2010
0
      return;
2011
2012
2.28k
    if (JF(*diffp) != JF(b))
2013
266
      return;
2014
2015
2.02k
    if (!SET_MEMBER((*diffp)->dom, b->id))
2016
2
      return;
2017
2018
2.01k
    if ((*diffp)->val[A_ATOM] != val)
2019
1.72k
      break;
2020
2021
295
    diffp = &JT(*diffp);
2022
295
    at_top = 0;
2023
295
  }
2024
1.72k
  samep = &JT(*diffp);
2025
1.99k
  for (;;) {
2026
1.99k
    if (*samep == 0)
2027
0
      return;
2028
2029
1.99k
    if (JF(*samep) != JF(b))
2030
1.72k
      return;
2031
2032
267
    if (!SET_MEMBER((*samep)->dom, b->id))
2033
0
      return;
2034
2035
267
    if ((*samep)->val[A_ATOM] == val)
2036
0
      break;
2037
2038
    /* XXX Need to check that there are no data dependencies
2039
       between diffp and samep.  Currently, the code generator
2040
       will not produce such dependencies. */
2041
267
    samep = &JT(*samep);
2042
267
  }
2043
#ifdef notdef
2044
  /* XXX This doesn't cover everything. */
2045
  for (i = 0; i < N_ATOMS; ++i)
2046
    if ((*samep)->val[i] != pred->val[i])
2047
      return;
2048
#endif
2049
  /* Pull up the node. */
2050
0
  pull = *samep;
2051
0
  *samep = JT(pull);
2052
0
  JT(pull) = *diffp;
2053
2054
  /*
2055
   * At the top of the chain, each predecessor needs to point at the
2056
   * pulled up node.  Inside the chain, there is only one predecessor
2057
   * to worry about.
2058
   */
2059
0
  if (at_top) {
2060
0
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061
0
      if (JT(ep->pred) == b)
2062
0
        JT(ep->pred) = pull;
2063
0
      else
2064
0
        JF(ep->pred) = pull;
2065
0
    }
2066
0
  }
2067
0
  else
2068
0
    *diffp = pull;
2069
2070
  /*
2071
   * XXX - this is one of the operations that happens when the
2072
   * optimizer gets into one of those infinite loops.
2073
   */
2074
0
  opt_state->done = 0;
2075
0
}
2076
2077
static void
2078
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079
3.60k
{
2080
3.60k
  int i, maxlevel;
2081
3.60k
  struct block *p;
2082
2083
3.60k
  init_val(opt_state);
2084
3.60k
  maxlevel = ic->root->level;
2085
2086
3.60k
  find_inedges(opt_state, ic->root);
2087
13.6k
  for (i = maxlevel; i >= 0; --i)
2088
22.2k
    for (p = opt_state->levels[i]; p; p = p->link)
2089
12.1k
      opt_blk(opt_state, p, do_stmts);
2090
2091
3.60k
  if (do_stmts)
2092
    /*
2093
     * No point trying to move branches; it can't possibly
2094
     * make a difference at this point.
2095
     *
2096
     * XXX - this might be after we detect a loop where
2097
     * we were just looping infinitely moving branches
2098
     * in such a fashion that we went through two or more
2099
     * versions of the machine code, eventually returning
2100
     * to the first version.  (We're really not doing a
2101
     * full loop detection, we're just testing for two
2102
     * passes in a row where we do nothing but
2103
     * move branches.)
2104
     */
2105
1.54k
    return;
2106
2107
  /*
2108
   * Is this what the BPF+ paper describes in sections 6.1.1,
2109
   * 6.1.2, and 6.1.3?
2110
   */
2111
6.25k
  for (i = 1; i <= maxlevel; ++i) {
2112
8.40k
    for (p = opt_state->levels[i]; p; p = p->link) {
2113
4.20k
      opt_j(opt_state, &p->et);
2114
4.20k
      opt_j(opt_state, &p->ef);
2115
4.20k
    }
2116
4.19k
  }
2117
2118
2.05k
  find_inedges(opt_state, ic->root);
2119
6.25k
  for (i = 1; i <= maxlevel; ++i) {
2120
8.40k
    for (p = opt_state->levels[i]; p; p = p->link) {
2121
4.20k
      or_pullup(opt_state, p);
2122
4.20k
      and_pullup(opt_state, p);
2123
4.20k
    }
2124
4.19k
  }
2125
2.05k
}
2126
2127
static inline void
2128
link_inedge(struct edge *parent, struct block *child)
2129
21.5k
{
2130
21.5k
  parent->next = child->in_edges;
2131
21.5k
  child->in_edges = parent;
2132
21.5k
}
2133
2134
static void
2135
find_inedges(opt_state_t *opt_state, struct block *root)
2136
5.59k
{
2137
5.59k
  u_int i;
2138
5.59k
  int level;
2139
5.59k
  struct block *b;
2140
2141
28.7k
  for (i = 0; i < opt_state->n_blocks; ++i)
2142
23.1k
    opt_state->blocks[i]->in_edges = 0;
2143
2144
  /*
2145
   * Traverse the graph, adding each edge to the predecessor
2146
   * list of its successors.  Skip the leaves (i.e. level 0).
2147
   */
2148
16.3k
  for (level = root->level; level > 0; --level) {
2149
21.4k
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150
10.7k
      link_inedge(&b->et, JT(b));
2151
10.7k
      link_inedge(&b->ef, JF(b));
2152
10.7k
    }
2153
10.7k
  }
2154
5.59k
}
2155
2156
static void
2157
opt_root(struct block **b)
2158
1.11k
{
2159
1.11k
  struct slist *tmp, *s;
2160
2161
1.11k
  s = (*b)->stmts;
2162
1.11k
  (*b)->stmts = 0;
2163
1.29k
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164
182
    *b = JT(*b);
2165
2166
1.11k
  tmp = (*b)->stmts;
2167
1.11k
  if (tmp != 0)
2168
1
    sappend(s, tmp);
2169
1.11k
  (*b)->stmts = s;
2170
2171
  /*
2172
   * If the root node is a return, then there is no
2173
   * point executing any statements (since the bpf machine
2174
   * has no side effects).
2175
   */
2176
1.11k
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177
620
    (*b)->stmts = 0;
2178
1.11k
}
2179
2180
static void
2181
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182
2.34k
{
2183
2184
#ifdef BDEBUG
2185
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186
    printf("opt_loop(root, %d) begin\n", do_stmts);
2187
    opt_dump(opt_state, ic);
2188
  }
2189
#endif
2190
2191
  /*
2192
   * XXX - optimizer loop detection.
2193
   */
2194
2.34k
  int loop_count = 0;
2195
3.60k
  for (;;) {
2196
3.60k
    opt_state->done = 1;
2197
    /*
2198
     * XXX - optimizer loop detection.
2199
     */
2200
3.60k
    opt_state->non_branch_movement_performed = 0;
2201
3.60k
    find_levels(opt_state, ic);
2202
3.60k
    find_dom(opt_state, ic->root);
2203
3.60k
    find_closure(opt_state, ic->root);
2204
3.60k
    find_ud(opt_state, ic->root);
2205
3.60k
    find_edom(opt_state, ic->root);
2206
3.60k
    opt_blks(opt_state, ic, do_stmts);
2207
#ifdef BDEBUG
2208
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210
      opt_dump(opt_state, ic);
2211
    }
2212
#endif
2213
2214
    /*
2215
     * Was anything done in this optimizer pass?
2216
     */
2217
3.60k
    if (opt_state->done) {
2218
      /*
2219
       * No, so we've reached a fixed point.
2220
       * We're done.
2221
       */
2222
2.28k
      break;
2223
2.28k
    }
2224
2225
    /*
2226
     * XXX - was anything done other than branch movement
2227
     * in this pass?
2228
     */
2229
1.31k
    if (opt_state->non_branch_movement_performed) {
2230
      /*
2231
       * Yes.  Clear any loop-detection counter;
2232
       * we're making some form of progress (assuming
2233
       * we can't get into a cycle doing *other*
2234
       * optimizations...).
2235
       */
2236
1.11k
      loop_count = 0;
2237
1.11k
    } else {
2238
      /*
2239
       * No - increment the counter, and quit if
2240
       * it's up to 100.
2241
       */
2242
205
      loop_count++;
2243
205
      if (loop_count >= 100) {
2244
        /*
2245
         * We've done nothing but branch movement
2246
         * for 100 passes; we're probably
2247
         * in a cycle and will never reach a
2248
         * fixed point.
2249
         *
2250
         * XXX - yes, we really need a non-
2251
         * heuristic way of detecting a cycle.
2252
         */
2253
0
        opt_state->done = 1;
2254
0
        break;
2255
0
      }
2256
205
    }
2257
1.31k
  }
2258
2.34k
}
2259
2260
/*
2261
 * Optimize the filter code in its dag representation.
2262
 * Return 0 on success, -1 on error.
2263
 */
2264
int
2265
bpf_optimize(struct icode *ic, char *errbuf)
2266
1.17k
{
2267
1.17k
  opt_state_t opt_state;
2268
2269
1.17k
  memset(&opt_state, 0, sizeof(opt_state));
2270
1.17k
  opt_state.errbuf = errbuf;
2271
1.17k
  opt_state.non_branch_movement_performed = 0;
2272
1.17k
  if (setjmp(opt_state.top_ctx)) {
2273
62
    opt_cleanup(&opt_state);
2274
62
    return -1;
2275
62
  }
2276
1.11k
  opt_init(&opt_state, ic);
2277
1.11k
  opt_loop(&opt_state, ic, 0);
2278
1.11k
  opt_loop(&opt_state, ic, 1);
2279
1.11k
  intern_blocks(&opt_state, ic);
2280
#ifdef BDEBUG
2281
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282
    printf("after intern_blocks()\n");
2283
    opt_dump(&opt_state, ic);
2284
  }
2285
#endif
2286
1.11k
  opt_root(&ic->root);
2287
#ifdef BDEBUG
2288
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289
    printf("after opt_root()\n");
2290
    opt_dump(&opt_state, ic);
2291
  }
2292
#endif
2293
1.11k
  opt_cleanup(&opt_state);
2294
1.11k
  return 0;
2295
1.17k
}
2296
2297
static void
2298
make_marks(struct icode *ic, struct block *p)
2299
4.17k
{
2300
4.17k
  if (!isMarked(ic, p)) {
2301
3.02k
    Mark(ic, p);
2302
3.02k
    if (BPF_CLASS(p->s.code) != BPF_RET) {
2303
1.53k
      make_marks(ic, JT(p));
2304
1.53k
      make_marks(ic, JF(p));
2305
1.53k
    }
2306
3.02k
  }
2307
4.17k
}
2308
2309
/*
2310
 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311
 * only for nodes that are alive.
2312
 */
2313
static void
2314
mark_code(struct icode *ic)
2315
1.11k
{
2316
1.11k
  ic->cur_mark += 1;
2317
1.11k
  make_marks(ic, ic->root);
2318
1.11k
}
2319
2320
/*
2321
 * True iff the two stmt lists load the same value from the packet into
2322
 * the accumulator.
2323
 */
2324
static int
2325
eq_slist(struct slist *x, struct slist *y)
2326
10
{
2327
10
  for (;;) {
2328
10
    while (x && x->s.code == NOP)
2329
0
      x = x->next;
2330
11
    while (y && y->s.code == NOP)
2331
1
      y = y->next;
2332
10
    if (x == 0)
2333
0
      return y == 0;
2334
10
    if (y == 0)
2335
0
      return x == 0;
2336
10
    if (x->s.code != y->s.code || x->s.k != y->s.k)
2337
10
      return 0;
2338
0
    x = x->next;
2339
0
    y = y->next;
2340
0
  }
2341
10
}
2342
2343
static inline int
2344
eq_blk(struct block *b0, struct block *b1)
2345
4.90k
{
2346
4.90k
  if (b0->s.code == b1->s.code &&
2347
4.90k
      b0->s.k == b1->s.k &&
2348
4.90k
      b0->et.succ == b1->et.succ &&
2349
4.90k
      b0->ef.succ == b1->ef.succ)
2350
10
    return eq_slist(b0->stmts, b1->stmts);
2351
4.89k
  return 0;
2352
4.90k
}
2353
2354
static void
2355
intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356
1.11k
{
2357
1.11k
  struct block *p;
2358
1.11k
  u_int i, j;
2359
1.11k
  int done1; /* don't shadow global */
2360
1.11k
 top:
2361
1.11k
  done1 = 1;
2362
5.21k
  for (i = 0; i < opt_state->n_blocks; ++i)
2363
4.10k
    opt_state->blocks[i]->link = 0;
2364
2365
1.11k
  mark_code(ic);
2366
2367
4.10k
  for (i = opt_state->n_blocks - 1; i != 0; ) {
2368
2.99k
    --i;
2369
2.99k
    if (!isMarked(ic, opt_state->blocks[i]))
2370
923
      continue;
2371
9.91k
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372
7.84k
      if (!isMarked(ic, opt_state->blocks[j]))
2373
2.94k
        continue;
2374
4.90k
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375
0
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376
0
          opt_state->blocks[j]->link : opt_state->blocks[j];
2377
0
        break;
2378
0
      }
2379
4.90k
    }
2380
2.07k
  }
2381
5.21k
  for (i = 0; i < opt_state->n_blocks; ++i) {
2382
4.10k
    p = opt_state->blocks[i];
2383
4.10k
    if (JT(p) == 0)
2384
1.78k
      continue;
2385
2.32k
    if (JT(p)->link) {
2386
0
      done1 = 0;
2387
0
      JT(p) = JT(p)->link;
2388
0
    }
2389
2.32k
    if (JF(p)->link) {
2390
0
      done1 = 0;
2391
0
      JF(p) = JF(p)->link;
2392
0
    }
2393
2.32k
  }
2394
1.11k
  if (!done1)
2395
0
    goto top;
2396
1.11k
}
2397
2398
static void
2399
opt_cleanup(opt_state_t *opt_state)
2400
1.17k
{
2401
1.17k
  free((void *)opt_state->vnode_base);
2402
1.17k
  free((void *)opt_state->vmap);
2403
1.17k
  free((void *)opt_state->edges);
2404
1.17k
  free((void *)opt_state->space);
2405
1.17k
  free((void *)opt_state->levels);
2406
1.17k
  free((void *)opt_state->blocks);
2407
1.17k
}
2408
2409
/*
2410
 * For optimizer errors.
2411
 */
2412
static void PCAP_NORETURN
2413
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414
62
{
2415
62
  va_list ap;
2416
2417
62
  if (opt_state->errbuf != NULL) {
2418
62
    va_start(ap, fmt);
2419
62
    (void)vsnprintf(opt_state->errbuf,
2420
62
        PCAP_ERRBUF_SIZE, fmt, ap);
2421
62
    va_end(ap);
2422
62
  }
2423
62
  longjmp(opt_state->top_ctx, 1);
2424
  /* NOTREACHED */
2425
#ifdef _AIX
2426
  PCAP_UNREACHABLE
2427
#endif /* _AIX */
2428
62
}
2429
2430
/*
2431
 * Return the number of stmts in 's'.
2432
 */
2433
static u_int
2434
slength(struct slist *s)
2435
11.9k
{
2436
11.9k
  u_int n = 0;
2437
2438
56.3k
  for (; s; s = s->next)
2439
44.4k
    if (s->s.code != NOP)
2440
28.7k
      ++n;
2441
11.9k
  return n;
2442
11.9k
}
2443
2444
/*
2445
 * Return the number of nodes reachable by 'p'.
2446
 * All nodes should be initially unmarked.
2447
 */
2448
static int
2449
count_blocks(struct icode *ic, struct block *p)
2450
9.86k
{
2451
9.86k
  if (p == 0 || isMarked(ic, p))
2452
5.52k
    return 0;
2453
4.34k
  Mark(ic, p);
2454
4.34k
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455
9.86k
}
2456
2457
/*
2458
 * Do a depth first search on the flow graph, numbering the
2459
 * the basic blocks, and entering them into the 'blocks' array.`
2460
 */
2461
static void
2462
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463
9.86k
{
2464
9.86k
  u_int n;
2465
2466
9.86k
  if (p == 0 || isMarked(ic, p))
2467
5.52k
    return;
2468
2469
4.34k
  Mark(ic, p);
2470
4.34k
  n = opt_state->n_blocks++;
2471
4.34k
  if (opt_state->n_blocks == 0) {
2472
    /*
2473
     * Overflow.
2474
     */
2475
0
    opt_error(opt_state, "filter is too complex to optimize");
2476
0
  }
2477
4.34k
  p->id = n;
2478
4.34k
  opt_state->blocks[n] = p;
2479
2480
4.34k
  number_blks_r(opt_state, ic, JT(p));
2481
4.34k
  number_blks_r(opt_state, ic, JF(p));
2482
4.34k
}
2483
2484
/*
2485
 * Return the number of stmts in the flowgraph reachable by 'p'.
2486
 * The nodes should be unmarked before calling.
2487
 *
2488
 * Note that "stmts" means "instructions", and that this includes
2489
 *
2490
 *  side-effect statements in 'p' (slength(p->stmts));
2491
 *
2492
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2493
 *
2494
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2495
 *
2496
 *  the conditional jump itself (1);
2497
 *
2498
 *  an extra long jump if the true branch requires it (p->longjt);
2499
 *
2500
 *  an extra long jump if the false branch requires it (p->longjf).
2501
 */
2502
static u_int
2503
count_stmts(struct icode *ic, struct block *p)
2504
8.73k
{
2505
8.73k
  u_int n;
2506
2507
8.73k
  if (p == 0 || isMarked(ic, p))
2508
4.95k
    return 0;
2509
3.78k
  Mark(ic, p);
2510
3.78k
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511
3.78k
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512
8.73k
}
2513
2514
/*
2515
 * Allocate memory.  All allocation is done before optimization
2516
 * is begun.  A linear bound on the size of all data structures is computed
2517
 * from the total number of blocks and/or statements.
2518
 */
2519
static void
2520
opt_init(opt_state_t *opt_state, struct icode *ic)
2521
1.17k
{
2522
1.17k
  bpf_u_int32 *p;
2523
1.17k
  int i, n, max_stmts;
2524
1.17k
  u_int product;
2525
1.17k
  size_t block_memsize, edge_memsize;
2526
2527
  /*
2528
   * First, count the blocks, so we can malloc an array to map
2529
   * block number to block.  Then, put the blocks into the array.
2530
   */
2531
1.17k
  unMarkAll(ic);
2532
1.17k
  n = count_blocks(ic, ic->root);
2533
1.17k
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534
1.17k
  if (opt_state->blocks == NULL)
2535
0
    opt_error(opt_state, "malloc");
2536
1.17k
  unMarkAll(ic);
2537
1.17k
  opt_state->n_blocks = 0;
2538
1.17k
  number_blks_r(opt_state, ic, ic->root);
2539
2540
  /*
2541
   * This "should not happen".
2542
   */
2543
1.17k
  if (opt_state->n_blocks == 0)
2544
0
    opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546
1.17k
  opt_state->n_edges = 2 * opt_state->n_blocks;
2547
1.17k
  if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548
    /*
2549
     * Overflow.
2550
     */
2551
0
    opt_error(opt_state, "filter is too complex to optimize");
2552
0
  }
2553
1.17k
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554
1.17k
  if (opt_state->edges == NULL) {
2555
0
    opt_error(opt_state, "malloc");
2556
0
  }
2557
2558
  /*
2559
   * The number of levels is bounded by the number of nodes.
2560
   */
2561
1.17k
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562
1.17k
  if (opt_state->levels == NULL) {
2563
0
    opt_error(opt_state, "malloc");
2564
0
  }
2565
2566
1.17k
  opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567
1.17k
  opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569
  /*
2570
   * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571
   * in a u_int; we use it as a u_int number-of-iterations
2572
   * value.
2573
   */
2574
1.17k
  product = opt_state->n_blocks * opt_state->nodewords;
2575
1.17k
  if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576
    /*
2577
     * XXX - just punt and don't try to optimize?
2578
     * In practice, this is unlikely to happen with
2579
     * a normal filter.
2580
     */
2581
0
    opt_error(opt_state, "filter is too complex to optimize");
2582
0
  }
2583
2584
  /*
2585
   * Make sure the total memory required for that doesn't
2586
   * overflow.
2587
   */
2588
1.17k
  block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589
1.17k
  if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590
0
    opt_error(opt_state, "filter is too complex to optimize");
2591
0
  }
2592
2593
  /*
2594
   * Make sure opt_state->n_edges * opt_state->edgewords fits
2595
   * in a u_int; we use it as a u_int number-of-iterations
2596
   * value.
2597
   */
2598
1.17k
  product = opt_state->n_edges * opt_state->edgewords;
2599
1.17k
  if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600
0
    opt_error(opt_state, "filter is too complex to optimize");
2601
0
  }
2602
2603
  /*
2604
   * Make sure the total memory required for that doesn't
2605
   * overflow.
2606
   */
2607
1.17k
  edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608
1.17k
  if (edge_memsize / product != sizeof(*opt_state->space)) {
2609
0
    opt_error(opt_state, "filter is too complex to optimize");
2610
0
  }
2611
2612
  /*
2613
   * Make sure the total memory required for both of them doesn't
2614
   * overflow.
2615
   */
2616
1.17k
  if (block_memsize > SIZE_MAX - edge_memsize) {
2617
0
    opt_error(opt_state, "filter is too complex to optimize");
2618
0
  }
2619
2620
  /* XXX */
2621
1.17k
  opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622
1.17k
  if (opt_state->space == NULL) {
2623
0
    opt_error(opt_state, "malloc");
2624
0
  }
2625
1.17k
  p = opt_state->space;
2626
1.17k
  opt_state->all_dom_sets = p;
2627
5.52k
  for (i = 0; i < n; ++i) {
2628
4.34k
    opt_state->blocks[i]->dom = p;
2629
4.34k
    p += opt_state->nodewords;
2630
4.34k
  }
2631
1.17k
  opt_state->all_closure_sets = p;
2632
5.52k
  for (i = 0; i < n; ++i) {
2633
4.34k
    opt_state->blocks[i]->closure = p;
2634
4.34k
    p += opt_state->nodewords;
2635
4.34k
  }
2636
1.17k
  opt_state->all_edge_sets = p;
2637
5.52k
  for (i = 0; i < n; ++i) {
2638
4.34k
    register struct block *b = opt_state->blocks[i];
2639
2640
4.34k
    b->et.edom = p;
2641
4.34k
    p += opt_state->edgewords;
2642
4.34k
    b->ef.edom = p;
2643
4.34k
    p += opt_state->edgewords;
2644
4.34k
    b->et.id = i;
2645
4.34k
    opt_state->edges[i] = &b->et;
2646
4.34k
    b->ef.id = opt_state->n_blocks + i;
2647
4.34k
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648
4.34k
    b->et.pred = b;
2649
4.34k
    b->ef.pred = b;
2650
4.34k
  }
2651
1.17k
  max_stmts = 0;
2652
5.52k
  for (i = 0; i < n; ++i)
2653
4.34k
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654
  /*
2655
   * We allocate at most 3 value numbers per statement,
2656
   * so this is an upper bound on the number of valnodes
2657
   * we'll need.
2658
   */
2659
1.17k
  opt_state->maxval = 3 * max_stmts;
2660
1.17k
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661
1.17k
  if (opt_state->vmap == NULL) {
2662
0
    opt_error(opt_state, "malloc");
2663
0
  }
2664
1.17k
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665
1.17k
  if (opt_state->vnode_base == NULL) {
2666
0
    opt_error(opt_state, "malloc");
2667
0
  }
2668
1.17k
}
2669
2670
/*
2671
 * This is only used when supporting optimizer debugging.  It is
2672
 * global state, so do *not* do more than one compile in parallel
2673
 * and expect it to provide meaningful information.
2674
 */
2675
#ifdef BDEBUG
2676
int bids[NBIDS];
2677
#endif
2678
2679
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680
    PCAP_PRINTFLIKE(2, 3);
2681
2682
/*
2683
 * Returns true if successful.  Returns false if a branch has
2684
 * an offset that is too large.  If so, we have marked that
2685
 * branch so that on a subsequent iteration, it will be treated
2686
 * properly.
2687
 */
2688
static int
2689
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690
8.73k
{
2691
8.73k
  struct bpf_insn *dst;
2692
8.73k
  struct slist *src;
2693
8.73k
  u_int slen;
2694
8.73k
  u_int off;
2695
8.73k
  struct slist **offset = NULL;
2696
2697
8.73k
  if (p == 0 || isMarked(ic, p))
2698
4.95k
    return (1);
2699
3.78k
  Mark(ic, p);
2700
2701
3.78k
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702
0
    return (0);
2703
3.78k
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704
0
    return (0);
2705
2706
3.78k
  slen = slength(p->stmts);
2707
3.78k
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708
    /* inflate length by any extra jumps */
2709
2710
3.78k
  p->offset = (int)(dst - conv_state->fstart);
2711
2712
  /* generate offset[] for convenience  */
2713
3.78k
  if (slen) {
2714
1.76k
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715
1.76k
    if (!offset) {
2716
0
      conv_error(conv_state, "not enough core");
2717
      /*NOTREACHED*/
2718
0
    }
2719
1.76k
  }
2720
3.78k
  src = p->stmts;
2721
9.33k
  for (off = 0; off < slen && src; off++) {
2722
#if 0
2723
    printf("off=%d src=%x\n", off, src);
2724
#endif
2725
5.55k
    offset[off] = src;
2726
5.55k
    src = src->next;
2727
5.55k
  }
2728
2729
3.78k
  off = 0;
2730
17.1k
  for (src = p->stmts; src; src = src->next) {
2731
13.3k
    if (src->s.code == NOP)
2732
7.84k
      continue;
2733
5.55k
    dst->code = (u_short)src->s.code;
2734
5.55k
    dst->k = src->s.k;
2735
2736
    /* fill block-local relative jump */
2737
5.55k
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738
#if 0
2739
      if (src->s.jt || src->s.jf) {
2740
        free(offset);
2741
        conv_error(conv_state, "illegal jmp destination");
2742
        /*NOTREACHED*/
2743
      }
2744
#endif
2745
5.08k
      goto filled;
2746
5.08k
    }
2747
466
    if (off == slen - 2)  /*???*/
2748
0
      goto filled;
2749
2750
466
      {
2751
466
    u_int i;
2752
466
    int jt, jf;
2753
466
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755
#if 0
2756
    printf("code=%x off=%d %x %x\n", src->s.code,
2757
      off, src->s.jt, src->s.jf);
2758
#endif
2759
2760
466
    if (!src->s.jt || !src->s.jf) {
2761
0
      free(offset);
2762
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2763
      /*NOTREACHED*/
2764
0
    }
2765
2766
466
    jt = jf = 0;
2767
11.0k
    for (i = 0; i < slen; i++) {
2768
10.5k
      if (offset[i] == src->s.jt) {
2769
466
        if (jt) {
2770
0
          free(offset);
2771
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2772
          /*NOTREACHED*/
2773
0
        }
2774
2775
466
        if (i - off - 1 >= 256) {
2776
0
          free(offset);
2777
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2778
          /*NOTREACHED*/
2779
0
        }
2780
466
        dst->jt = (u_char)(i - off - 1);
2781
466
        jt++;
2782
466
      }
2783
10.5k
      if (offset[i] == src->s.jf) {
2784
466
        if (jf) {
2785
0
          free(offset);
2786
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2787
          /*NOTREACHED*/
2788
0
        }
2789
466
        if (i - off - 1 >= 256) {
2790
0
          free(offset);
2791
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2792
          /*NOTREACHED*/
2793
0
        }
2794
466
        dst->jf = (u_char)(i - off - 1);
2795
466
        jf++;
2796
466
      }
2797
10.5k
    }
2798
466
    if (!jt || !jf) {
2799
0
      free(offset);
2800
0
      conv_error(conv_state, ljerr, "no destination found", off);
2801
      /*NOTREACHED*/
2802
0
    }
2803
466
      }
2804
5.55k
filled:
2805
5.55k
    ++dst;
2806
5.55k
    ++off;
2807
5.55k
  }
2808
3.78k
  if (offset)
2809
1.76k
    free(offset);
2810
2811
#ifdef BDEBUG
2812
  if (dst - conv_state->fstart < NBIDS)
2813
    bids[dst - conv_state->fstart] = p->id + 1;
2814
#endif
2815
3.78k
  dst->code = (u_short)p->s.code;
2816
3.78k
  dst->k = p->s.k;
2817
3.78k
  if (JT(p)) {
2818
    /* number of extra jumps inserted */
2819
2.03k
    u_char extrajmps = 0;
2820
2.03k
    off = JT(p)->offset - (p->offset + slen) - 1;
2821
2.03k
    if (off >= 256) {
2822
        /* offset too large for branch, must add a jump */
2823
0
        if (p->longjt == 0) {
2824
      /* mark this instruction and retry */
2825
0
      p->longjt++;
2826
0
      return(0);
2827
0
        }
2828
0
        dst->jt = extrajmps;
2829
0
        extrajmps++;
2830
0
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2831
0
        dst[extrajmps].k = off - extrajmps;
2832
0
    }
2833
2.03k
    else
2834
2.03k
        dst->jt = (u_char)off;
2835
2.03k
    off = JF(p)->offset - (p->offset + slen) - 1;
2836
2.03k
    if (off >= 256) {
2837
        /* offset too large for branch, must add a jump */
2838
0
        if (p->longjf == 0) {
2839
      /* mark this instruction and retry */
2840
0
      p->longjf++;
2841
0
      return(0);
2842
0
        }
2843
        /* branch if F to following jump */
2844
        /* if two jumps are inserted, F goes to second one */
2845
0
        dst->jf = extrajmps;
2846
0
        extrajmps++;
2847
0
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2848
0
        dst[extrajmps].k = off - extrajmps;
2849
0
    }
2850
2.03k
    else
2851
2.03k
        dst->jf = (u_char)off;
2852
2.03k
  }
2853
3.78k
  return (1);
2854
3.78k
}
2855
2856
2857
/*
2858
 * Convert flowgraph intermediate representation to the
2859
 * BPF array representation.  Set *lenp to the number of instructions.
2860
 *
2861
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862
 * not* do free(fp) before returning fp; doing so would make no sense,
2863
 * as the BPF array pointed to by the return value of icode_to_fcode()
2864
 * must be valid - it's being returned for use in a bpf_program structure.
2865
 *
2866
 * If it appears that icode_to_fcode() is leaking, the problem is that
2867
 * the program using pcap_compile() is failing to free the memory in
2868
 * the BPF program when it's done - the leak is in the program, not in
2869
 * the routine that happens to be allocating the memory.  (By analogy, if
2870
 * a program calls fopen() without ever calling fclose() on the FILE *,
2871
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872
 * the program.)  Change the program to use pcap_freecode() when it's
2873
 * done with the filter program.  See the pcap man page.
2874
 */
2875
struct bpf_insn *
2876
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877
    char *errbuf)
2878
1.17k
{
2879
1.17k
  u_int n;
2880
1.17k
  struct bpf_insn *fp;
2881
1.17k
  conv_state_t conv_state;
2882
2883
1.17k
  conv_state.fstart = NULL;
2884
1.17k
  conv_state.errbuf = errbuf;
2885
1.17k
  if (setjmp(conv_state.top_ctx) != 0) {
2886
0
    free(conv_state.fstart);
2887
0
    return NULL;
2888
0
  }
2889
2890
  /*
2891
   * Loop doing convert_code_r() until no branches remain
2892
   * with too-large offsets.
2893
   */
2894
1.17k
  for (;;) {
2895
1.17k
      unMarkAll(ic);
2896
1.17k
      n = *lenp = count_stmts(ic, root);
2897
2898
1.17k
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899
1.17k
      if (fp == NULL) {
2900
0
    (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901
0
        "malloc");
2902
0
    return NULL;
2903
0
      }
2904
1.17k
      memset((char *)fp, 0, sizeof(*fp) * n);
2905
1.17k
      conv_state.fstart = fp;
2906
1.17k
      conv_state.ftail = fp + n;
2907
2908
1.17k
      unMarkAll(ic);
2909
1.17k
      if (convert_code_r(&conv_state, ic, root))
2910
1.17k
    break;
2911
0
      free(fp);
2912
0
  }
2913
2914
1.17k
  return fp;
2915
1.17k
}
2916
2917
/*
2918
 * For iconv_to_fconv() errors.
2919
 */
2920
static void PCAP_NORETURN
2921
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922
0
{
2923
0
  va_list ap;
2924
2925
0
  va_start(ap, fmt);
2926
0
  (void)vsnprintf(conv_state->errbuf,
2927
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2928
0
  va_end(ap);
2929
0
  longjmp(conv_state->top_ctx, 1);
2930
  /* NOTREACHED */
2931
#ifdef _AIX
2932
  PCAP_UNREACHABLE
2933
#endif /* _AIX */
2934
0
}
2935
2936
/*
2937
 * Make a copy of a BPF program and put it in the "fcode" member of
2938
 * a "pcap_t".
2939
 *
2940
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941
 * member of the "pcap_t" with an error message, and return -1;
2942
 * otherwise, return 0.
2943
 */
2944
int
2945
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946
0
{
2947
0
  size_t prog_size;
2948
2949
  /*
2950
   * Validate the program.
2951
   */
2952
0
  if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953
0
    snprintf(p->errbuf, sizeof(p->errbuf),
2954
0
      "BPF program is not valid");
2955
0
    return (-1);
2956
0
  }
2957
2958
  /*
2959
   * Free up any already installed program.
2960
   */
2961
0
  pcap_freecode(&p->fcode);
2962
2963
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964
0
  p->fcode.bf_len = fp->bf_len;
2965
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966
0
  if (p->fcode.bf_insns == NULL) {
2967
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968
0
        errno, "malloc");
2969
0
    return (-1);
2970
0
  }
2971
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972
0
  return (0);
2973
0
}
2974
2975
#ifdef BDEBUG
2976
static void
2977
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978
    FILE *out)
2979
{
2980
  int icount, noffset;
2981
  int i;
2982
2983
  if (block == NULL || isMarked(ic, block))
2984
    return;
2985
  Mark(ic, block);
2986
2987
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988
  noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990
  fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991
  for (i = block->offset; i < noffset; i++) {
2992
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993
  }
2994
  fprintf(out, "\" tooltip=\"");
2995
  for (i = 0; i < BPF_MEMWORDS; i++)
2996
    if (block->val[i] != VAL_UNKNOWN)
2997
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000
  fprintf(out, "\"");
3001
  if (JT(block) == NULL)
3002
    fprintf(out, ", peripheries=2");
3003
  fprintf(out, "];\n");
3004
3005
  dot_dump_node(ic, JT(block), prog, out);
3006
  dot_dump_node(ic, JF(block), prog, out);
3007
}
3008
3009
static void
3010
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011
{
3012
  if (block == NULL || isMarked(ic, block))
3013
    return;
3014
  Mark(ic, block);
3015
3016
  if (JT(block)) {
3017
    fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018
        block->id, JT(block)->id);
3019
    fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020
         block->id, JF(block)->id);
3021
  }
3022
  dot_dump_edge(ic, JT(block), out);
3023
  dot_dump_edge(ic, JF(block), out);
3024
}
3025
3026
/* Output the block CFG using graphviz/DOT language
3027
 * In the CFG, block's code, value index for each registers at EXIT,
3028
 * and the jump relationship is show.
3029
 *
3030
 * example DOT for BPF `ip src host 1.1.1.1' is:
3031
    digraph BPF {
3032
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
3033
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
3034
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036
      "block0":se -> "block1":n [label="T"];
3037
      "block0":sw -> "block3":n [label="F"];
3038
      "block1":se -> "block2":n [label="T"];
3039
      "block1":sw -> "block3":n [label="F"];
3040
    }
3041
 *
3042
 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044
 */
3045
static int
3046
dot_dump(struct icode *ic, char *errbuf)
3047
{
3048
  struct bpf_program f;
3049
  FILE *out = stdout;
3050
3051
  memset(bids, 0, sizeof bids);
3052
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053
  if (f.bf_insns == NULL)
3054
    return -1;
3055
3056
  fprintf(out, "digraph BPF {\n");
3057
  unMarkAll(ic);
3058
  dot_dump_node(ic, ic->root, &f, out);
3059
  unMarkAll(ic);
3060
  dot_dump_edge(ic, ic->root, out);
3061
  fprintf(out, "}\n");
3062
3063
  free((char *)f.bf_insns);
3064
  return 0;
3065
}
3066
3067
static int
3068
plain_dump(struct icode *ic, char *errbuf)
3069
{
3070
  struct bpf_program f;
3071
3072
  memset(bids, 0, sizeof bids);
3073
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074
  if (f.bf_insns == NULL)
3075
    return -1;
3076
  bpf_dump(&f, 1);
3077
  putchar('\n');
3078
  free((char *)f.bf_insns);
3079
  return 0;
3080
}
3081
3082
static void
3083
opt_dump(opt_state_t *opt_state, struct icode *ic)
3084
{
3085
  int status;
3086
  char errbuf[PCAP_ERRBUF_SIZE];
3087
3088
  /*
3089
   * If the CFG, in DOT format, is requested, output it rather than
3090
   * the code that would be generated from that graph.
3091
   */
3092
  if (pcap_print_dot_graph)
3093
    status = dot_dump(ic, errbuf);
3094
  else
3095
    status = plain_dump(ic, errbuf);
3096
  if (status == -1)
3097
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098
}
3099
#endif