Coverage Report

Created: 2024-08-17 06:45

/src/mbedtls/library/bignum.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  Multi-precision integer library
3
 *
4
 *  Copyright The Mbed TLS Contributors
5
 *  SPDX-License-Identifier: Apache-2.0
6
 *
7
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8
 *  not use this file except in compliance with the License.
9
 *  You may obtain a copy of the License at
10
 *
11
 *  http://www.apache.org/licenses/LICENSE-2.0
12
 *
13
 *  Unless required by applicable law or agreed to in writing, software
14
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16
 *  See the License for the specific language governing permissions and
17
 *  limitations under the License.
18
 */
19
20
/*
21
 *  The following sources were referenced in the design of this Multi-precision
22
 *  Integer library:
23
 *
24
 *  [1] Handbook of Applied Cryptography - 1997
25
 *      Menezes, van Oorschot and Vanstone
26
 *
27
 *  [2] Multi-Precision Math
28
 *      Tom St Denis
29
 *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30
 *
31
 *  [3] GNU Multi-Precision Arithmetic Library
32
 *      https://gmplib.org/manual/index.html
33
 *
34
 */
35
36
#include "common.h"
37
38
#if defined(MBEDTLS_BIGNUM_C)
39
40
#include "mbedtls/bignum.h"
41
#include "bignum_core.h"
42
#include "bn_mul.h"
43
#include "mbedtls/platform_util.h"
44
#include "mbedtls/error.h"
45
#include "constant_time_internal.h"
46
47
#include <limits.h>
48
#include <string.h>
49
50
#include "mbedtls/platform.h"
51
52
#define MPI_VALIDATE_RET(cond)                                       \
53
272k
    MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54
#define MPI_VALIDATE(cond)                                           \
55
13.6k
    MBEDTLS_INTERNAL_VALIDATE(cond)
56
57
0
#define MPI_SIZE_T_MAX  ((size_t) -1)   /* SIZE_T_MAX is not standard */
58
59
/* Implementation that should never be optimized out by the compiler */
60
static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
61
7.92k
{
62
7.92k
    mbedtls_platform_zeroize(v, ciL * n);
63
7.92k
}
64
65
/*
66
 * Initialize one MPI
67
 */
68
void mbedtls_mpi_init(mbedtls_mpi *X)
69
13.6k
{
70
13.6k
    MPI_VALIDATE(X != NULL);
71
72
13.6k
    X->s = 1;
73
13.6k
    X->n = 0;
74
13.6k
    X->p = NULL;
75
13.6k
}
76
77
/*
78
 * Unallocate one MPI
79
 */
80
void mbedtls_mpi_free(mbedtls_mpi *X)
81
248k
{
82
248k
    if (X == NULL) {
83
0
        return;
84
0
    }
85
86
248k
    if (X->p != NULL) {
87
6.88k
        mbedtls_mpi_zeroize(X->p, X->n);
88
6.88k
        mbedtls_free(X->p);
89
6.88k
    }
90
91
248k
    X->s = 1;
92
248k
    X->n = 0;
93
248k
    X->p = NULL;
94
248k
}
95
96
/*
97
 * Enlarge to the specified number of limbs
98
 */
99
int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
100
41.1k
{
101
41.1k
    mbedtls_mpi_uint *p;
102
41.1k
    MPI_VALIDATE_RET(X != NULL);
103
104
41.1k
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
105
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
106
0
    }
107
108
41.1k
    if (X->n < nblimbs) {
109
7.96k
        if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
110
0
            return MBEDTLS_ERR_MPI_ALLOC_FAILED;
111
0
        }
112
113
7.96k
        if (X->p != NULL) {
114
1.03k
            memcpy(p, X->p, X->n * ciL);
115
1.03k
            mbedtls_mpi_zeroize(X->p, X->n);
116
1.03k
            mbedtls_free(X->p);
117
1.03k
        }
118
119
7.96k
        X->n = nblimbs;
120
7.96k
        X->p = p;
121
7.96k
    }
122
123
41.1k
    return 0;
124
41.1k
}
125
126
/*
127
 * Resize down as much as possible,
128
 * while keeping at least the specified number of limbs
129
 */
130
int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
131
0
{
132
0
    mbedtls_mpi_uint *p;
133
0
    size_t i;
134
0
    MPI_VALIDATE_RET(X != NULL);
135
136
0
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
137
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
138
0
    }
139
140
    /* Actually resize up if there are currently fewer than nblimbs limbs. */
141
0
    if (X->n <= nblimbs) {
142
0
        return mbedtls_mpi_grow(X, nblimbs);
143
0
    }
144
    /* After this point, then X->n > nblimbs and in particular X->n > 0. */
145
146
0
    for (i = X->n - 1; i > 0; i--) {
147
0
        if (X->p[i] != 0) {
148
0
            break;
149
0
        }
150
0
    }
151
0
    i++;
152
153
0
    if (i < nblimbs) {
154
0
        i = nblimbs;
155
0
    }
156
157
0
    if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
158
0
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
159
0
    }
160
161
0
    if (X->p != NULL) {
162
0
        memcpy(p, X->p, i * ciL);
163
0
        mbedtls_mpi_zeroize(X->p, X->n);
164
0
        mbedtls_free(X->p);
165
0
    }
166
167
0
    X->n = i;
168
0
    X->p = p;
169
170
0
    return 0;
171
0
}
172
173
/* Resize X to have exactly n limbs and set it to 0. */
174
static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
175
4.37k
{
176
4.37k
    if (limbs == 0) {
177
10
        mbedtls_mpi_free(X);
178
10
        return 0;
179
4.36k
    } else if (X->n == limbs) {
180
0
        memset(X->p, 0, limbs * ciL);
181
0
        X->s = 1;
182
0
        return 0;
183
4.36k
    } else {
184
4.36k
        mbedtls_mpi_free(X);
185
4.36k
        return mbedtls_mpi_grow(X, limbs);
186
4.36k
    }
187
4.37k
}
188
189
/*
190
 * Copy the contents of Y into X.
191
 *
192
 * This function is not constant-time. Leading zeros in Y may be removed.
193
 *
194
 * Ensure that X does not shrink. This is not guaranteed by the public API,
195
 * but some code in the bignum module relies on this property, for example
196
 * in mbedtls_mpi_exp_mod().
197
 */
198
int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
199
13.0k
{
200
13.0k
    int ret = 0;
201
13.0k
    size_t i;
202
13.0k
    MPI_VALIDATE_RET(X != NULL);
203
13.0k
    MPI_VALIDATE_RET(Y != NULL);
204
205
13.0k
    if (X == Y) {
206
7.27k
        return 0;
207
7.27k
    }
208
209
5.74k
    if (Y->n == 0) {
210
0
        if (X->n != 0) {
211
0
            X->s = 1;
212
0
            memset(X->p, 0, X->n * ciL);
213
0
        }
214
0
        return 0;
215
0
    }
216
217
183k
    for (i = Y->n - 1; i > 0; i--) {
218
183k
        if (Y->p[i] != 0) {
219
5.73k
            break;
220
5.73k
        }
221
183k
    }
222
5.74k
    i++;
223
224
5.74k
    X->s = Y->s;
225
226
5.74k
    if (X->n < i) {
227
674
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
228
5.06k
    } else {
229
5.06k
        memset(X->p + i, 0, (X->n - i) * ciL);
230
5.06k
    }
231
232
5.74k
    memcpy(X->p, Y->p, i * ciL);
233
234
5.74k
cleanup:
235
236
5.74k
    return ret;
237
5.74k
}
238
239
/*
240
 * Swap the contents of X and Y
241
 */
242
void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
243
0
{
244
0
    mbedtls_mpi T;
245
0
    MPI_VALIDATE(X != NULL);
246
0
    MPI_VALIDATE(Y != NULL);
247
248
0
    memcpy(&T,  X, sizeof(mbedtls_mpi));
249
0
    memcpy(X,  Y, sizeof(mbedtls_mpi));
250
0
    memcpy(Y, &T, sizeof(mbedtls_mpi));
251
0
}
252
253
static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
254
35.3k
{
255
35.3k
    if (z >= 0) {
256
35.3k
        return z;
257
35.3k
    }
258
    /* Take care to handle the most negative value (-2^(biL-1)) correctly.
259
     * A naive -z would have undefined behavior.
260
     * Write this in a way that makes popular compilers happy (GCC, Clang,
261
     * MSVC). */
262
0
    return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
263
35.3k
}
264
265
/*
266
 * Set value from integer
267
 */
268
int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
269
8.97k
{
270
8.97k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
271
8.97k
    MPI_VALIDATE_RET(X != NULL);
272
273
8.97k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
274
8.97k
    memset(X->p, 0, X->n * ciL);
275
276
8.97k
    X->p[0] = mpi_sint_abs(z);
277
8.97k
    X->s    = (z < 0) ? -1 : 1;
278
279
8.97k
cleanup:
280
281
8.97k
    return ret;
282
8.97k
}
283
284
/*
285
 * Get a specific bit
286
 */
287
int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
288
4.95k
{
289
4.95k
    MPI_VALIDATE_RET(X != NULL);
290
291
4.95k
    if (X->n * biL <= pos) {
292
0
        return 0;
293
0
    }
294
295
4.95k
    return (X->p[pos / biL] >> (pos % biL)) & 0x01;
296
4.95k
}
297
298
/*
299
 * Set a bit to a specific value of 0 or 1
300
 */
301
int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
302
0
{
303
0
    int ret = 0;
304
0
    size_t off = pos / biL;
305
0
    size_t idx = pos % biL;
306
0
    MPI_VALIDATE_RET(X != NULL);
307
308
0
    if (val != 0 && val != 1) {
309
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
310
0
    }
311
312
0
    if (X->n * biL <= pos) {
313
0
        if (val == 0) {
314
0
            return 0;
315
0
        }
316
317
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
318
0
    }
319
320
0
    X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
321
0
    X->p[off] |= (mbedtls_mpi_uint) val << idx;
322
323
0
cleanup:
324
325
0
    return ret;
326
0
}
327
328
/*
329
 * Return the number of less significant zero-bits
330
 */
331
size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
332
0
{
333
0
    size_t i, j, count = 0;
334
0
    MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
335
336
0
    for (i = 0; i < X->n; i++) {
337
0
        for (j = 0; j < biL; j++, count++) {
338
0
            if (((X->p[i] >> j) & 1) != 0) {
339
0
                return count;
340
0
            }
341
0
        }
342
0
    }
343
344
0
    return 0;
345
0
}
346
347
/*
348
 * Return the number of bits
349
 */
350
size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
351
16.1k
{
352
16.1k
    return mbedtls_mpi_core_bitlen(X->p, X->n);
353
16.1k
}
354
355
/*
356
 * Return the total size in bytes
357
 */
358
size_t mbedtls_mpi_size(const mbedtls_mpi *X)
359
5.51k
{
360
5.51k
    return (mbedtls_mpi_bitlen(X) + 7) >> 3;
361
5.51k
}
362
363
/*
364
 * Convert an ASCII character to digit value
365
 */
366
static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
367
0
{
368
0
    *d = 255;
369
370
0
    if (c >= 0x30 && c <= 0x39) {
371
0
        *d = c - 0x30;
372
0
    }
373
0
    if (c >= 0x41 && c <= 0x46) {
374
0
        *d = c - 0x37;
375
0
    }
376
0
    if (c >= 0x61 && c <= 0x66) {
377
0
        *d = c - 0x57;
378
0
    }
379
380
0
    if (*d >= (mbedtls_mpi_uint) radix) {
381
0
        return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
382
0
    }
383
384
0
    return 0;
385
0
}
386
387
/*
388
 * Import from an ASCII string
389
 */
390
int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
391
0
{
392
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
393
0
    size_t i, j, slen, n;
394
0
    int sign = 1;
395
0
    mbedtls_mpi_uint d;
396
0
    mbedtls_mpi T;
397
0
    MPI_VALIDATE_RET(X != NULL);
398
0
    MPI_VALIDATE_RET(s != NULL);
399
400
0
    if (radix < 2 || radix > 16) {
401
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
402
0
    }
403
404
0
    mbedtls_mpi_init(&T);
405
406
0
    if (s[0] == 0) {
407
0
        mbedtls_mpi_free(X);
408
0
        return 0;
409
0
    }
410
411
0
    if (s[0] == '-') {
412
0
        ++s;
413
0
        sign = -1;
414
0
    }
415
416
0
    slen = strlen(s);
417
418
0
    if (radix == 16) {
419
0
        if (slen > MPI_SIZE_T_MAX >> 2) {
420
0
            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
421
0
        }
422
423
0
        n = BITS_TO_LIMBS(slen << 2);
424
425
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
426
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
427
428
0
        for (i = slen, j = 0; i > 0; i--, j++) {
429
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
430
0
            X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
431
0
        }
432
0
    } else {
433
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
434
435
0
        for (i = 0; i < slen; i++) {
436
0
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
437
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
438
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
439
0
        }
440
0
    }
441
442
0
    if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
443
0
        X->s = -1;
444
0
    }
445
446
0
cleanup:
447
448
0
    mbedtls_mpi_free(&T);
449
450
0
    return ret;
451
0
}
452
453
/*
454
 * Helper to write the digits high-order first.
455
 */
456
static int mpi_write_hlp(mbedtls_mpi *X, int radix,
457
                         char **p, const size_t buflen)
458
0
{
459
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
460
0
    mbedtls_mpi_uint r;
461
0
    size_t length = 0;
462
0
    char *p_end = *p + buflen;
463
464
0
    do {
465
0
        if (length >= buflen) {
466
0
            return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
467
0
        }
468
469
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
470
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
471
        /*
472
         * Write the residue in the current position, as an ASCII character.
473
         */
474
0
        if (r < 0xA) {
475
0
            *(--p_end) = (char) ('0' + r);
476
0
        } else {
477
0
            *(--p_end) = (char) ('A' + (r - 0xA));
478
0
        }
479
480
0
        length++;
481
0
    } while (mbedtls_mpi_cmp_int(X, 0) != 0);
482
483
0
    memmove(*p, p_end, length);
484
0
    *p += length;
485
486
0
cleanup:
487
488
0
    return ret;
489
0
}
490
491
/*
492
 * Export into an ASCII string
493
 */
494
int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
495
                             char *buf, size_t buflen, size_t *olen)
496
0
{
497
0
    int ret = 0;
498
0
    size_t n;
499
0
    char *p;
500
0
    mbedtls_mpi T;
501
0
    MPI_VALIDATE_RET(X    != NULL);
502
0
    MPI_VALIDATE_RET(olen != NULL);
503
0
    MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
504
505
0
    if (radix < 2 || radix > 16) {
506
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
507
0
    }
508
509
0
    n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */
510
0
    if (radix >=  4) {
511
0
        n >>= 1;                 /* Number of 4-adic digits necessary to present
512
                                  * `n`. If radix > 4, this might be a strict
513
                                  * overapproximation of the number of
514
                                  * radix-adic digits needed to present `n`. */
515
0
    }
516
0
    if (radix >= 16) {
517
0
        n >>= 1;                 /* Number of hexadecimal digits necessary to
518
                                  * present `n`. */
519
520
0
    }
521
0
    n += 1; /* Terminating null byte */
522
0
    n += 1; /* Compensate for the divisions above, which round down `n`
523
             * in case it's not even. */
524
0
    n += 1; /* Potential '-'-sign. */
525
0
    n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,
526
                     * which always uses an even number of hex-digits. */
527
528
0
    if (buflen < n) {
529
0
        *olen = n;
530
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
531
0
    }
532
533
0
    p = buf;
534
0
    mbedtls_mpi_init(&T);
535
536
0
    if (X->s == -1) {
537
0
        *p++ = '-';
538
0
        buflen--;
539
0
    }
540
541
0
    if (radix == 16) {
542
0
        int c;
543
0
        size_t i, j, k;
544
545
0
        for (i = X->n, k = 0; i > 0; i--) {
546
0
            for (j = ciL; j > 0; j--) {
547
0
                c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
548
549
0
                if (c == 0 && k == 0 && (i + j) != 2) {
550
0
                    continue;
551
0
                }
552
553
0
                *(p++) = "0123456789ABCDEF" [c / 16];
554
0
                *(p++) = "0123456789ABCDEF" [c % 16];
555
0
                k = 1;
556
0
            }
557
0
        }
558
0
    } else {
559
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
560
561
0
        if (T.s == -1) {
562
0
            T.s = 1;
563
0
        }
564
565
0
        MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
566
0
    }
567
568
0
    *p++ = '\0';
569
0
    *olen = p - buf;
570
571
0
cleanup:
572
573
0
    mbedtls_mpi_free(&T);
574
575
0
    return ret;
576
0
}
577
578
#if defined(MBEDTLS_FS_IO)
579
/*
580
 * Read X from an opened file
581
 */
582
int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
583
0
{
584
0
    mbedtls_mpi_uint d;
585
0
    size_t slen;
586
0
    char *p;
587
    /*
588
     * Buffer should have space for (short) label and decimal formatted MPI,
589
     * newline characters and '\0'
590
     */
591
0
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
592
593
0
    MPI_VALIDATE_RET(X   != NULL);
594
0
    MPI_VALIDATE_RET(fin != NULL);
595
596
0
    if (radix < 2 || radix > 16) {
597
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
598
0
    }
599
600
0
    memset(s, 0, sizeof(s));
601
0
    if (fgets(s, sizeof(s) - 1, fin) == NULL) {
602
0
        return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
603
0
    }
604
605
0
    slen = strlen(s);
606
0
    if (slen == sizeof(s) - 2) {
607
0
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
608
0
    }
609
610
0
    if (slen > 0 && s[slen - 1] == '\n') {
611
0
        slen--; s[slen] = '\0';
612
0
    }
613
0
    if (slen > 0 && s[slen - 1] == '\r') {
614
0
        slen--; s[slen] = '\0';
615
0
    }
616
617
0
    p = s + slen;
618
0
    while (p-- > s) {
619
0
        if (mpi_get_digit(&d, radix, *p) != 0) {
620
0
            break;
621
0
        }
622
0
    }
623
624
0
    return mbedtls_mpi_read_string(X, radix, p + 1);
625
0
}
626
627
/*
628
 * Write X into an opened file (or stdout if fout == NULL)
629
 */
630
int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
631
0
{
632
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
633
0
    size_t n, slen, plen;
634
    /*
635
     * Buffer should have space for (short) label and decimal formatted MPI,
636
     * newline characters and '\0'
637
     */
638
0
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
639
0
    MPI_VALIDATE_RET(X != NULL);
640
641
0
    if (radix < 2 || radix > 16) {
642
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
643
0
    }
644
645
0
    memset(s, 0, sizeof(s));
646
647
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
648
649
0
    if (p == NULL) {
650
0
        p = "";
651
0
    }
652
653
0
    plen = strlen(p);
654
0
    slen = strlen(s);
655
0
    s[slen++] = '\r';
656
0
    s[slen++] = '\n';
657
658
0
    if (fout != NULL) {
659
0
        if (fwrite(p, 1, plen, fout) != plen ||
660
0
            fwrite(s, 1, slen, fout) != slen) {
661
0
            return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
662
0
        }
663
0
    } else {
664
0
        mbedtls_printf("%s%s", p, s);
665
0
    }
666
667
0
cleanup:
668
669
0
    return ret;
670
0
}
671
#endif /* MBEDTLS_FS_IO */
672
673
/*
674
 * Import X from unsigned binary data, little endian
675
 *
676
 * This function is guaranteed to return an MPI with exactly the necessary
677
 * number of limbs (in particular, it does not skip 0s in the input).
678
 */
679
int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
680
                               const unsigned char *buf, size_t buflen)
681
0
{
682
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
683
0
    const size_t limbs = CHARS_TO_LIMBS(buflen);
684
685
    /* Ensure that target MPI has exactly the necessary number of limbs */
686
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
687
688
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
689
690
0
cleanup:
691
692
    /*
693
     * This function is also used to import keys. However, wiping the buffers
694
     * upon failure is not necessary because failure only can happen before any
695
     * input is copied.
696
     */
697
0
    return ret;
698
0
}
699
700
/*
701
 * Import X from unsigned binary data, big endian
702
 *
703
 * This function is guaranteed to return an MPI with exactly the necessary
704
 * number of limbs (in particular, it does not skip 0s in the input).
705
 */
706
int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
707
4.37k
{
708
4.37k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
709
4.37k
    const size_t limbs = CHARS_TO_LIMBS(buflen);
710
711
4.37k
    MPI_VALIDATE_RET(X != NULL);
712
4.37k
    MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
713
714
    /* Ensure that target MPI has exactly the necessary number of limbs */
715
4.37k
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
716
717
4.37k
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
718
719
4.37k
cleanup:
720
721
    /*
722
     * This function is also used to import keys. However, wiping the buffers
723
     * upon failure is not necessary because failure only can happen before any
724
     * input is copied.
725
     */
726
4.37k
    return ret;
727
4.37k
}
728
729
/*
730
 * Export X into unsigned binary data, little endian
731
 */
732
int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
733
                                unsigned char *buf, size_t buflen)
734
0
{
735
0
    return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
736
0
}
737
738
/*
739
 * Export X into unsigned binary data, big endian
740
 */
741
int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
742
                             unsigned char *buf, size_t buflen)
743
126
{
744
126
    return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
745
126
}
746
747
/*
748
 * Left-shift: X <<= count
749
 */
750
int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
751
5.05k
{
752
5.05k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
753
5.05k
    size_t i, v0, t1;
754
5.05k
    mbedtls_mpi_uint r0 = 0, r1;
755
5.05k
    MPI_VALIDATE_RET(X != NULL);
756
757
5.05k
    v0 = count / (biL);
758
5.05k
    t1 = count & (biL - 1);
759
760
5.05k
    i = mbedtls_mpi_bitlen(X) + count;
761
762
5.05k
    if (X->n * biL < i) {
763
314
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
764
314
    }
765
766
5.05k
    ret = 0;
767
768
    /*
769
     * shift by count / limb_size
770
     */
771
5.05k
    if (v0 > 0) {
772
233k
        for (i = X->n; i > v0; i--) {
773
228k
            X->p[i - 1] = X->p[i - v0 - 1];
774
228k
        }
775
776
98.3k
        for (; i > 0; i--) {
777
93.6k
            X->p[i - 1] = 0;
778
93.6k
        }
779
4.67k
    }
780
781
    /*
782
     * shift by count % limb_size
783
     */
784
5.05k
    if (t1 > 0) {
785
12.2k
        for (i = v0; i < X->n; i++) {
786
12.0k
            r1 = X->p[i] >> (biL - t1);
787
12.0k
            X->p[i] <<= t1;
788
12.0k
            X->p[i] |= r0;
789
12.0k
            r0 = r1;
790
12.0k
        }
791
246
    }
792
793
5.05k
cleanup:
794
795
5.05k
    return ret;
796
5.05k
}
797
798
/*
799
 * Right-shift: X >>= count
800
 */
801
int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
802
252
{
803
252
    MPI_VALIDATE_RET(X != NULL);
804
252
    if (X->n != 0) {
805
252
        mbedtls_mpi_core_shift_r(X->p, X->n, count);
806
252
    }
807
252
    return 0;
808
252
}
809
810
/*
811
 * Compare unsigned values
812
 */
813
int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
814
5.29k
{
815
5.29k
    size_t i, j;
816
5.29k
    MPI_VALIDATE_RET(X != NULL);
817
5.29k
    MPI_VALIDATE_RET(Y != NULL);
818
819
90.1k
    for (i = X->n; i > 0; i--) {
820
90.1k
        if (X->p[i - 1] != 0) {
821
5.29k
            break;
822
5.29k
        }
823
90.1k
    }
824
825
96.4k
    for (j = Y->n; j > 0; j--) {
826
96.3k
        if (Y->p[j - 1] != 0) {
827
5.27k
            break;
828
5.27k
        }
829
96.3k
    }
830
831
5.29k
    if (i == 0 && j == 0) {
832
0
        return 0;
833
0
    }
834
835
5.29k
    if (i > j) {
836
442
        return 1;
837
442
    }
838
4.84k
    if (j > i) {
839
7
        return -1;
840
7
    }
841
842
8.54k
    for (; i > 0; i--) {
843
8.54k
        if (X->p[i - 1] > Y->p[i - 1]) {
844
4.58k
            return 1;
845
4.58k
        }
846
3.96k
        if (X->p[i - 1] < Y->p[i - 1]) {
847
261
            return -1;
848
261
        }
849
3.96k
    }
850
851
0
    return 0;
852
4.84k
}
853
854
/*
855
 * Compare signed values
856
 */
857
int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
858
38.5k
{
859
38.5k
    size_t i, j;
860
38.5k
    MPI_VALIDATE_RET(X != NULL);
861
38.5k
    MPI_VALIDATE_RET(Y != NULL);
862
863
644k
    for (i = X->n; i > 0; i--) {
864
634k
        if (X->p[i - 1] != 0) {
865
28.8k
            break;
866
28.8k
        }
867
634k
    }
868
869
69.6k
    for (j = Y->n; j > 0; j--) {
870
43.8k
        if (Y->p[j - 1] != 0) {
871
12.7k
            break;
872
12.7k
        }
873
43.8k
    }
874
875
38.5k
    if (i == 0 && j == 0) {
876
9.69k
        return 0;
877
9.69k
    }
878
879
28.8k
    if (i > j) {
880
17.0k
        return X->s;
881
17.0k
    }
882
11.8k
    if (j > i) {
883
1.69k
        return -Y->s;
884
1.69k
    }
885
886
10.1k
    if (X->s > 0 && Y->s < 0) {
887
0
        return 1;
888
0
    }
889
10.1k
    if (Y->s > 0 && X->s < 0) {
890
0
        return -1;
891
0
    }
892
893
17.5k
    for (; i > 0; i--) {
894
16.9k
        if (X->p[i - 1] > Y->p[i - 1]) {
895
2.85k
            return X->s;
896
2.85k
        }
897
14.1k
        if (X->p[i - 1] < Y->p[i - 1]) {
898
6.76k
            return -X->s;
899
6.76k
        }
900
14.1k
    }
901
902
520
    return 0;
903
10.1k
}
904
905
/*
906
 * Compare signed values
907
 */
908
int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
909
26.0k
{
910
26.0k
    mbedtls_mpi Y;
911
26.0k
    mbedtls_mpi_uint p[1];
912
26.0k
    MPI_VALIDATE_RET(X != NULL);
913
914
26.0k
    *p  = mpi_sint_abs(z);
915
26.0k
    Y.s = (z < 0) ? -1 : 1;
916
26.0k
    Y.n = 1;
917
26.0k
    Y.p = p;
918
919
26.0k
    return mbedtls_mpi_cmp_mpi(X, &Y);
920
26.0k
}
921
922
/*
923
 * Unsigned addition: X = |A| + |B|  (HAC 14.7)
924
 */
925
int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
926
296
{
927
296
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
928
296
    size_t j;
929
296
    MPI_VALIDATE_RET(X != NULL);
930
296
    MPI_VALIDATE_RET(A != NULL);
931
296
    MPI_VALIDATE_RET(B != NULL);
932
933
296
    if (X == B) {
934
0
        const mbedtls_mpi *T = A; A = X; B = T;
935
0
    }
936
937
296
    if (X != A) {
938
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
939
0
    }
940
941
    /*
942
     * X must always be positive as a result of unsigned additions.
943
     */
944
296
    X->s = 1;
945
946
296
    for (j = B->n; j > 0; j--) {
947
296
        if (B->p[j - 1] != 0) {
948
296
            break;
949
296
        }
950
296
    }
951
952
    /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
953
     * and B is 0 (of any size). */
954
296
    if (j == 0) {
955
0
        return 0;
956
0
    }
957
958
296
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
959
960
    /* j is the number of non-zero limbs of B. Add those to X. */
961
962
296
    mbedtls_mpi_uint *p = X->p;
963
964
296
    mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j);
965
966
296
    p += j;
967
968
    /* Now propagate any carry */
969
970
567
    while (c != 0) {
971
271
        if (j >= X->n) {
972
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
973
0
            p = X->p + j;
974
0
        }
975
976
271
        *p += c; c = (*p < c); j++; p++;
977
271
    }
978
979
296
cleanup:
980
981
296
    return ret;
982
296
}
983
984
/*
985
 * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
986
 */
987
int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
988
6.10k
{
989
6.10k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
990
6.10k
    size_t n;
991
6.10k
    mbedtls_mpi_uint carry;
992
6.10k
    MPI_VALIDATE_RET(X != NULL);
993
6.10k
    MPI_VALIDATE_RET(A != NULL);
994
6.10k
    MPI_VALIDATE_RET(B != NULL);
995
996
98.6k
    for (n = B->n; n > 0; n--) {
997
98.6k
        if (B->p[n - 1] != 0) {
998
6.08k
            break;
999
6.08k
        }
1000
98.6k
    }
1001
6.10k
    if (n > A->n) {
1002
        /* B >= (2^ciL)^n > A */
1003
0
        ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1004
0
        goto cleanup;
1005
0
    }
1006
1007
6.10k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
1008
1009
    /* Set the high limbs of X to match A. Don't touch the lower limbs
1010
     * because X might be aliased to B, and we must not overwrite the
1011
     * significant digits of B. */
1012
6.10k
    if (A->n > n) {
1013
5.66k
        memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1014
5.66k
    }
1015
6.10k
    if (X->n > A->n) {
1016
254
        memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1017
254
    }
1018
1019
6.10k
    carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
1020
6.10k
    if (carry != 0) {
1021
        /* Propagate the carry through the rest of X. */
1022
945
        carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
1023
1024
        /* If we have further carry/borrow, the result is negative. */
1025
945
        if (carry != 0) {
1026
0
            ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1027
0
            goto cleanup;
1028
0
        }
1029
945
    }
1030
1031
    /* X should always be positive as a result of unsigned subtractions. */
1032
6.10k
    X->s = 1;
1033
1034
6.10k
cleanup:
1035
6.10k
    return ret;
1036
6.10k
}
1037
1038
/* Common function for signed addition and subtraction.
1039
 * Calculate A + B * flip_B where flip_B is 1 or -1.
1040
 */
1041
static int add_sub_mpi(mbedtls_mpi *X,
1042
                       const mbedtls_mpi *A, const mbedtls_mpi *B,
1043
                       int flip_B)
1044
5.46k
{
1045
5.46k
    int ret, s;
1046
5.46k
    MPI_VALIDATE_RET(X != NULL);
1047
5.46k
    MPI_VALIDATE_RET(A != NULL);
1048
5.46k
    MPI_VALIDATE_RET(B != NULL);
1049
1050
5.46k
    s = A->s;
1051
5.46k
    if (A->s * B->s * flip_B < 0) {
1052
5.16k
        int cmp = mbedtls_mpi_cmp_abs(A, B);
1053
5.16k
        if (cmp >= 0) {
1054
4.89k
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
1055
            /* If |A| = |B|, the result is 0 and we must set the sign bit
1056
             * to +1 regardless of which of A or B was negative. Otherwise,
1057
             * since |A| > |B|, the sign is the sign of A. */
1058
4.89k
            X->s = cmp == 0 ? 1 : s;
1059
4.89k
        } else {
1060
268
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
1061
            /* Since |A| < |B|, the sign is the opposite of A. */
1062
268
            X->s = -s;
1063
268
        }
1064
5.16k
    } else {
1065
296
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
1066
296
        X->s = s;
1067
296
    }
1068
1069
5.46k
cleanup:
1070
1071
5.46k
    return ret;
1072
5.46k
}
1073
1074
/*
1075
 * Signed addition: X = A + B
1076
 */
1077
int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1078
557
{
1079
557
    return add_sub_mpi(X, A, B, 1);
1080
557
}
1081
1082
/*
1083
 * Signed subtraction: X = A - B
1084
 */
1085
int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1086
4.90k
{
1087
4.90k
    return add_sub_mpi(X, A, B, -1);
1088
4.90k
}
1089
1090
/*
1091
 * Signed addition: X = A + b
1092
 */
1093
int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1094
0
{
1095
0
    mbedtls_mpi B;
1096
0
    mbedtls_mpi_uint p[1];
1097
0
    MPI_VALIDATE_RET(X != NULL);
1098
0
    MPI_VALIDATE_RET(A != NULL);
1099
1100
0
    p[0] = mpi_sint_abs(b);
1101
0
    B.s = (b < 0) ? -1 : 1;
1102
0
    B.n = 1;
1103
0
    B.p = p;
1104
1105
0
    return mbedtls_mpi_add_mpi(X, A, &B);
1106
0
}
1107
1108
/*
1109
 * Signed subtraction: X = A - b
1110
 */
1111
int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1112
296
{
1113
296
    mbedtls_mpi B;
1114
296
    mbedtls_mpi_uint p[1];
1115
296
    MPI_VALIDATE_RET(X != NULL);
1116
296
    MPI_VALIDATE_RET(A != NULL);
1117
1118
296
    p[0] = mpi_sint_abs(b);
1119
296
    B.s = (b < 0) ? -1 : 1;
1120
296
    B.n = 1;
1121
296
    B.p = p;
1122
1123
296
    return mbedtls_mpi_sub_mpi(X, A, &B);
1124
296
}
1125
1126
/*
1127
 * Baseline multiplication: X = A * B  (HAC 14.12)
1128
 */
1129
int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
1130
888
{
1131
888
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1132
888
    size_t i, j;
1133
888
    mbedtls_mpi TA, TB;
1134
888
    int result_is_zero = 0;
1135
888
    MPI_VALIDATE_RET(X != NULL);
1136
888
    MPI_VALIDATE_RET(A != NULL);
1137
888
    MPI_VALIDATE_RET(B != NULL);
1138
1139
888
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
1140
1141
888
    if (X == A) {
1142
296
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1143
296
    }
1144
888
    if (X == B) {
1145
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1146
0
    }
1147
1148
918
    for (i = A->n; i > 0; i--) {
1149
917
        if (A->p[i - 1] != 0) {
1150
887
            break;
1151
887
        }
1152
917
    }
1153
888
    if (i == 0) {
1154
1
        result_is_zero = 1;
1155
1
    }
1156
1157
921
    for (j = B->n; j > 0; j--) {
1158
920
        if (B->p[j - 1] != 0) {
1159
887
            break;
1160
887
        }
1161
920
    }
1162
888
    if (j == 0) {
1163
1
        result_is_zero = 1;
1164
1
    }
1165
1166
888
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1167
888
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
1168
1169
6.18k
    for (size_t k = 0; k < j; k++) {
1170
        /* We know that there cannot be any carry-out since we're
1171
         * iterating from bottom to top. */
1172
5.29k
        (void) mbedtls_mpi_core_mla(X->p + k, i + 1,
1173
5.29k
                                    A->p, i,
1174
5.29k
                                    B->p[k]);
1175
5.29k
    }
1176
1177
    /* If the result is 0, we don't shortcut the operation, which reduces
1178
     * but does not eliminate side channels leaking the zero-ness. We do
1179
     * need to take care to set the sign bit properly since the library does
1180
     * not fully support an MPI object with a value of 0 and s == -1. */
1181
888
    if (result_is_zero) {
1182
1
        X->s = 1;
1183
887
    } else {
1184
887
        X->s = A->s * B->s;
1185
887
    }
1186
1187
888
cleanup:
1188
1189
888
    mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
1190
1191
888
    return ret;
1192
888
}
1193
1194
/*
1195
 * Baseline multiplication: X = A * b
1196
 */
1197
int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
1198
11.8k
{
1199
11.8k
    MPI_VALIDATE_RET(X != NULL);
1200
11.8k
    MPI_VALIDATE_RET(A != NULL);
1201
1202
11.8k
    size_t n = A->n;
1203
665k
    while (n > 0 && A->p[n - 1] == 0) {
1204
653k
        --n;
1205
653k
    }
1206
1207
    /* The general method below doesn't work if b==0. */
1208
11.8k
    if (b == 0 || n == 0) {
1209
34
        return mbedtls_mpi_lset(X, 0);
1210
34
    }
1211
1212
    /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
1213
11.8k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1214
    /* In general, A * b requires 1 limb more than b. If
1215
     * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1216
     * number of limbs as A and the call to grow() is not required since
1217
     * copy() will take care of the growth if needed. However, experimentally,
1218
     * making the call to grow() unconditional causes slightly fewer
1219
     * calls to calloc() in ECP code, presumably because it reuses the
1220
     * same mpi for a while and this way the mpi is more likely to directly
1221
     * grow to its final size.
1222
     *
1223
     * Note that calculating A*b as 0 + A*b doesn't work as-is because
1224
     * A,X can be the same. */
1225
11.8k
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1226
11.8k
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1227
11.8k
    mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
1228
1229
11.8k
cleanup:
1230
11.8k
    return ret;
1231
11.8k
}
1232
1233
/*
1234
 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1235
 * mbedtls_mpi_uint divisor, d
1236
 */
1237
static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1238
                                            mbedtls_mpi_uint u0,
1239
                                            mbedtls_mpi_uint d,
1240
                                            mbedtls_mpi_uint *r)
1241
4.54k
{
1242
4.54k
#if defined(MBEDTLS_HAVE_UDBL)
1243
4.54k
    mbedtls_t_udbl dividend, quotient;
1244
#else
1245
    const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1246
    const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
1247
    mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1248
    mbedtls_mpi_uint u0_msw, u0_lsw;
1249
    size_t s;
1250
#endif
1251
1252
    /*
1253
     * Check for overflow
1254
     */
1255
4.54k
    if (0 == d || u1 >= d) {
1256
0
        if (r != NULL) {
1257
0
            *r = ~(mbedtls_mpi_uint) 0u;
1258
0
        }
1259
1260
0
        return ~(mbedtls_mpi_uint) 0u;
1261
0
    }
1262
1263
4.54k
#if defined(MBEDTLS_HAVE_UDBL)
1264
4.54k
    dividend  = (mbedtls_t_udbl) u1 << biL;
1265
4.54k
    dividend |= (mbedtls_t_udbl) u0;
1266
4.54k
    quotient = dividend / d;
1267
4.54k
    if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1268
0
        quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1269
0
    }
1270
1271
4.54k
    if (r != NULL) {
1272
0
        *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1273
0
    }
1274
1275
4.54k
    return (mbedtls_mpi_uint) quotient;
1276
#else
1277
1278
    /*
1279
     * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1280
     *   Vol. 2 - Seminumerical Algorithms, Knuth
1281
     */
1282
1283
    /*
1284
     * Normalize the divisor, d, and dividend, u0, u1
1285
     */
1286
    s = mbedtls_mpi_core_clz(d);
1287
    d = d << s;
1288
1289
    u1 = u1 << s;
1290
    u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
1291
    u0 =  u0 << s;
1292
1293
    d1 = d >> biH;
1294
    d0 = d & uint_halfword_mask;
1295
1296
    u0_msw = u0 >> biH;
1297
    u0_lsw = u0 & uint_halfword_mask;
1298
1299
    /*
1300
     * Find the first quotient and remainder
1301
     */
1302
    q1 = u1 / d1;
1303
    r0 = u1 - d1 * q1;
1304
1305
    while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
1306
        q1 -= 1;
1307
        r0 += d1;
1308
1309
        if (r0 >= radix) {
1310
            break;
1311
        }
1312
    }
1313
1314
    rAX = (u1 * radix) + (u0_msw - q1 * d);
1315
    q0 = rAX / d1;
1316
    r0 = rAX - q0 * d1;
1317
1318
    while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
1319
        q0 -= 1;
1320
        r0 += d1;
1321
1322
        if (r0 >= radix) {
1323
            break;
1324
        }
1325
    }
1326
1327
    if (r != NULL) {
1328
        *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1329
    }
1330
1331
    quotient = q1 * radix + q0;
1332
1333
    return quotient;
1334
#endif
1335
4.54k
}
1336
1337
/*
1338
 * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
1339
 */
1340
int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1341
                        const mbedtls_mpi *B)
1342
126
{
1343
126
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1344
126
    size_t i, n, t, k;
1345
126
    mbedtls_mpi X, Y, Z, T1, T2;
1346
126
    mbedtls_mpi_uint TP2[3];
1347
126
    MPI_VALIDATE_RET(A != NULL);
1348
126
    MPI_VALIDATE_RET(B != NULL);
1349
1350
126
    if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1351
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1352
0
    }
1353
1354
126
    mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1355
126
    mbedtls_mpi_init(&T1);
1356
    /*
1357
     * Avoid dynamic memory allocations for constant-size T2.
1358
     *
1359
     * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1360
     * so nobody increase the size of the MPI and we're safe to use an on-stack
1361
     * buffer.
1362
     */
1363
126
    T2.s = 1;
1364
126
    T2.n = sizeof(TP2) / sizeof(*TP2);
1365
126
    T2.p = TP2;
1366
1367
126
    if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1368
0
        if (Q != NULL) {
1369
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1370
0
        }
1371
0
        if (R != NULL) {
1372
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1373
0
        }
1374
0
        return 0;
1375
0
    }
1376
1377
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1378
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
1379
126
    X.s = Y.s = 1;
1380
1381
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1382
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
1383
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
1384
1385
126
    k = mbedtls_mpi_bitlen(&Y) % biL;
1386
126
    if (k < biL - 1) {
1387
123
        k = biL - 1 - k;
1388
123
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1389
123
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1390
123
    } else {
1391
3
        k = 0;
1392
3
    }
1393
1394
126
    n = X.n - 1;
1395
126
    t = Y.n - 1;
1396
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
1397
1398
188
    while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
1399
62
        Z.p[n - t]++;
1400
62
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
1401
62
    }
1402
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
1403
1404
4.67k
    for (i = n; i > t; i--) {
1405
4.54k
        if (X.p[i] >= Y.p[t]) {
1406
1
            Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1407
4.54k
        } else {
1408
4.54k
            Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1409
4.54k
                                                 Y.p[t], NULL);
1410
4.54k
        }
1411
1412
4.54k
        T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1413
4.54k
        T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
1414
4.54k
        T2.p[2] = X.p[i];
1415
1416
4.54k
        Z.p[i - t - 1]++;
1417
7.28k
        do {
1418
7.28k
            Z.p[i - t - 1]--;
1419
1420
7.28k
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1421
7.28k
            T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
1422
7.28k
            T1.p[1] = Y.p[t];
1423
7.28k
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1424
7.28k
        } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
1425
1426
4.54k
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1427
4.54k
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
1428
4.54k
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
1429
1430
4.54k
        if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1431
7
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1432
7
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1433
7
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
1434
7
            Z.p[i - t - 1]--;
1435
7
        }
1436
4.54k
    }
1437
1438
126
    if (Q != NULL) {
1439
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
1440
0
        Q->s = A->s * B->s;
1441
0
    }
1442
1443
126
    if (R != NULL) {
1444
126
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
1445
126
        X.s = A->s;
1446
126
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
1447
1448
126
        if (mbedtls_mpi_cmp_int(R, 0) == 0) {
1449
0
            R->s = 1;
1450
0
        }
1451
126
    }
1452
1453
126
cleanup:
1454
1455
126
    mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1456
126
    mbedtls_mpi_free(&T1);
1457
126
    mbedtls_platform_zeroize(TP2, sizeof(TP2));
1458
1459
126
    return ret;
1460
126
}
1461
1462
/*
1463
 * Division by int: A = Q * b + R
1464
 */
1465
int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1466
                        const mbedtls_mpi *A,
1467
                        mbedtls_mpi_sint b)
1468
0
{
1469
0
    mbedtls_mpi B;
1470
0
    mbedtls_mpi_uint p[1];
1471
0
    MPI_VALIDATE_RET(A != NULL);
1472
1473
0
    p[0] = mpi_sint_abs(b);
1474
0
    B.s = (b < 0) ? -1 : 1;
1475
0
    B.n = 1;
1476
0
    B.p = p;
1477
1478
0
    return mbedtls_mpi_div_mpi(Q, R, A, &B);
1479
0
}
1480
1481
/*
1482
 * Modulo: R = A mod B
1483
 */
1484
int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
1485
126
{
1486
126
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1487
126
    MPI_VALIDATE_RET(R != NULL);
1488
126
    MPI_VALIDATE_RET(A != NULL);
1489
126
    MPI_VALIDATE_RET(B != NULL);
1490
1491
126
    if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1492
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1493
0
    }
1494
1495
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
1496
1497
126
    while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1498
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1499
0
    }
1500
1501
126
    while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1502
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1503
0
    }
1504
1505
126
cleanup:
1506
1507
126
    return ret;
1508
126
}
1509
1510
/*
1511
 * Modulo: r = A mod b
1512
 */
1513
int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
1514
0
{
1515
0
    size_t i;
1516
0
    mbedtls_mpi_uint x, y, z;
1517
0
    MPI_VALIDATE_RET(r != NULL);
1518
0
    MPI_VALIDATE_RET(A != NULL);
1519
1520
0
    if (b == 0) {
1521
0
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1522
0
    }
1523
1524
0
    if (b < 0) {
1525
0
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1526
0
    }
1527
1528
    /*
1529
     * handle trivial cases
1530
     */
1531
0
    if (b == 1 || A->n == 0) {
1532
0
        *r = 0;
1533
0
        return 0;
1534
0
    }
1535
1536
0
    if (b == 2) {
1537
0
        *r = A->p[0] & 1;
1538
0
        return 0;
1539
0
    }
1540
1541
    /*
1542
     * general case
1543
     */
1544
0
    for (i = A->n, y = 0; i > 0; i--) {
1545
0
        x  = A->p[i - 1];
1546
0
        y  = (y << biH) | (x >> biH);
1547
0
        z  = y / b;
1548
0
        y -= z * b;
1549
1550
0
        x <<= biH;
1551
0
        y  = (y << biH) | (x >> biH);
1552
0
        z  = y / b;
1553
0
        y -= z * b;
1554
0
    }
1555
1556
    /*
1557
     * If A is negative, then the current y represents a negative value.
1558
     * Flipping it to the positive side.
1559
     */
1560
0
    if (A->s < 0 && y != 0) {
1561
0
        y = b - y;
1562
0
    }
1563
1564
0
    *r = y;
1565
1566
0
    return 0;
1567
0
}
1568
1569
static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
1570
126
{
1571
126
    *mm = mbedtls_mpi_core_montmul_init(N->p);
1572
126
}
1573
1574
/** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
1575
 *
1576
 * \param[in,out]   A   One of the numbers to multiply.
1577
 *                      It must have at least as many limbs as N
1578
 *                      (A->n >= N->n), and any limbs beyond n are ignored.
1579
 *                      On successful completion, A contains the result of
1580
 *                      the multiplication A * B * R^-1 mod N where
1581
 *                      R = (2^ciL)^n.
1582
 * \param[in]       B   One of the numbers to multiply.
1583
 *                      It must be nonzero and must not have more limbs than N
1584
 *                      (B->n <= N->n).
1585
 * \param[in]       N   The modulus. \p N must be odd.
1586
 * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`.
1587
 *                      This is -N^-1 mod 2^ciL.
1588
 * \param[in,out]   T   A bignum for temporary storage.
1589
 *                      It must be at least twice the limb size of N plus 1
1590
 *                      (T->n >= 2 * N->n + 1).
1591
 *                      Its initial content is unused and
1592
 *                      its final content is indeterminate.
1593
 *                      It does not get reallocated.
1594
 */
1595
static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1596
                        const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1597
                        mbedtls_mpi *T)
1598
2.91k
{
1599
2.91k
    mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
1600
2.91k
}
1601
1602
/*
1603
 * Montgomery reduction: A = A * R^-1 mod N
1604
 *
1605
 * See mpi_montmul() regarding constraints and guarantees on the parameters.
1606
 */
1607
static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1608
                        mbedtls_mpi_uint mm, mbedtls_mpi *T)
1609
252
{
1610
252
    mbedtls_mpi_uint z = 1;
1611
252
    mbedtls_mpi U;
1612
1613
252
    U.n = U.s = (int) z;
1614
252
    U.p = &z;
1615
1616
252
    mpi_montmul(A, &U, N, mm, T);
1617
252
}
1618
1619
/**
1620
 * Select an MPI from a table without leaking the index.
1621
 *
1622
 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1623
 * reads the entire table in order to avoid leaking the value of idx to an
1624
 * attacker able to observe memory access patterns.
1625
 *
1626
 * \param[out] R        Where to write the selected MPI.
1627
 * \param[in] T         The table to read from.
1628
 * \param[in] T_size    The number of elements in the table.
1629
 * \param[in] idx       The index of the element to select;
1630
 *                      this must satisfy 0 <= idx < T_size.
1631
 *
1632
 * \return \c 0 on success, or a negative error code.
1633
 */
1634
static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
1635
2.50k
{
1636
2.50k
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1637
1638
8.65k
    for (size_t i = 0; i < T_size; i++) {
1639
6.15k
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1640
6.15k
                                                     (unsigned char) mbedtls_ct_size_bool_eq(i,
1641
6.15k
                                                                                             idx)));
1642
6.15k
    }
1643
1644
2.50k
cleanup:
1645
2.50k
    return ret;
1646
2.50k
}
1647
1648
/*
1649
 * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
1650
 */
1651
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1652
                        const mbedtls_mpi *E, const mbedtls_mpi *N,
1653
                        mbedtls_mpi *prec_RR)
1654
126
{
1655
126
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1656
126
    size_t window_bitsize;
1657
126
    size_t i, j, nblimbs;
1658
126
    size_t bufsize, nbits;
1659
126
    mbedtls_mpi_uint ei, mm, state;
1660
126
    mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
1661
126
    int neg;
1662
1663
126
    MPI_VALIDATE_RET(X != NULL);
1664
126
    MPI_VALIDATE_RET(A != NULL);
1665
126
    MPI_VALIDATE_RET(E != NULL);
1666
126
    MPI_VALIDATE_RET(N != NULL);
1667
1668
126
    if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1669
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1670
0
    }
1671
1672
126
    if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1673
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1674
0
    }
1675
1676
126
    if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1677
126
        mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1678
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1679
0
    }
1680
1681
    /*
1682
     * Init temps and window size
1683
     */
1684
126
    mpi_montg_init(&mm, N);
1685
126
    mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1686
126
    mbedtls_mpi_init(&Apos);
1687
126
    mbedtls_mpi_init(&WW);
1688
126
    memset(W, 0, sizeof(W));
1689
1690
126
    i = mbedtls_mpi_bitlen(E);
1691
1692
126
    window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1693
126
                     (i >  79) ? 4 : (i >  23) ? 3 : 1;
1694
1695
#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1696
    if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
1697
        window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
1698
    }
1699
#endif
1700
1701
126
    const size_t w_table_used_size = (size_t) 1 << window_bitsize;
1702
1703
    /*
1704
     * This function is not constant-trace: its memory accesses depend on the
1705
     * exponent value. To defend against timing attacks, callers (such as RSA
1706
     * and DHM) should use exponent blinding. However this is not enough if the
1707
     * adversary can find the exponent in a single trace, so this function
1708
     * takes extra precautions against adversaries who can observe memory
1709
     * access patterns.
1710
     *
1711
     * This function performs a series of multiplications by table elements and
1712
     * squarings, and we want the prevent the adversary from finding out which
1713
     * table element was used, and from distinguishing between multiplications
1714
     * and squarings. Firstly, when multiplying by an element of the window
1715
     * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1716
     * squarings as having a different memory access patterns from other
1717
     * multiplications. So secondly, we put the accumulator X in the table as
1718
     * well, and also do a constant-trace table lookup to multiply by X.
1719
     *
1720
     * This way, all multiplications take the form of a lookup-and-multiply.
1721
     * The number of lookup-and-multiply operations inside each iteration of
1722
     * the main loop still depends on the bits of the exponent, but since the
1723
     * other operations in the loop don't have an easily recognizable memory
1724
     * trace, an adversary is unlikely to be able to observe the exact
1725
     * patterns.
1726
     *
1727
     * An adversary may still be able to recover the exponent if they can
1728
     * observe both memory accesses and branches. However, branch prediction
1729
     * exploitation typically requires many traces of execution over the same
1730
     * data, which is defeated by randomized blinding.
1731
     *
1732
     * To achieve this, we make a copy of X and we use the table entry in each
1733
     * calculation from this point on.
1734
     */
1735
126
    const size_t x_index = 0;
1736
126
    mbedtls_mpi_init(&W[x_index]);
1737
126
    mbedtls_mpi_copy(&W[x_index], X);
1738
1739
126
    j = N->n + 1;
1740
    /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
1741
     * and mpi_montred() calls later. Here we ensure that W[1] and X are
1742
     * large enough, and later we'll grow other W[i] to the same length.
1743
     * They must not be shrunk midway through this function!
1744
     */
1745
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1746
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1],  j));
1747
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
1748
1749
    /*
1750
     * Compensate for negative A (and correct at the end)
1751
     */
1752
126
    neg = (A->s == -1);
1753
126
    if (neg) {
1754
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
1755
0
        Apos.s = 1;
1756
0
        A = &Apos;
1757
0
    }
1758
1759
    /*
1760
     * If 1st call, pre-compute R^2 mod N
1761
     */
1762
126
    if (prec_RR == NULL || prec_RR->p == NULL) {
1763
126
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1764
126
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1765
126
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
1766
1767
126
        if (prec_RR != NULL) {
1768
126
            memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1769
126
        }
1770
126
    } else {
1771
0
        memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
1772
0
    }
1773
1774
    /*
1775
     * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1776
     */
1777
126
    if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1778
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
1779
        /* This should be a no-op because W[1] is already that large before
1780
         * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
1781
         * in mpi_montmul() below, so let's make sure. */
1782
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1783
126
    } else {
1784
126
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
1785
126
    }
1786
1787
    /* Note that this is safe because W[1] always has at least N->n limbs
1788
     * (it grew above and was preserved by mbedtls_mpi_copy()). */
1789
126
    mpi_montmul(&W[1], &RR, N, mm, &T);
1790
1791
    /*
1792
     * W[x_index] = R^2 * R^-1 mod N = R mod N
1793
     */
1794
126
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1795
126
    mpi_montred(&W[x_index], N, mm, &T);
1796
1797
1798
126
    if (window_bitsize > 1) {
1799
        /*
1800
         * W[i] = W[1] ^ i
1801
         *
1802
         * The first bit of the sliding window is always 1 and therefore we
1803
         * only need to store the second half of the table.
1804
         *
1805
         * (There are two special elements in the table: W[0] for the
1806
         * accumulator/result and W[1] for A in Montgomery form. Both of these
1807
         * are already set at this point.)
1808
         */
1809
7
        j = w_table_used_size / 2;
1810
1811
7
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1812
7
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
1813
1814
21
        for (i = 0; i < window_bitsize - 1; i++) {
1815
14
            mpi_montmul(&W[j], &W[j], N, mm, &T);
1816
14
        }
1817
1818
        /*
1819
         * W[i] = W[i - 1] * W[1]
1820
         */
1821
28
        for (i = j + 1; i < w_table_used_size; i++) {
1822
21
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1823
21
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
1824
1825
21
            mpi_montmul(&W[i], &W[1], N, mm, &T);
1826
21
        }
1827
7
    }
1828
1829
126
    nblimbs = E->n;
1830
126
    bufsize = 0;
1831
126
    nbits   = 0;
1832
126
    size_t exponent_bits_in_window = 0;
1833
126
    state   = 0;
1834
1835
8.19k
    while (1) {
1836
8.19k
        if (bufsize == 0) {
1837
252
            if (nblimbs == 0) {
1838
126
                break;
1839
126
            }
1840
1841
126
            nblimbs--;
1842
1843
126
            bufsize = sizeof(mbedtls_mpi_uint) << 3;
1844
126
        }
1845
1846
8.06k
        bufsize--;
1847
1848
8.06k
        ei = (E->p[nblimbs] >> bufsize) & 1;
1849
1850
        /*
1851
         * skip leading 0s
1852
         */
1853
8.06k
        if (ei == 0 && state == 0) {
1854
5.88k
            continue;
1855
5.88k
        }
1856
1857
2.18k
        if (ei == 0 && state == 1) {
1858
            /*
1859
             * out of window, square W[x_index]
1860
             */
1861
1.83k
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1862
1.83k
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1863
1.83k
            continue;
1864
1.83k
        }
1865
1866
        /*
1867
         * add ei to current window
1868
         */
1869
352
        state = 2;
1870
1871
352
        nbits++;
1872
352
        exponent_bits_in_window |= (ei << (window_bitsize - nbits));
1873
1874
352
        if (nbits == window_bitsize) {
1875
            /*
1876
             * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
1877
             */
1878
656
            for (i = 0; i < window_bitsize; i++) {
1879
345
                MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1880
345
                                           x_index));
1881
345
                mpi_montmul(&W[x_index], &WW, N, mm, &T);
1882
345
            }
1883
1884
            /*
1885
             * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
1886
             */
1887
311
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1888
311
                                       exponent_bits_in_window));
1889
311
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1890
1891
311
            state--;
1892
311
            nbits = 0;
1893
311
            exponent_bits_in_window = 0;
1894
311
        }
1895
352
    }
1896
1897
    /*
1898
     * process the remaining bits
1899
     */
1900
133
    for (i = 0; i < nbits; i++) {
1901
7
        MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1902
7
        mpi_montmul(&W[x_index], &WW, N, mm, &T);
1903
1904
7
        exponent_bits_in_window <<= 1;
1905
1906
7
        if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1907
7
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1908
7
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
1909
7
        }
1910
7
    }
1911
1912
    /*
1913
     * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
1914
     */
1915
126
    mpi_montred(&W[x_index], N, mm, &T);
1916
1917
126
    if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
1918
0
        W[x_index].s = -1;
1919
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
1920
0
    }
1921
1922
    /*
1923
     * Load the result in the output variable.
1924
     */
1925
126
    mbedtls_mpi_copy(X, &W[x_index]);
1926
1927
126
cleanup:
1928
1929
    /* The first bit of the sliding window is always 1 and therefore the first
1930
     * half of the table was unused. */
1931
273
    for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1932
147
        mbedtls_mpi_free(&W[i]);
1933
147
    }
1934
1935
126
    mbedtls_mpi_free(&W[x_index]);
1936
126
    mbedtls_mpi_free(&W[1]);
1937
126
    mbedtls_mpi_free(&T);
1938
126
    mbedtls_mpi_free(&Apos);
1939
126
    mbedtls_mpi_free(&WW);
1940
1941
126
    if (prec_RR == NULL || prec_RR->p == NULL) {
1942
0
        mbedtls_mpi_free(&RR);
1943
0
    }
1944
1945
126
    return ret;
1946
126
}
1947
1948
/*
1949
 * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
1950
 */
1951
int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
1952
0
{
1953
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1954
0
    size_t lz, lzt;
1955
0
    mbedtls_mpi TA, TB;
1956
1957
0
    MPI_VALIDATE_RET(G != NULL);
1958
0
    MPI_VALIDATE_RET(A != NULL);
1959
0
    MPI_VALIDATE_RET(B != NULL);
1960
1961
0
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
1962
1963
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1964
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
1965
1966
0
    lz = mbedtls_mpi_lsb(&TA);
1967
0
    lzt = mbedtls_mpi_lsb(&TB);
1968
1969
    /* The loop below gives the correct result when A==0 but not when B==0.
1970
     * So have a special case for B==0. Leverage the fact that we just
1971
     * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1972
     * slightly more efficient than cmp_int(). */
1973
0
    if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1974
0
        ret = mbedtls_mpi_copy(G, A);
1975
0
        goto cleanup;
1976
0
    }
1977
1978
0
    if (lzt < lz) {
1979
0
        lz = lzt;
1980
0
    }
1981
1982
0
    TA.s = TB.s = 1;
1983
1984
    /* We mostly follow the procedure described in HAC 14.54, but with some
1985
     * minor differences:
1986
     * - Sequences of multiplications or divisions by 2 are grouped into a
1987
     *   single shift operation.
1988
     * - The procedure in HAC assumes that 0 < TB <= TA.
1989
     *     - The condition TB <= TA is not actually necessary for correctness.
1990
     *       TA and TB have symmetric roles except for the loop termination
1991
     *       condition, and the shifts at the beginning of the loop body
1992
     *       remove any significance from the ordering of TA vs TB before
1993
     *       the shifts.
1994
     *     - If TA = 0, the loop goes through 0 iterations and the result is
1995
     *       correctly TB.
1996
     *     - The case TB = 0 was short-circuited above.
1997
     *
1998
     * For the correctness proof below, decompose the original values of
1999
     * A and B as
2000
     *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2001
     *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2002
     * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2003
     * and gcd(A',B') is odd or 0.
2004
     *
2005
     * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2006
     * The code maintains the following invariant:
2007
     *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
2008
     */
2009
2010
    /* Proof that the loop terminates:
2011
     * At each iteration, either the right-shift by 1 is made on a nonzero
2012
     * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2013
     * by at least 1, or the right-shift by 1 is made on zero and then
2014
     * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2015
     * since in that case TB is calculated from TB-TA with the condition TB>TA).
2016
     */
2017
0
    while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
2018
        /* Divisions by 2 preserve the invariant (I). */
2019
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
2020
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
2021
2022
        /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2023
         * TA-TB is even so the division by 2 has an integer result.
2024
         * Invariant (I) is preserved since any odd divisor of both TA and TB
2025
         * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
2026
         * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
2027
         * divides TA.
2028
         */
2029
0
        if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2030
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2031
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2032
0
        } else {
2033
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2034
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
2035
0
        }
2036
        /* Note that one of TA or TB is still odd. */
2037
0
    }
2038
2039
    /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2040
     * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2041
     * - If there was at least one loop iteration, then one of TA or TB is odd,
2042
     *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2043
     *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2044
     * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
2045
     *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
2046
     */
2047
2048
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2049
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
2050
2051
0
cleanup:
2052
2053
0
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
2054
2055
0
    return ret;
2056
0
}
2057
2058
/*
2059
 * Fill X with size bytes of random.
2060
 * The bytes returned from the RNG are used in a specific order which
2061
 * is suitable for deterministic ECDSA (see the specification of
2062
 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
2063
 */
2064
int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2065
                            int (*f_rng)(void *, unsigned char *, size_t),
2066
                            void *p_rng)
2067
0
{
2068
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2069
0
    const size_t limbs = CHARS_TO_LIMBS(size);
2070
2071
0
    MPI_VALIDATE_RET(X     != NULL);
2072
0
    MPI_VALIDATE_RET(f_rng != NULL);
2073
2074
    /* Ensure that target MPI has exactly the necessary number of limbs */
2075
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2076
0
    if (size == 0) {
2077
0
        return 0;
2078
0
    }
2079
2080
0
    ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
2081
2082
0
cleanup:
2083
0
    return ret;
2084
0
}
2085
2086
int mbedtls_mpi_random(mbedtls_mpi *X,
2087
                       mbedtls_mpi_sint min,
2088
                       const mbedtls_mpi *N,
2089
                       int (*f_rng)(void *, unsigned char *, size_t),
2090
                       void *p_rng)
2091
0
{
2092
0
    if (min < 0) {
2093
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2094
0
    }
2095
0
    if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2096
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2097
0
    }
2098
2099
    /* Ensure that target MPI has exactly the same number of limbs
2100
     * as the upper bound, even if the upper bound has leading zeros.
2101
     * This is necessary for mbedtls_mpi_core_random. */
2102
0
    int ret = mbedtls_mpi_resize_clear(X, N->n);
2103
0
    if (ret != 0) {
2104
0
        return ret;
2105
0
    }
2106
2107
0
    return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
2108
0
}
2109
2110
/*
2111
 * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
2112
 */
2113
int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
2114
0
{
2115
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2116
0
    mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
2117
0
    MPI_VALIDATE_RET(X != NULL);
2118
0
    MPI_VALIDATE_RET(A != NULL);
2119
0
    MPI_VALIDATE_RET(N != NULL);
2120
2121
0
    if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2122
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2123
0
    }
2124
2125
0
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2126
0
    mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2127
0
    mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
2128
2129
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
2130
2131
0
    if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
2132
0
        ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2133
0
        goto cleanup;
2134
0
    }
2135
2136
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2137
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2138
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2139
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
2140
2141
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2142
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2143
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2144
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
2145
2146
0
    do {
2147
0
        while ((TU.p[0] & 1) == 0) {
2148
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
2149
2150
0
            if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2151
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2152
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
2153
0
            }
2154
2155
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2156
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
2157
0
        }
2158
2159
0
        while ((TV.p[0] & 1) == 0) {
2160
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
2161
2162
0
            if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2163
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2164
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
2165
0
            }
2166
2167
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2168
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
2169
0
        }
2170
2171
0
        if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2172
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2173
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2174
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2175
0
        } else {
2176
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2177
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2178
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
2179
0
        }
2180
0
    } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2181
2182
0
    while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2183
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
2184
0
    }
2185
2186
0
    while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2187
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2188
0
    }
2189
2190
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
2191
2192
0
cleanup:
2193
2194
0
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2195
0
    mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2196
0
    mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
2197
2198
0
    return ret;
2199
0
}
2200
2201
#if defined(MBEDTLS_GENPRIME)
2202
2203
static const int small_prime[] =
2204
{
2205
    3,    5,    7,   11,   13,   17,   19,   23,
2206
    29,   31,   37,   41,   43,   47,   53,   59,
2207
    61,   67,   71,   73,   79,   83,   89,   97,
2208
    101,  103,  107,  109,  113,  127,  131,  137,
2209
    139,  149,  151,  157,  163,  167,  173,  179,
2210
    181,  191,  193,  197,  199,  211,  223,  227,
2211
    229,  233,  239,  241,  251,  257,  263,  269,
2212
    271,  277,  281,  283,  293,  307,  311,  313,
2213
    317,  331,  337,  347,  349,  353,  359,  367,
2214
    373,  379,  383,  389,  397,  401,  409,  419,
2215
    421,  431,  433,  439,  443,  449,  457,  461,
2216
    463,  467,  479,  487,  491,  499,  503,  509,
2217
    521,  523,  541,  547,  557,  563,  569,  571,
2218
    577,  587,  593,  599,  601,  607,  613,  617,
2219
    619,  631,  641,  643,  647,  653,  659,  661,
2220
    673,  677,  683,  691,  701,  709,  719,  727,
2221
    733,  739,  743,  751,  757,  761,  769,  773,
2222
    787,  797,  809,  811,  821,  823,  827,  829,
2223
    839,  853,  857,  859,  863,  877,  881,  883,
2224
    887,  907,  911,  919,  929,  937,  941,  947,
2225
    953,  967,  971,  977,  983,  991,  997, -103
2226
};
2227
2228
/*
2229
 * Small divisors test (X must be positive)
2230
 *
2231
 * Return values:
2232
 * 0: no small factor (possible prime, more tests needed)
2233
 * 1: certain prime
2234
 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
2235
 * other negative: error
2236
 */
2237
static int mpi_check_small_factors(const mbedtls_mpi *X)
2238
0
{
2239
0
    int ret = 0;
2240
0
    size_t i;
2241
0
    mbedtls_mpi_uint r;
2242
2243
0
    if ((X->p[0] & 1) == 0) {
2244
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2245
0
    }
2246
2247
0
    for (i = 0; small_prime[i] > 0; i++) {
2248
0
        if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2249
0
            return 1;
2250
0
        }
2251
2252
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
2253
2254
0
        if (r == 0) {
2255
0
            return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2256
0
        }
2257
0
    }
2258
2259
0
cleanup:
2260
0
    return ret;
2261
0
}
2262
2263
/*
2264
 * Miller-Rabin pseudo-primality test  (HAC 4.24)
2265
 */
2266
static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2267
                            int (*f_rng)(void *, unsigned char *, size_t),
2268
                            void *p_rng)
2269
0
{
2270
0
    int ret, count;
2271
0
    size_t i, j, k, s;
2272
0
    mbedtls_mpi W, R, T, A, RR;
2273
2274
0
    MPI_VALIDATE_RET(X     != NULL);
2275
0
    MPI_VALIDATE_RET(f_rng != NULL);
2276
2277
0
    mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2278
0
    mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2279
0
    mbedtls_mpi_init(&RR);
2280
2281
    /*
2282
     * W = |X| - 1
2283
     * R = W >> lsb( W )
2284
     */
2285
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2286
0
    s = mbedtls_mpi_lsb(&W);
2287
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2288
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
2289
2290
0
    for (i = 0; i < rounds; i++) {
2291
        /*
2292
         * pick a random A, 1 < A < |X| - 1
2293
         */
2294
0
        count = 0;
2295
0
        do {
2296
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
2297
2298
0
            j = mbedtls_mpi_bitlen(&A);
2299
0
            k = mbedtls_mpi_bitlen(&W);
2300
0
            if (j > k) {
2301
0
                A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
2302
0
            }
2303
2304
0
            if (count++ > 30) {
2305
0
                ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2306
0
                goto cleanup;
2307
0
            }
2308
2309
0
        } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2310
0
                 mbedtls_mpi_cmp_int(&A, 1)  <= 0);
2311
2312
        /*
2313
         * A = A^R mod |X|
2314
         */
2315
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
2316
2317
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2318
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2319
0
            continue;
2320
0
        }
2321
2322
0
        j = 1;
2323
0
        while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
2324
            /*
2325
             * A = A * A mod |X|
2326
             */
2327
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2328
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
2329
2330
0
            if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
2331
0
                break;
2332
0
            }
2333
2334
0
            j++;
2335
0
        }
2336
2337
        /*
2338
         * not prime if A != |X| - 1 or A == 1
2339
         */
2340
0
        if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2341
0
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
2342
0
            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2343
0
            break;
2344
0
        }
2345
0
    }
2346
2347
0
cleanup:
2348
0
    mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2349
0
    mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2350
0
    mbedtls_mpi_free(&RR);
2351
2352
0
    return ret;
2353
0
}
2354
2355
/*
2356
 * Pseudo-primality test: small factors, then Miller-Rabin
2357
 */
2358
int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2359
                             int (*f_rng)(void *, unsigned char *, size_t),
2360
                             void *p_rng)
2361
0
{
2362
0
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2363
0
    mbedtls_mpi XX;
2364
0
    MPI_VALIDATE_RET(X     != NULL);
2365
0
    MPI_VALIDATE_RET(f_rng != NULL);
2366
2367
0
    XX.s = 1;
2368
0
    XX.n = X->n;
2369
0
    XX.p = X->p;
2370
2371
0
    if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2372
0
        mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2373
0
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2374
0
    }
2375
2376
0
    if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2377
0
        return 0;
2378
0
    }
2379
2380
0
    if ((ret = mpi_check_small_factors(&XX)) != 0) {
2381
0
        if (ret == 1) {
2382
0
            return 0;
2383
0
        }
2384
2385
0
        return ret;
2386
0
    }
2387
2388
0
    return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
2389
0
}
2390
2391
/*
2392
 * Prime number generation
2393
 *
2394
 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2395
 * be either 1024 bits or 1536 bits long, and flags must contain
2396
 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
2397
 */
2398
int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2399
                          int (*f_rng)(void *, unsigned char *, size_t),
2400
                          void *p_rng)
2401
0
{
2402
0
#ifdef MBEDTLS_HAVE_INT64
2403
// ceil(2^63.5)
2404
0
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2405
#else
2406
// ceil(2^31.5)
2407
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2408
#endif
2409
0
    int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2410
0
    size_t k, n;
2411
0
    int rounds;
2412
0
    mbedtls_mpi_uint r;
2413
0
    mbedtls_mpi Y;
2414
2415
0
    MPI_VALIDATE_RET(X     != NULL);
2416
0
    MPI_VALIDATE_RET(f_rng != NULL);
2417
2418
0
    if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2419
0
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2420
0
    }
2421
2422
0
    mbedtls_mpi_init(&Y);
2423
2424
0
    n = BITS_TO_LIMBS(nbits);
2425
2426
0
    if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
2427
        /*
2428
         * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2429
         */
2430
0
        rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :
2431
0
                  (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :
2432
0
                  (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);
2433
0
    } else {
2434
        /*
2435
         * 2^-100 error probability, number of rounds computed based on HAC,
2436
         * fact 4.48
2437
         */
2438
0
        rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :
2439
0
                  (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :
2440
0
                  (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :
2441
0
                  (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);
2442
0
    }
2443
2444
0
    while (1) {
2445
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
2446
        /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2447
0
        if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2448
0
            continue;
2449
0
        }
2450
2451
0
        k = n * biL;
2452
0
        if (k > nbits) {
2453
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2454
0
        }
2455
0
        X->p[0] |= 1;
2456
2457
0
        if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2458
0
            ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
2459
2460
0
            if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2461
0
                goto cleanup;
2462
0
            }
2463
0
        } else {
2464
            /*
2465
             * A necessary condition for Y and X = 2Y + 1 to be prime
2466
             * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2467
             * Make sure it is satisfied, while keeping X = 3 mod 4
2468
             */
2469
2470
0
            X->p[0] |= 2;
2471
2472
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2473
0
            if (r == 0) {
2474
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2475
0
            } else if (r == 1) {
2476
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2477
0
            }
2478
2479
            /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2480
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2481
0
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
2482
2483
0
            while (1) {
2484
                /*
2485
                 * First, check small factors for X and Y
2486
                 * before doing Miller-Rabin on any of them
2487
                 */
2488
0
                if ((ret = mpi_check_small_factors(X)) == 0 &&
2489
0
                    (ret = mpi_check_small_factors(&Y)) == 0 &&
2490
0
                    (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2491
0
                    == 0 &&
2492
0
                    (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2493
0
                    == 0) {
2494
0
                    goto cleanup;
2495
0
                }
2496
2497
0
                if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2498
0
                    goto cleanup;
2499
0
                }
2500
2501
                /*
2502
                 * Next candidates. We want to preserve Y = (X-1) / 2 and
2503
                 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2504
                 * so up Y by 6 and X by 12.
2505
                 */
2506
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
2507
0
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
2508
0
            }
2509
0
        }
2510
0
    }
2511
2512
0
cleanup:
2513
2514
0
    mbedtls_mpi_free(&Y);
2515
2516
0
    return ret;
2517
0
}
2518
2519
#endif /* MBEDTLS_GENPRIME */
2520
2521
#if defined(MBEDTLS_SELF_TEST)
2522
2523
0
#define GCD_PAIR_COUNT  3
2524
2525
static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2526
{
2527
    { 693, 609, 21 },
2528
    { 1764, 868, 28 },
2529
    { 768454923, 542167814, 1 }
2530
};
2531
2532
/*
2533
 * Checkup routine
2534
 */
2535
int mbedtls_mpi_self_test(int verbose)
2536
0
{
2537
0
    int ret, i;
2538
0
    mbedtls_mpi A, E, N, X, Y, U, V;
2539
2540
0
    mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2541
0
    mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
2542
2543
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2544
0
                                            "EFE021C2645FD1DC586E69184AF4A31E" \
2545
0
                                            "D5F53E93B5F123FA41680867BA110131" \
2546
0
                                            "944FE7952E2517337780CB0DB80E61AA" \
2547
0
                                            "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
2548
2549
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2550
0
                                            "B2E7EFD37075B9F03FF989C7C5051C20" \
2551
0
                                            "34D2A323810251127E7BF8625A4F49A5" \
2552
0
                                            "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2553
0
                                            "5B5C25763222FEFCCFC38B832366C29E"));
2554
2555
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2556
0
                                            "0066A198186C18C10B2F5ED9B522752A" \
2557
0
                                            "9830B69916E535C8F047518A889A43A5" \
2558
0
                                            "94B6BED27A168D31D4A52F88925AA8F5"));
2559
2560
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
2561
2562
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2563
0
                                            "602AB7ECA597A3D6B56FF9829A5E8B85" \
2564
0
                                            "9E857EA95A03512E2BAE7391688D264A" \
2565
0
                                            "A5663B0341DB9CCFD2C4C5F421FEC814" \
2566
0
                                            "8001B72E848A38CAE1C65F78E56ABDEF" \
2567
0
                                            "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2568
0
                                            "ECF677152EF804370C1A305CAF3B5BF1" \
2569
0
                                            "30879B56C61DE584A0F53A2447A51E"));
2570
2571
0
    if (verbose != 0) {
2572
0
        mbedtls_printf("  MPI test #1 (mul_mpi): ");
2573
0
    }
2574
2575
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2576
0
        if (verbose != 0) {
2577
0
            mbedtls_printf("failed\n");
2578
0
        }
2579
2580
0
        ret = 1;
2581
0
        goto cleanup;
2582
0
    }
2583
2584
0
    if (verbose != 0) {
2585
0
        mbedtls_printf("passed\n");
2586
0
    }
2587
2588
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
2589
2590
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2591
0
                                            "256567336059E52CAE22925474705F39A94"));
2592
2593
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2594
0
                                            "6613F26162223DF488E9CD48CC132C7A" \
2595
0
                                            "0AC93C701B001B092E4E5B9F73BCD27B" \
2596
0
                                            "9EE50D0657C77F374E903CDFA4C642"));
2597
2598
0
    if (verbose != 0) {
2599
0
        mbedtls_printf("  MPI test #2 (div_mpi): ");
2600
0
    }
2601
2602
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2603
0
        mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2604
0
        if (verbose != 0) {
2605
0
            mbedtls_printf("failed\n");
2606
0
        }
2607
2608
0
        ret = 1;
2609
0
        goto cleanup;
2610
0
    }
2611
2612
0
    if (verbose != 0) {
2613
0
        mbedtls_printf("passed\n");
2614
0
    }
2615
2616
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
2617
2618
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2619
0
                                            "36E139AEA55215609D2816998ED020BB" \
2620
0
                                            "BD96C37890F65171D948E9BC7CBAA4D9" \
2621
0
                                            "325D24D6A3C12710F10A09FA08AB87"));
2622
2623
0
    if (verbose != 0) {
2624
0
        mbedtls_printf("  MPI test #3 (exp_mod): ");
2625
0
    }
2626
2627
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2628
0
        if (verbose != 0) {
2629
0
            mbedtls_printf("failed\n");
2630
0
        }
2631
2632
0
        ret = 1;
2633
0
        goto cleanup;
2634
0
    }
2635
2636
0
    if (verbose != 0) {
2637
0
        mbedtls_printf("passed\n");
2638
0
    }
2639
2640
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
2641
2642
0
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2643
0
                                            "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2644
0
                                            "C3DBA76456363A10869622EAC2DD84EC" \
2645
0
                                            "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
2646
2647
0
    if (verbose != 0) {
2648
0
        mbedtls_printf("  MPI test #4 (inv_mod): ");
2649
0
    }
2650
2651
0
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2652
0
        if (verbose != 0) {
2653
0
            mbedtls_printf("failed\n");
2654
0
        }
2655
2656
0
        ret = 1;
2657
0
        goto cleanup;
2658
0
    }
2659
2660
0
    if (verbose != 0) {
2661
0
        mbedtls_printf("passed\n");
2662
0
    }
2663
2664
0
    if (verbose != 0) {
2665
0
        mbedtls_printf("  MPI test #5 (simple gcd): ");
2666
0
    }
2667
2668
0
    for (i = 0; i < GCD_PAIR_COUNT; i++) {
2669
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2670
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
2671
2672
0
        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
2673
2674
0
        if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2675
0
            if (verbose != 0) {
2676
0
                mbedtls_printf("failed at %d\n", i);
2677
0
            }
2678
2679
0
            ret = 1;
2680
0
            goto cleanup;
2681
0
        }
2682
0
    }
2683
2684
0
    if (verbose != 0) {
2685
0
        mbedtls_printf("passed\n");
2686
0
    }
2687
2688
0
cleanup:
2689
2690
0
    if (ret != 0 && verbose != 0) {
2691
0
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2692
0
    }
2693
2694
0
    mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2695
0
    mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
2696
2697
0
    if (verbose != 0) {
2698
0
        mbedtls_printf("\n");
2699
0
    }
2700
2701
0
    return ret;
2702
0
}
2703
2704
#endif /* MBEDTLS_SELF_TEST */
2705
2706
#endif /* MBEDTLS_BIGNUM_C */