Coverage Report

Created: 2024-08-25 12:19

/src/libpcap/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
#include <limits.h> /* for SIZE_MAX */
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
#include "diag-control.h"
43
44
#ifdef HAVE_OS_PROTO_H
45
#include "os-proto.h"
46
#endif
47
48
#ifdef BDEBUG
49
/*
50
 * The internal "debug printout" flag for the filter expression optimizer.
51
 * The code to print that stuff is present only if BDEBUG is defined, so
52
 * the flag, and the routine to set it, are defined only if BDEBUG is
53
 * defined.
54
 */
55
static int pcap_optimizer_debug;
56
57
/*
58
 * Routine to set that flag.
59
 *
60
 * This is intended for libpcap developers, not for general use.
61
 * If you want to set these in a program, you'll have to declare this
62
 * routine yourself, with the appropriate DLL import attribute on Windows;
63
 * it's not declared in any header file, and won't be declared in any
64
 * header file provided by libpcap.
65
 */
66
PCAP_API void pcap_set_optimizer_debug(int value);
67
68
PCAP_API_DEF void
69
pcap_set_optimizer_debug(int value)
70
{
71
  pcap_optimizer_debug = value;
72
}
73
74
/*
75
 * The internal "print dot graph" flag for the filter expression optimizer.
76
 * The code to print that stuff is present only if BDEBUG is defined, so
77
 * the flag, and the routine to set it, are defined only if BDEBUG is
78
 * defined.
79
 */
80
static int pcap_print_dot_graph;
81
82
/*
83
 * Routine to set that flag.
84
 *
85
 * This is intended for libpcap developers, not for general use.
86
 * If you want to set these in a program, you'll have to declare this
87
 * routine yourself, with the appropriate DLL import attribute on Windows;
88
 * it's not declared in any header file, and won't be declared in any
89
 * header file provided by libpcap.
90
 */
91
PCAP_API void pcap_set_print_dot_graph(int value);
92
93
PCAP_API_DEF void
94
pcap_set_print_dot_graph(int value)
95
{
96
  pcap_print_dot_graph = value;
97
}
98
99
#endif
100
101
/*
102
 * lowest_set_bit().
103
 *
104
 * Takes a 32-bit integer as an argument.
105
 *
106
 * If handed a non-zero value, returns the index of the lowest set bit,
107
 * counting upwards from zero.
108
 *
109
 * If handed zero, the results are platform- and compiler-dependent.
110
 * Keep it out of the light, don't give it any water, don't feed it
111
 * after midnight, and don't pass zero to it.
112
 *
113
 * This is the same as the count of trailing zeroes in the word.
114
 */
115
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116
  /*
117
   * GCC 3.4 and later; we have __builtin_ctz().
118
   */
119
2.80M
  #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120
#elif defined(_MSC_VER)
121
  /*
122
   * Visual Studio; we support only 2005 and later, so use
123
   * _BitScanForward().
124
   */
125
#include <intrin.h>
126
127
#ifndef __clang__
128
#pragma intrinsic(_BitScanForward)
129
#endif
130
131
static __forceinline u_int
132
lowest_set_bit(int mask)
133
{
134
  unsigned long bit;
135
136
  /*
137
   * Don't sign-extend mask if long is longer than int.
138
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139
   */
140
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141
    abort();  /* mask is zero */
142
  return (u_int)bit;
143
}
144
#elif defined(MSDOS) && defined(__DJGPP__)
145
  /*
146
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
147
   * we've already included.
148
   */
149
  #define lowest_set_bit(mask)  ((u_int)(ffs((mask)) - 1))
150
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151
  /*
152
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
153
   * or some other platform (UN*X conforming to a sufficient recent version
154
   * of the Single UNIX Specification).
155
   */
156
  #include <strings.h>
157
  #define lowest_set_bit(mask)  (u_int)((ffs((mask)) - 1))
158
#else
159
/*
160
 * None of the above.
161
 * Use a perfect-hash-function-based function.
162
 */
163
static u_int
164
lowest_set_bit(int mask)
165
{
166
  unsigned int v = (unsigned int)mask;
167
168
  static const u_int MultiplyDeBruijnBitPosition[32] = {
169
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
170
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
171
  };
172
173
  /*
174
   * We strip off all but the lowermost set bit (v & ~v),
175
   * and perform a minimal perfect hash on it to look up the
176
   * number of low-order zero bits in a table.
177
   *
178
   * See:
179
   *
180
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181
   *
182
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
183
   */
184
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
185
}
186
#endif
187
188
/*
189
 * Represents a deleted instruction.
190
 */
191
30.0M
#define NOP -1
192
193
/*
194
 * Register numbers for use-def values.
195
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
196
 * location.  A_ATOM is the accumulator and X_ATOM is the index
197
 * register.
198
 */
199
18.0M
#define A_ATOM BPF_MEMWORDS
200
3.42M
#define X_ATOM (BPF_MEMWORDS+1)
201
202
/*
203
 * This define is used to represent *both* the accumulator and
204
 * x register in use-def computations.
205
 * Currently, the use-def code assumes only one definition per instruction.
206
 */
207
5.16M
#define AX_ATOM N_ATOMS
208
209
/*
210
 * These data structures are used in a Cocke and Shwarz style
211
 * value numbering scheme.  Since the flowgraph is acyclic,
212
 * exit values can be propagated from a node's predecessors
213
 * provided it is uniquely defined.
214
 */
215
struct valnode {
216
  int code;
217
  bpf_u_int32 v0, v1;
218
  int val;    /* the value number */
219
  struct valnode *next;
220
};
221
222
/* Integer constants mapped with the load immediate opcode. */
223
1.62M
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
224
225
struct vmapinfo {
226
  int is_const;
227
  bpf_u_int32 const_val;
228
};
229
230
typedef struct {
231
  /*
232
   * Place to longjmp to on an error.
233
   */
234
  jmp_buf top_ctx;
235
236
  /*
237
   * The buffer into which to put error message.
238
   */
239
  char *errbuf;
240
241
  /*
242
   * A flag to indicate that further optimization is needed.
243
   * Iterative passes are continued until a given pass yields no
244
   * code simplification or branch movement.
245
   */
246
  int done;
247
248
  /*
249
   * XXX - detect loops that do nothing but repeated AND/OR pullups
250
   * and edge moves.
251
   * If 100 passes in a row do nothing but that, treat that as a
252
   * sign that we're in a loop that just shuffles in a cycle in
253
   * which each pass just shuffles the code and we eventually
254
   * get back to the original configuration.
255
   *
256
   * XXX - we need a non-heuristic way of detecting, or preventing,
257
   * such a cycle.
258
   */
259
  int non_branch_movement_performed;
260
261
  u_int n_blocks;   /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
262
  struct block **blocks;
263
  u_int n_edges;    /* twice n_blocks, so guaranteed to be > 0 */
264
  struct edge **edges;
265
266
  /*
267
   * A bit vector set representation of the dominators.
268
   * We round up the set size to the next power of two.
269
   */
270
  u_int nodewords;  /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
271
  u_int edgewords;  /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
272
  struct block **levels;
273
  bpf_u_int32 *space;
274
275
11.8M
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276
/*
277
 * True if a is in uset {p}
278
 */
279
851k
#define SET_MEMBER(p, a) \
280
851k
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
281
282
/*
283
 * Add 'a' to uset p.
284
 */
285
3.66M
#define SET_INSERT(p, a) \
286
3.66M
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
287
288
/*
289
 * Delete 'a' from uset p.
290
 */
291
#define SET_DELETE(p, a) \
292
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
293
294
/*
295
 * a := a intersect b
296
 * n must be guaranteed to be > 0
297
 */
298
4.54M
#define SET_INTERSECT(a, b, n)\
299
4.54M
{\
300
4.54M
  register bpf_u_int32 *_x = a, *_y = b;\
301
4.54M
  register u_int _n = n;\
302
16.6M
  do *_x++ &= *_y++; while (--_n != 0);\
303
4.54M
}
304
305
/*
306
 * a := a - b
307
 * n must be guaranteed to be > 0
308
 */
309
#define SET_SUBTRACT(a, b, n)\
310
{\
311
  register bpf_u_int32 *_x = a, *_y = b;\
312
  register u_int _n = n;\
313
  do *_x++ &=~ *_y++; while (--_n != 0);\
314
}
315
316
/*
317
 * a := a union b
318
 * n must be guaranteed to be > 0
319
 */
320
1.51M
#define SET_UNION(a, b, n)\
321
1.51M
{\
322
1.51M
  register bpf_u_int32 *_x = a, *_y = b;\
323
1.51M
  register u_int _n = n;\
324
3.67M
  do *_x++ |= *_y++; while (--_n != 0);\
325
1.51M
}
326
327
  uset all_dom_sets;
328
  uset all_closure_sets;
329
  uset all_edge_sets;
330
331
2.68M
#define MODULUS 213
332
  struct valnode *hashtbl[MODULUS];
333
  bpf_u_int32 curval;
334
  bpf_u_int32 maxval;
335
336
  struct vmapinfo *vmap;
337
  struct valnode *vnode_base;
338
  struct valnode *next_vnode;
339
} opt_state_t;
340
341
typedef struct {
342
  /*
343
   * Place to longjmp to on an error.
344
   */
345
  jmp_buf top_ctx;
346
347
  /*
348
   * The buffer into which to put error message.
349
   */
350
  char *errbuf;
351
352
  /*
353
   * Some pointers used to convert the basic block form of the code,
354
   * into the array form that BPF requires.  'fstart' will point to
355
   * the malloc'd array while 'ftail' is used during the recursive
356
   * traversal.
357
   */
358
  struct bpf_insn *fstart;
359
  struct bpf_insn *ftail;
360
} conv_state_t;
361
362
static void opt_init(opt_state_t *, struct icode *);
363
static void opt_cleanup(opt_state_t *);
364
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
365
    PCAP_PRINTFLIKE(2, 3);
366
367
static void intern_blocks(opt_state_t *, struct icode *);
368
369
static void find_inedges(opt_state_t *, struct block *);
370
#ifdef BDEBUG
371
static void opt_dump(opt_state_t *, struct icode *);
372
#endif
373
374
#ifndef MAX
375
756k
#define MAX(a,b) ((a)>(b)?(a):(b))
376
#endif
377
378
static void
379
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
380
1.60M
{
381
1.60M
  int level;
382
383
1.60M
  if (isMarked(ic, b))
384
689k
    return;
385
386
916k
  Mark(ic, b);
387
916k
  b->link = 0;
388
389
916k
  if (JT(b)) {
390
756k
    find_levels_r(opt_state, ic, JT(b));
391
756k
    find_levels_r(opt_state, ic, JF(b));
392
756k
    level = MAX(JT(b)->level, JF(b)->level) + 1;
393
756k
  } else
394
159k
    level = 0;
395
916k
  b->level = level;
396
916k
  b->link = opt_state->levels[level];
397
916k
  opt_state->levels[level] = b;
398
916k
}
399
400
/*
401
 * Level graph.  The levels go from 0 at the leaves to
402
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
403
 * first node of the level list, whose elements are linked
404
 * with the 'link' field of the struct block.
405
 */
406
static void
407
find_levels(opt_state_t *opt_state, struct icode *ic)
408
92.9k
{
409
92.9k
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
410
92.9k
  unMarkAll(ic);
411
92.9k
  find_levels_r(opt_state, ic, ic->root);
412
92.9k
}
413
414
/*
415
 * Find dominator relationships.
416
 * Assumes graph has been leveled.
417
 */
418
static void
419
find_dom(opt_state_t *opt_state, struct block *root)
420
92.9k
{
421
92.9k
  u_int i;
422
92.9k
  int level;
423
92.9k
  struct block *b;
424
92.9k
  bpf_u_int32 *x;
425
426
  /*
427
   * Initialize sets to contain all nodes.
428
   */
429
92.9k
  x = opt_state->all_dom_sets;
430
  /*
431
   * In opt_init(), we've made sure the product doesn't overflow.
432
   */
433
92.9k
  i = opt_state->n_blocks * opt_state->nodewords;
434
4.52M
  while (i != 0) {
435
4.43M
    --i;
436
4.43M
    *x++ = 0xFFFFFFFFU;
437
4.43M
  }
438
  /* Root starts off empty. */
439
214k
  for (i = opt_state->nodewords; i != 0;) {
440
121k
    --i;
441
121k
    root->dom[i] = 0;
442
121k
  }
443
444
  /* root->level is the highest level no found. */
445
878k
  for (level = root->level; level >= 0; --level) {
446
1.70M
    for (b = opt_state->levels[level]; b; b = b->link) {
447
916k
      SET_INSERT(b->dom, b->id);
448
916k
      if (JT(b) == 0)
449
159k
        continue;
450
756k
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
451
756k
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
452
756k
    }
453
785k
  }
454
92.9k
}
455
456
static void
457
propedom(opt_state_t *opt_state, struct edge *ep)
458
1.83M
{
459
1.83M
  SET_INSERT(ep->edom, ep->id);
460
1.83M
  if (ep->succ) {
461
1.51M
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
462
1.51M
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
463
1.51M
  }
464
1.83M
}
465
466
/*
467
 * Compute edge dominators.
468
 * Assumes graph has been leveled and predecessors established.
469
 */
470
static void
471
find_edom(opt_state_t *opt_state, struct block *root)
472
92.9k
{
473
92.9k
  u_int i;
474
92.9k
  uset x;
475
92.9k
  int level;
476
92.9k
  struct block *b;
477
478
92.9k
  x = opt_state->all_edge_sets;
479
  /*
480
   * In opt_init(), we've made sure the product doesn't overflow.
481
   */
482
15.7M
  for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
483
15.6M
    --i;
484
15.6M
    x[i] = 0xFFFFFFFFU;
485
15.6M
  }
486
487
  /* root->level is the highest level no found. */
488
92.9k
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
489
92.9k
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
490
878k
  for (level = root->level; level >= 0; --level) {
491
1.70M
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
492
916k
      propedom(opt_state, &b->et);
493
916k
      propedom(opt_state, &b->ef);
494
916k
    }
495
785k
  }
496
92.9k
}
497
498
/*
499
 * Find the backwards transitive closure of the flow graph.  These sets
500
 * are backwards in the sense that we find the set of nodes that reach
501
 * a given node, not the set of nodes that can be reached by a node.
502
 *
503
 * Assumes graph has been leveled.
504
 */
505
static void
506
find_closure(opt_state_t *opt_state, struct block *root)
507
92.9k
{
508
92.9k
  int level;
509
92.9k
  struct block *b;
510
511
  /*
512
   * Initialize sets to contain no nodes.
513
   */
514
92.9k
  memset((char *)opt_state->all_closure_sets, 0,
515
92.9k
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
516
517
  /* root->level is the highest level no found. */
518
878k
  for (level = root->level; level >= 0; --level) {
519
1.70M
    for (b = opt_state->levels[level]; b; b = b->link) {
520
916k
      SET_INSERT(b->closure, b->id);
521
916k
      if (JT(b) == 0)
522
159k
        continue;
523
756k
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
524
756k
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
525
756k
    }
526
785k
  }
527
92.9k
}
528
529
/*
530
 * Return the register number that is used by s.
531
 *
532
 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
533
 * are used, the scratch memory location's number if a scratch memory
534
 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
535
 *
536
 * The implementation should probably change to an array access.
537
 */
538
static int
539
atomuse(struct stmt *s)
540
8.17M
{
541
8.17M
  register int c = s->code;
542
543
8.17M
  if (c == NOP)
544
1.21M
    return -1;
545
546
6.96M
  switch (BPF_CLASS(c)) {
547
548
98.5k
  case BPF_RET:
549
98.5k
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
550
98.5k
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
551
552
2.74M
  case BPF_LD:
553
3.14M
  case BPF_LDX:
554
    /*
555
     * As there are fewer than 2^31 memory locations,
556
     * s->k should be convertible to int without problems.
557
     */
558
3.14M
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
559
3.14M
      (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
560
561
943k
  case BPF_ST:
562
943k
    return A_ATOM;
563
564
0
  case BPF_STX:
565
0
    return X_ATOM;
566
567
1.50M
  case BPF_JMP:
568
2.44M
  case BPF_ALU:
569
2.44M
    if (BPF_SRC(c) == BPF_X)
570
476k
      return AX_ATOM;
571
1.96M
    return A_ATOM;
572
573
327k
  case BPF_MISC:
574
327k
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
575
6.96M
  }
576
0
  abort();
577
  /* NOTREACHED */
578
6.96M
}
579
580
/*
581
 * Return the register number that is defined by 's'.  We assume that
582
 * a single stmt cannot define more than one register.  If no register
583
 * is defined, return -1.
584
 *
585
 * The implementation should probably change to an array access.
586
 */
587
static int
588
atomdef(struct stmt *s)
589
7.42M
{
590
7.42M
  if (s->code == NOP)
591
1.21M
    return -1;
592
593
6.20M
  switch (BPF_CLASS(s->code)) {
594
595
2.74M
  case BPF_LD:
596
3.68M
  case BPF_ALU:
597
3.68M
    return A_ATOM;
598
599
402k
  case BPF_LDX:
600
402k
    return X_ATOM;
601
602
943k
  case BPF_ST:
603
943k
  case BPF_STX:
604
943k
    return s->k;
605
606
327k
  case BPF_MISC:
607
327k
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
608
6.20M
  }
609
843k
  return -1;
610
6.20M
}
611
612
/*
613
 * Compute the sets of registers used, defined, and killed by 'b'.
614
 *
615
 * "Used" means that a statement in 'b' uses the register before any
616
 * statement in 'b' defines it, i.e. it uses the value left in
617
 * that register by a predecessor block of this block.
618
 * "Defined" means that a statement in 'b' defines it.
619
 * "Killed" means that a statement in 'b' defines it before any
620
 * statement in 'b' uses it, i.e. it kills the value left in that
621
 * register by a predecessor block of this block.
622
 */
623
static void
624
compute_local_ud(struct block *b)
625
916k
{
626
916k
  struct slist *s;
627
916k
  atomset def = 0, use = 0, killed = 0;
628
916k
  int atom;
629
630
4.79M
  for (s = b->stmts; s; s = s->next) {
631
3.88M
    if (s->s.code == NOP)
632
1.12M
      continue;
633
2.75M
    atom = atomuse(&s->s);
634
2.75M
    if (atom >= 0) {
635
1.69M
      if (atom == AX_ATOM) {
636
228k
        if (!ATOMELEM(def, X_ATOM))
637
0
          use |= ATOMMASK(X_ATOM);
638
228k
        if (!ATOMELEM(def, A_ATOM))
639
0
          use |= ATOMMASK(A_ATOM);
640
228k
      }
641
1.46M
      else if (atom < N_ATOMS) {
642
1.46M
        if (!ATOMELEM(def, atom))
643
52.8k
          use |= ATOMMASK(atom);
644
1.46M
      }
645
0
      else
646
0
        abort();
647
1.69M
    }
648
2.75M
    atom = atomdef(&s->s);
649
2.75M
    if (atom >= 0) {
650
2.75M
      if (!ATOMELEM(use, atom))
651
2.75M
        killed |= ATOMMASK(atom);
652
2.75M
      def |= ATOMMASK(atom);
653
2.75M
    }
654
2.75M
  }
655
916k
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
656
    /*
657
     * XXX - what about RET?
658
     */
659
756k
    atom = atomuse(&b->s);
660
756k
    if (atom >= 0) {
661
756k
      if (atom == AX_ATOM) {
662
44.8k
        if (!ATOMELEM(def, X_ATOM))
663
602
          use |= ATOMMASK(X_ATOM);
664
44.8k
        if (!ATOMELEM(def, A_ATOM))
665
602
          use |= ATOMMASK(A_ATOM);
666
44.8k
      }
667
711k
      else if (atom < N_ATOMS) {
668
711k
        if (!ATOMELEM(def, atom))
669
17.5k
          use |= ATOMMASK(atom);
670
711k
      }
671
0
      else
672
0
        abort();
673
756k
    }
674
756k
  }
675
676
916k
  b->def = def;
677
916k
  b->kill = killed;
678
916k
  b->in_use = use;
679
916k
}
680
681
/*
682
 * Assume graph is already leveled.
683
 */
684
static void
685
find_ud(opt_state_t *opt_state, struct block *root)
686
92.9k
{
687
92.9k
  int i, maxlevel;
688
92.9k
  struct block *p;
689
690
  /*
691
   * root->level is the highest level no found;
692
   * count down from there.
693
   */
694
92.9k
  maxlevel = root->level;
695
878k
  for (i = maxlevel; i >= 0; --i)
696
1.70M
    for (p = opt_state->levels[i]; p; p = p->link) {
697
916k
      compute_local_ud(p);
698
916k
      p->out_use = 0;
699
916k
    }
700
701
785k
  for (i = 1; i <= maxlevel; ++i) {
702
1.44M
    for (p = opt_state->levels[i]; p; p = p->link) {
703
756k
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
704
756k
      p->in_use |= p->out_use &~ p->kill;
705
756k
    }
706
692k
  }
707
92.9k
}
708
static void
709
init_val(opt_state_t *opt_state)
710
92.9k
{
711
92.9k
  opt_state->curval = 0;
712
92.9k
  opt_state->next_vnode = opt_state->vnode_base;
713
92.9k
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
714
92.9k
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
715
92.9k
}
716
717
/*
718
 * Because we really don't have an IR, this stuff is a little messy.
719
 *
720
 * This routine looks in the table of existing value number for a value
721
 * with generated from an operation with the specified opcode and
722
 * the specified values.  If it finds it, it returns its value number,
723
 * otherwise it makes a new entry in the table and returns the
724
 * value number of that entry.
725
 */
726
static bpf_u_int32
727
F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
728
2.68M
{
729
2.68M
  u_int hash;
730
2.68M
  bpf_u_int32 val;
731
2.68M
  struct valnode *p;
732
733
2.68M
  hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
734
2.68M
  hash %= MODULUS;
735
736
2.85M
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
737
1.67M
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
738
1.51M
      return p->val;
739
740
  /*
741
   * Not found.  Allocate a new value, and assign it a new
742
   * value number.
743
   *
744
   * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
745
   * increment it before using it as the new value number, which
746
   * means we never assign VAL_UNKNOWN.
747
   *
748
   * XXX - unless we overflow, but we probably won't have 2^32-1
749
   * values; we treat 32 bits as effectively infinite.
750
   */
751
1.17M
  val = ++opt_state->curval;
752
1.17M
  if (BPF_MODE(code) == BPF_IMM &&
753
1.17M
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
754
690k
    opt_state->vmap[val].const_val = v0;
755
690k
    opt_state->vmap[val].is_const = 1;
756
690k
  }
757
1.17M
  p = opt_state->next_vnode++;
758
1.17M
  p->val = val;
759
1.17M
  p->code = code;
760
1.17M
  p->v0 = v0;
761
1.17M
  p->v1 = v1;
762
1.17M
  p->next = opt_state->hashtbl[hash];
763
1.17M
  opt_state->hashtbl[hash] = p;
764
765
1.17M
  return val;
766
2.68M
}
767
768
static inline void
769
vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
770
2.23M
{
771
2.23M
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
772
118k
    s->code = NOP;
773
2.12M
  else
774
2.12M
    *valp = newval;
775
2.23M
}
776
777
/*
778
 * Do constant-folding on binary operators.
779
 * (Unary operators are handled elsewhere.)
780
 */
781
static void
782
fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
783
50.5k
{
784
50.5k
  bpf_u_int32 a, b;
785
786
50.5k
  a = opt_state->vmap[v0].const_val;
787
50.5k
  b = opt_state->vmap[v1].const_val;
788
789
50.5k
  switch (BPF_OP(s->code)) {
790
10.1k
  case BPF_ADD:
791
10.1k
    a += b;
792
10.1k
    break;
793
794
2.45k
  case BPF_SUB:
795
2.45k
    a -= b;
796
2.45k
    break;
797
798
6.24k
  case BPF_MUL:
799
6.24k
    a *= b;
800
6.24k
    break;
801
802
6.96k
  case BPF_DIV:
803
6.96k
    if (b == 0)
804
63
      opt_error(opt_state, "division by zero");
805
6.90k
    a /= b;
806
6.90k
    break;
807
808
4.67k
  case BPF_MOD:
809
4.67k
    if (b == 0)
810
359
      opt_error(opt_state, "modulus by zero");
811
4.31k
    a %= b;
812
4.31k
    break;
813
814
9.47k
  case BPF_AND:
815
9.47k
    a &= b;
816
9.47k
    break;
817
818
5.93k
  case BPF_OR:
819
5.93k
    a |= b;
820
5.93k
    break;
821
822
634
  case BPF_XOR:
823
634
    a ^= b;
824
634
    break;
825
826
3.03k
  case BPF_LSH:
827
    /*
828
     * A left shift of more than the width of the type
829
     * is undefined in C; we'll just treat it as shifting
830
     * all the bits out.
831
     *
832
     * XXX - the BPF interpreter doesn't check for this,
833
     * so its behavior is dependent on the behavior of
834
     * the processor on which it's running.  There are
835
     * processors on which it shifts all the bits out
836
     * and processors on which it does no shift.
837
     */
838
3.03k
    if (b < 32)
839
2.85k
      a <<= b;
840
181
    else
841
181
      a = 0;
842
3.03k
    break;
843
844
973
  case BPF_RSH:
845
    /*
846
     * A right shift of more than the width of the type
847
     * is undefined in C; we'll just treat it as shifting
848
     * all the bits out.
849
     *
850
     * XXX - the BPF interpreter doesn't check for this,
851
     * so its behavior is dependent on the behavior of
852
     * the processor on which it's running.  There are
853
     * processors on which it shifts all the bits out
854
     * and processors on which it does no shift.
855
     */
856
973
    if (b < 32)
857
673
      a >>= b;
858
300
    else
859
300
      a = 0;
860
973
    break;
861
862
0
  default:
863
0
    abort();
864
50.5k
  }
865
50.1k
  s->k = a;
866
50.1k
  s->code = BPF_LD|BPF_IMM;
867
  /*
868
   * XXX - optimizer loop detection.
869
   */
870
50.1k
  opt_state->non_branch_movement_performed = 1;
871
50.1k
  opt_state->done = 0;
872
50.1k
}
873
874
static inline struct slist *
875
this_op(struct slist *s)
876
5.23M
{
877
6.45M
  while (s != 0 && s->s.code == NOP)
878
1.21M
    s = s->next;
879
5.23M
  return s;
880
5.23M
}
881
882
static void
883
opt_not(struct block *b)
884
612
{
885
612
  struct block *tmp = JT(b);
886
887
612
  JT(b) = JF(b);
888
612
  JF(b) = tmp;
889
612
}
890
891
static void
892
opt_peep(opt_state_t *opt_state, struct block *b)
893
843k
{
894
843k
  struct slist *s;
895
843k
  struct slist *next, *last;
896
843k
  bpf_u_int32 val;
897
898
843k
  s = b->stmts;
899
843k
  if (s == 0)
900
107k
    return;
901
902
735k
  last = s;
903
2.63M
  for (/*empty*/; /*empty*/; s = next) {
904
    /*
905
     * Skip over nops.
906
     */
907
2.63M
    s = this_op(s);
908
2.63M
    if (s == 0)
909
22.1k
      break;  /* nothing left in the block */
910
911
    /*
912
     * Find the next real instruction after that one
913
     * (skipping nops).
914
     */
915
2.60M
    next = this_op(s->next);
916
2.60M
    if (next == 0)
917
713k
      break;  /* no next instruction */
918
1.89M
    last = next;
919
920
    /*
921
     * st  M[k] --> st  M[k]
922
     * ldx M[k]   tax
923
     */
924
1.89M
    if (s->s.code == BPF_ST &&
925
1.89M
        next->s.code == (BPF_LDX|BPF_MEM) &&
926
1.89M
        s->s.k == next->s.k) {
927
      /*
928
       * XXX - optimizer loop detection.
929
       */
930
70.6k
      opt_state->non_branch_movement_performed = 1;
931
70.6k
      opt_state->done = 0;
932
70.6k
      next->s.code = BPF_MISC|BPF_TAX;
933
70.6k
    }
934
    /*
935
     * ld  #k --> ldx  #k
936
     * tax      txa
937
     */
938
1.89M
    if (s->s.code == (BPF_LD|BPF_IMM) &&
939
1.89M
        next->s.code == (BPF_MISC|BPF_TAX)) {
940
53.8k
      s->s.code = BPF_LDX|BPF_IMM;
941
53.8k
      next->s.code = BPF_MISC|BPF_TXA;
942
      /*
943
       * XXX - optimizer loop detection.
944
       */
945
53.8k
      opt_state->non_branch_movement_performed = 1;
946
53.8k
      opt_state->done = 0;
947
53.8k
    }
948
    /*
949
     * This is an ugly special case, but it happens
950
     * when you say tcp[k] or udp[k] where k is a constant.
951
     */
952
1.89M
    if (s->s.code == (BPF_LD|BPF_IMM)) {
953
361k
      struct slist *add, *tax, *ild;
954
955
      /*
956
       * Check that X isn't used on exit from this
957
       * block (which the optimizer might cause).
958
       * We know the code generator won't generate
959
       * any local dependencies.
960
       */
961
361k
      if (ATOMELEM(b->out_use, X_ATOM))
962
907
        continue;
963
964
      /*
965
       * Check that the instruction following the ldi
966
       * is an addx, or it's an ldxms with an addx
967
       * following it (with 0 or more nops between the
968
       * ldxms and addx).
969
       */
970
360k
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
971
360k
        add = next;
972
0
      else
973
0
        add = this_op(next->next);
974
360k
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
975
360k
        continue;
976
977
      /*
978
       * Check that a tax follows that (with 0 or more
979
       * nops between them).
980
       */
981
0
      tax = this_op(add->next);
982
0
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
983
0
        continue;
984
985
      /*
986
       * Check that an ild follows that (with 0 or more
987
       * nops between them).
988
       */
989
0
      ild = this_op(tax->next);
990
0
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
991
0
          BPF_MODE(ild->s.code) != BPF_IND)
992
0
        continue;
993
      /*
994
       * We want to turn this sequence:
995
       *
996
       * (004) ldi     #0x2   {s}
997
       * (005) ldxms   [14]   {next}  -- optional
998
       * (006) addx     {add}
999
       * (007) tax      {tax}
1000
       * (008) ild     [x+0]    {ild}
1001
       *
1002
       * into this sequence:
1003
       *
1004
       * (004) nop
1005
       * (005) ldxms   [14]
1006
       * (006) nop
1007
       * (007) nop
1008
       * (008) ild     [x+2]
1009
       *
1010
       * XXX We need to check that X is not
1011
       * subsequently used, because we want to change
1012
       * what'll be in it after this sequence.
1013
       *
1014
       * We know we can eliminate the accumulator
1015
       * modifications earlier in the sequence since
1016
       * it is defined by the last stmt of this sequence
1017
       * (i.e., the last statement of the sequence loads
1018
       * a value into the accumulator, so we can eliminate
1019
       * earlier operations on the accumulator).
1020
       */
1021
0
      ild->s.k += s->s.k;
1022
0
      s->s.code = NOP;
1023
0
      add->s.code = NOP;
1024
0
      tax->s.code = NOP;
1025
      /*
1026
       * XXX - optimizer loop detection.
1027
       */
1028
0
      opt_state->non_branch_movement_performed = 1;
1029
0
      opt_state->done = 0;
1030
0
    }
1031
1.89M
  }
1032
  /*
1033
   * If the comparison at the end of a block is an equality
1034
   * comparison against a constant, and nobody uses the value
1035
   * we leave in the A register at the end of a block, and
1036
   * the operation preceding the comparison is an arithmetic
1037
   * operation, we can sometime optimize it away.
1038
   */
1039
735k
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1040
735k
      !ATOMELEM(b->out_use, A_ATOM)) {
1041
    /*
1042
     * We can optimize away certain subtractions of the
1043
     * X register.
1044
     */
1045
630k
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1046
4.00k
      val = b->val[X_ATOM];
1047
4.00k
      if (opt_state->vmap[val].is_const) {
1048
        /*
1049
         * If we have a subtract to do a comparison,
1050
         * and the X register is a known constant,
1051
         * we can merge this value into the
1052
         * comparison:
1053
         *
1054
         * sub x  ->  nop
1055
         * jeq #y jeq #(x+y)
1056
         */
1057
1.49k
        b->s.k += opt_state->vmap[val].const_val;
1058
1.49k
        last->s.code = NOP;
1059
        /*
1060
         * XXX - optimizer loop detection.
1061
         */
1062
1.49k
        opt_state->non_branch_movement_performed = 1;
1063
1.49k
        opt_state->done = 0;
1064
2.50k
      } else if (b->s.k == 0) {
1065
        /*
1066
         * If the X register isn't a constant,
1067
         * and the comparison in the test is
1068
         * against 0, we can compare with the
1069
         * X register, instead:
1070
         *
1071
         * sub x  ->  nop
1072
         * jeq #0 jeq x
1073
         */
1074
2.50k
        last->s.code = NOP;
1075
2.50k
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1076
        /*
1077
         * XXX - optimizer loop detection.
1078
         */
1079
2.50k
        opt_state->non_branch_movement_performed = 1;
1080
2.50k
        opt_state->done = 0;
1081
2.50k
      }
1082
4.00k
    }
1083
    /*
1084
     * Likewise, a constant subtract can be simplified:
1085
     *
1086
     * sub #x ->  nop
1087
     * jeq #y ->  jeq #(x+y)
1088
     */
1089
626k
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1090
0
      last->s.code = NOP;
1091
0
      b->s.k += last->s.k;
1092
      /*
1093
       * XXX - optimizer loop detection.
1094
       */
1095
0
      opt_state->non_branch_movement_performed = 1;
1096
0
      opt_state->done = 0;
1097
0
    }
1098
    /*
1099
     * And, similarly, a constant AND can be simplified
1100
     * if we're testing against 0, i.e.:
1101
     *
1102
     * and #k nop
1103
     * jeq #0  -> jset #k
1104
     */
1105
626k
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1106
626k
        b->s.k == 0) {
1107
612
      b->s.k = last->s.k;
1108
612
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1109
612
      last->s.code = NOP;
1110
      /*
1111
       * XXX - optimizer loop detection.
1112
       */
1113
612
      opt_state->non_branch_movement_performed = 1;
1114
612
      opt_state->done = 0;
1115
612
      opt_not(b);
1116
612
    }
1117
630k
  }
1118
  /*
1119
   * jset #0        ->   never
1120
   * jset #ffffffff ->   always
1121
   */
1122
735k
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1123
2.25k
    if (b->s.k == 0)
1124
120
      JT(b) = JF(b);
1125
2.25k
    if (b->s.k == 0xffffffffU)
1126
0
      JF(b) = JT(b);
1127
2.25k
  }
1128
  /*
1129
   * If we're comparing against the index register, and the index
1130
   * register is a known constant, we can just compare against that
1131
   * constant.
1132
   */
1133
735k
  val = b->val[X_ATOM];
1134
735k
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1135
15.3k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1136
15.3k
    b->s.code &= ~BPF_X;
1137
15.3k
    b->s.k = v;
1138
15.3k
  }
1139
  /*
1140
   * If the accumulator is a known constant, we can compute the
1141
   * comparison result.
1142
   */
1143
735k
  val = b->val[A_ATOM];
1144
735k
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1145
73.5k
    bpf_u_int32 v = opt_state->vmap[val].const_val;
1146
73.5k
    switch (BPF_OP(b->s.code)) {
1147
1148
36.2k
    case BPF_JEQ:
1149
36.2k
      v = v == b->s.k;
1150
36.2k
      break;
1151
1152
17.1k
    case BPF_JGT:
1153
17.1k
      v = v > b->s.k;
1154
17.1k
      break;
1155
1156
20.0k
    case BPF_JGE:
1157
20.0k
      v = v >= b->s.k;
1158
20.0k
      break;
1159
1160
0
    case BPF_JSET:
1161
0
      v &= b->s.k;
1162
0
      break;
1163
1164
0
    default:
1165
0
      abort();
1166
73.5k
    }
1167
73.5k
    if (JF(b) != JT(b)) {
1168
      /*
1169
       * XXX - optimizer loop detection.
1170
       */
1171
37.3k
      opt_state->non_branch_movement_performed = 1;
1172
37.3k
      opt_state->done = 0;
1173
37.3k
    }
1174
73.5k
    if (v)
1175
21.6k
      JF(b) = JT(b);
1176
51.8k
    else
1177
51.8k
      JT(b) = JF(b);
1178
73.5k
  }
1179
735k
}
1180
1181
/*
1182
 * Compute the symbolic value of expression of 's', and update
1183
 * anything it defines in the value table 'val'.  If 'alter' is true,
1184
 * do various optimizations.  This code would be cleaner if symbolic
1185
 * evaluation and code transformations weren't folded together.
1186
 */
1187
static void
1188
opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1189
3.86M
{
1190
3.86M
  int op;
1191
3.86M
  bpf_u_int32 v;
1192
1193
3.86M
  switch (s->code) {
1194
1195
232k
  case BPF_LD|BPF_ABS|BPF_W:
1196
337k
  case BPF_LD|BPF_ABS|BPF_H:
1197
571k
  case BPF_LD|BPF_ABS|BPF_B:
1198
571k
    v = F(opt_state, s->code, s->k, 0L);
1199
571k
    vstore(s, &val[A_ATOM], v, alter);
1200
571k
    break;
1201
1202
31.4k
  case BPF_LD|BPF_IND|BPF_W:
1203
31.4k
  case BPF_LD|BPF_IND|BPF_H:
1204
52.6k
  case BPF_LD|BPF_IND|BPF_B:
1205
52.6k
    v = val[X_ATOM];
1206
52.6k
    if (alter && opt_state->vmap[v].is_const) {
1207
3.16k
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1208
3.16k
      s->k += opt_state->vmap[v].const_val;
1209
3.16k
      v = F(opt_state, s->code, s->k, 0L);
1210
      /*
1211
       * XXX - optimizer loop detection.
1212
       */
1213
3.16k
      opt_state->non_branch_movement_performed = 1;
1214
3.16k
      opt_state->done = 0;
1215
3.16k
    }
1216
49.4k
    else
1217
49.4k
      v = F(opt_state, s->code, s->k, v);
1218
52.6k
    vstore(s, &val[A_ATOM], v, alter);
1219
52.6k
    break;
1220
1221
0
  case BPF_LD|BPF_LEN:
1222
0
    v = F(opt_state, s->code, 0L, 0L);
1223
0
    vstore(s, &val[A_ATOM], v, alter);
1224
0
    break;
1225
1226
396k
  case BPF_LD|BPF_IMM:
1227
396k
    v = K(s->k);
1228
396k
    vstore(s, &val[A_ATOM], v, alter);
1229
396k
    break;
1230
1231
94.1k
  case BPF_LDX|BPF_IMM:
1232
94.1k
    v = K(s->k);
1233
94.1k
    vstore(s, &val[X_ATOM], v, alter);
1234
94.1k
    break;
1235
1236
0
  case BPF_LDX|BPF_MSH|BPF_B:
1237
0
    v = F(opt_state, s->code, s->k, 0L);
1238
0
    vstore(s, &val[X_ATOM], v, alter);
1239
0
    break;
1240
1241
103k
  case BPF_ALU|BPF_NEG:
1242
103k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1243
24.7k
      s->code = BPF_LD|BPF_IMM;
1244
      /*
1245
       * Do this negation as unsigned arithmetic; that's
1246
       * what modern BPF engines do, and it guarantees
1247
       * that all possible values can be negated.  (Yeah,
1248
       * negating 0x80000000, the minimum signed 32-bit
1249
       * two's-complement value, results in 0x80000000,
1250
       * so it's still negative, but we *should* be doing
1251
       * all unsigned arithmetic here, to match what
1252
       * modern BPF engines do.)
1253
       *
1254
       * Express it as 0U - (unsigned value) so that we
1255
       * don't get compiler warnings about negating an
1256
       * unsigned value and don't get UBSan warnings
1257
       * about the result of negating 0x80000000 being
1258
       * undefined.
1259
       */
1260
24.7k
      s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1261
24.7k
      val[A_ATOM] = K(s->k);
1262
24.7k
    }
1263
78.9k
    else
1264
78.9k
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1265
103k
    break;
1266
1267
6.86k
  case BPF_ALU|BPF_ADD|BPF_K:
1268
6.86k
  case BPF_ALU|BPF_SUB|BPF_K:
1269
6.86k
  case BPF_ALU|BPF_MUL|BPF_K:
1270
6.86k
  case BPF_ALU|BPF_DIV|BPF_K:
1271
6.86k
  case BPF_ALU|BPF_MOD|BPF_K:
1272
179k
  case BPF_ALU|BPF_AND|BPF_K:
1273
179k
  case BPF_ALU|BPF_OR|BPF_K:
1274
179k
  case BPF_ALU|BPF_XOR|BPF_K:
1275
179k
  case BPF_ALU|BPF_LSH|BPF_K:
1276
179k
  case BPF_ALU|BPF_RSH|BPF_K:
1277
179k
    op = BPF_OP(s->code);
1278
179k
    if (alter) {
1279
32.8k
      if (s->k == 0) {
1280
        /*
1281
         * Optimize operations where the constant
1282
         * is zero.
1283
         *
1284
         * Don't optimize away "sub #0"
1285
         * as it may be needed later to
1286
         * fixup the generated math code.
1287
         *
1288
         * Fail if we're dividing by zero or taking
1289
         * a modulus by zero.
1290
         */
1291
0
        if (op == BPF_ADD ||
1292
0
            op == BPF_LSH || op == BPF_RSH ||
1293
0
            op == BPF_OR || op == BPF_XOR) {
1294
0
          s->code = NOP;
1295
0
          break;
1296
0
        }
1297
0
        if (op == BPF_MUL || op == BPF_AND) {
1298
0
          s->code = BPF_LD|BPF_IMM;
1299
0
          val[A_ATOM] = K(s->k);
1300
0
          break;
1301
0
        }
1302
0
        if (op == BPF_DIV)
1303
0
          opt_error(opt_state,
1304
0
              "division by zero");
1305
0
        if (op == BPF_MOD)
1306
0
          opt_error(opt_state,
1307
0
              "modulus by zero");
1308
0
      }
1309
32.8k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1310
0
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1311
0
        val[A_ATOM] = K(s->k);
1312
0
        break;
1313
0
      }
1314
32.8k
    }
1315
179k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1316
179k
    break;
1317
1318
44.7k
  case BPF_ALU|BPF_ADD|BPF_X:
1319
59.1k
  case BPF_ALU|BPF_SUB|BPF_X:
1320
85.5k
  case BPF_ALU|BPF_MUL|BPF_X:
1321
117k
  case BPF_ALU|BPF_DIV|BPF_X:
1322
139k
  case BPF_ALU|BPF_MOD|BPF_X:
1323
180k
  case BPF_ALU|BPF_AND|BPF_X:
1324
206k
  case BPF_ALU|BPF_OR|BPF_X:
1325
209k
  case BPF_ALU|BPF_XOR|BPF_X:
1326
222k
  case BPF_ALU|BPF_LSH|BPF_X:
1327
226k
  case BPF_ALU|BPF_RSH|BPF_X:
1328
226k
    op = BPF_OP(s->code);
1329
226k
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1330
50.5k
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1331
50.5k
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1332
50.5k
        val[A_ATOM] = K(s->k);
1333
50.5k
      }
1334
0
      else {
1335
0
        s->code = BPF_ALU|BPF_K|op;
1336
0
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1337
0
        if ((op == BPF_LSH || op == BPF_RSH) &&
1338
0
            s->k > 31)
1339
0
          opt_error(opt_state,
1340
0
              "shift by more than 31 bits");
1341
        /*
1342
         * XXX - optimizer loop detection.
1343
         */
1344
0
        opt_state->non_branch_movement_performed = 1;
1345
0
        opt_state->done = 0;
1346
0
        val[A_ATOM] =
1347
0
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1348
0
      }
1349
50.5k
      break;
1350
50.5k
    }
1351
    /*
1352
     * Check if we're doing something to an accumulator
1353
     * that is 0, and simplify.  This may not seem like
1354
     * much of a simplification but it could open up further
1355
     * optimizations.
1356
     * XXX We could also check for mul by 1, etc.
1357
     */
1358
176k
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1359
176k
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1360
0
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1361
0
        s->code = BPF_MISC|BPF_TXA;
1362
0
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1363
0
        break;
1364
0
      }
1365
0
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1366
0
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1367
0
        s->code = BPF_LD|BPF_IMM;
1368
0
        s->k = 0;
1369
0
        vstore(s, &val[A_ATOM], K(s->k), alter);
1370
0
        break;
1371
0
      }
1372
0
      else if (op == BPF_NEG) {
1373
0
        s->code = NOP;
1374
0
        break;
1375
0
      }
1376
0
    }
1377
176k
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1378
176k
    break;
1379
1380
1.28k
  case BPF_MISC|BPF_TXA:
1381
1.28k
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1382
1.28k
    break;
1383
1384
395k
  case BPF_LD|BPF_MEM:
1385
395k
    v = val[s->k];
1386
395k
    if (alter && opt_state->vmap[v].is_const) {
1387
90.1k
      s->code = BPF_LD|BPF_IMM;
1388
90.1k
      s->k = opt_state->vmap[v].const_val;
1389
      /*
1390
       * XXX - optimizer loop detection.
1391
       */
1392
90.1k
      opt_state->non_branch_movement_performed = 1;
1393
90.1k
      opt_state->done = 0;
1394
90.1k
    }
1395
395k
    vstore(s, &val[A_ATOM], v, alter);
1396
395k
    break;
1397
1398
129k
  case BPF_MISC|BPF_TAX:
1399
129k
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1400
129k
    break;
1401
1402
121k
  case BPF_LDX|BPF_MEM:
1403
121k
    v = val[s->k];
1404
121k
    if (alter && opt_state->vmap[v].is_const) {
1405
3.16k
      s->code = BPF_LDX|BPF_IMM;
1406
3.16k
      s->k = opt_state->vmap[v].const_val;
1407
      /*
1408
       * XXX - optimizer loop detection.
1409
       */
1410
3.16k
      opt_state->non_branch_movement_performed = 1;
1411
3.16k
      opt_state->done = 0;
1412
3.16k
    }
1413
121k
    vstore(s, &val[X_ATOM], v, alter);
1414
121k
    break;
1415
1416
476k
  case BPF_ST:
1417
476k
    vstore(s, &val[s->k], val[A_ATOM], alter);
1418
476k
    break;
1419
1420
0
  case BPF_STX:
1421
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1422
0
    break;
1423
3.86M
  }
1424
3.86M
}
1425
1426
static void
1427
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1428
4.66M
{
1429
4.66M
  register int atom;
1430
1431
4.66M
  atom = atomuse(s);
1432
4.66M
  if (atom >= 0) {
1433
2.23M
    if (atom == AX_ATOM) {
1434
203k
      last[X_ATOM] = 0;
1435
203k
      last[A_ATOM] = 0;
1436
203k
    }
1437
2.03M
    else
1438
2.03M
      last[atom] = 0;
1439
2.23M
  }
1440
4.66M
  atom = atomdef(s);
1441
4.66M
  if (atom >= 0) {
1442
2.60M
    if (last[atom]) {
1443
      /*
1444
       * XXX - optimizer loop detection.
1445
       */
1446
252k
      opt_state->non_branch_movement_performed = 1;
1447
252k
      opt_state->done = 0;
1448
252k
      last[atom]->code = NOP;
1449
252k
    }
1450
2.60M
    last[atom] = s;
1451
2.60M
  }
1452
4.66M
}
1453
1454
static void
1455
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1456
843k
{
1457
843k
  register struct slist *s;
1458
843k
  register int atom;
1459
843k
  struct stmt *last[N_ATOMS];
1460
1461
843k
  memset((char *)last, 0, sizeof last);
1462
1463
4.66M
  for (s = b->stmts; s != 0; s = s->next)
1464
3.82M
    deadstmt(opt_state, &s->s, last);
1465
843k
  deadstmt(opt_state, &b->s, last);
1466
1467
16.0M
  for (atom = 0; atom < N_ATOMS; ++atom)
1468
15.1M
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1469
100k
      last[atom]->code = NOP;
1470
      /*
1471
       * XXX - optimizer loop detection.
1472
       */
1473
100k
      opt_state->non_branch_movement_performed = 1;
1474
100k
      opt_state->done = 0;
1475
100k
    }
1476
843k
}
1477
1478
static void
1479
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1480
915k
{
1481
915k
  struct slist *s;
1482
915k
  struct edge *p;
1483
915k
  int i;
1484
915k
  bpf_u_int32 aval, xval;
1485
1486
#if 0
1487
  for (s = b->stmts; s && s->next; s = s->next)
1488
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1489
      do_stmts = 0;
1490
      break;
1491
    }
1492
#endif
1493
1494
  /*
1495
   * Initialize the atom values.
1496
   */
1497
915k
  p = b->in_edges;
1498
915k
  if (p == 0) {
1499
    /*
1500
     * We have no predecessors, so everything is undefined
1501
     * upon entry to this block.
1502
     */
1503
92.9k
    memset((char *)b->val, 0, sizeof(b->val));
1504
822k
  } else {
1505
    /*
1506
     * Inherit values from our predecessors.
1507
     *
1508
     * First, get the values from the predecessor along the
1509
     * first edge leading to this node.
1510
     */
1511
822k
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1512
    /*
1513
     * Now look at all the other nodes leading to this node.
1514
     * If, for the predecessor along that edge, a register
1515
     * has a different value from the one we have (i.e.,
1516
     * control paths are merging, and the merging paths
1517
     * assign different values to that register), give the
1518
     * register the undefined value of 0.
1519
     */
1520
1.51M
    while ((p = p->next) != NULL) {
1521
13.0M
      for (i = 0; i < N_ATOMS; ++i)
1522
12.4M
        if (b->val[i] != p->pred->val[i])
1523
746k
          b->val[i] = 0;
1524
688k
    }
1525
822k
  }
1526
915k
  aval = b->val[A_ATOM];
1527
915k
  xval = b->val[X_ATOM];
1528
4.78M
  for (s = b->stmts; s; s = s->next)
1529
3.86M
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1530
1531
  /*
1532
   * This is a special case: if we don't use anything from this
1533
   * block, and we load the accumulator or index register with a
1534
   * value that is already there, or if this block is a return,
1535
   * eliminate all the statements.
1536
   *
1537
   * XXX - what if it does a store?  Presumably that falls under
1538
   * the heading of "if we don't use anything from this block",
1539
   * i.e., if we use any memory location set to a different
1540
   * value by this block, then we use something from this block.
1541
   *
1542
   * XXX - why does it matter whether we use anything from this
1543
   * block?  If the accumulator or index register doesn't change
1544
   * its value, isn't that OK even if we use that value?
1545
   *
1546
   * XXX - if we load the accumulator with a different value,
1547
   * and the block ends with a conditional branch, we obviously
1548
   * can't eliminate it, as the branch depends on that value.
1549
   * For the index register, the conditional branch only depends
1550
   * on the index register value if the test is against the index
1551
   * register value rather than a constant; if nothing uses the
1552
   * value we put into the index register, and we're not testing
1553
   * against the index register's value, and there aren't any
1554
   * other problems that would keep us from eliminating this
1555
   * block, can we eliminate it?
1556
   */
1557
915k
  if (do_stmts &&
1558
915k
      ((b->out_use == 0 &&
1559
248k
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1560
248k
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1561
248k
       BPF_CLASS(b->s.code) == BPF_RET)) {
1562
71.3k
    if (b->stmts != 0) {
1563
8.12k
      b->stmts = 0;
1564
      /*
1565
       * XXX - optimizer loop detection.
1566
       */
1567
8.12k
      opt_state->non_branch_movement_performed = 1;
1568
8.12k
      opt_state->done = 0;
1569
8.12k
    }
1570
843k
  } else {
1571
843k
    opt_peep(opt_state, b);
1572
843k
    opt_deadstores(opt_state, b);
1573
843k
  }
1574
  /*
1575
   * Set up values for branch optimizer.
1576
   */
1577
915k
  if (BPF_SRC(b->s.code) == BPF_K)
1578
882k
    b->oval = K(b->s.k);
1579
32.2k
  else
1580
32.2k
    b->oval = b->val[X_ATOM];
1581
915k
  b->et.code = b->s.code;
1582
915k
  b->ef.code = -b->s.code;
1583
915k
}
1584
1585
/*
1586
 * Return true if any register that is used on exit from 'succ', has
1587
 * an exit value that is different from the corresponding exit value
1588
 * from 'b'.
1589
 */
1590
static int
1591
use_conflict(struct block *b, struct block *succ)
1592
438k
{
1593
438k
  int atom;
1594
438k
  atomset use = succ->out_use;
1595
1596
438k
  if (use == 0)
1597
416k
    return 0;
1598
1599
363k
  for (atom = 0; atom < N_ATOMS; ++atom)
1600
346k
    if (ATOMELEM(use, atom))
1601
22.1k
      if (b->val[atom] != succ->val[atom])
1602
4.71k
        return 1;
1603
17.3k
  return 0;
1604
22.1k
}
1605
1606
/*
1607
 * Given a block that is the successor of an edge, and an edge that
1608
 * dominates that edge, return either a pointer to a child of that
1609
 * block (a block to which that block jumps) if that block is a
1610
 * candidate to replace the successor of the latter edge or NULL
1611
 * if neither of the children of the first block are candidates.
1612
 */
1613
static struct block *
1614
fold_edge(struct block *child, struct edge *ep)
1615
2.80M
{
1616
2.80M
  int sense;
1617
2.80M
  bpf_u_int32 aval0, aval1, oval0, oval1;
1618
2.80M
  int code = ep->code;
1619
1620
2.80M
  if (code < 0) {
1621
    /*
1622
     * This edge is a "branch if false" edge.
1623
     */
1624
1.17M
    code = -code;
1625
1.17M
    sense = 0;
1626
1.62M
  } else {
1627
    /*
1628
     * This edge is a "branch if true" edge.
1629
     */
1630
1.62M
    sense = 1;
1631
1.62M
  }
1632
1633
  /*
1634
   * If the opcode for the branch at the end of the block we
1635
   * were handed isn't the same as the opcode for the branch
1636
   * to which the edge we were handed corresponds, the tests
1637
   * for those branches aren't testing the same conditions,
1638
   * so the blocks to which the first block branches aren't
1639
   * candidates to replace the successor of the edge.
1640
   */
1641
2.80M
  if (child->s.code != code)
1642
740k
    return 0;
1643
1644
2.06M
  aval0 = child->val[A_ATOM];
1645
2.06M
  oval0 = child->oval;
1646
2.06M
  aval1 = ep->pred->val[A_ATOM];
1647
2.06M
  oval1 = ep->pred->oval;
1648
1649
  /*
1650
   * If the A register value on exit from the successor block
1651
   * isn't the same as the A register value on exit from the
1652
   * predecessor of the edge, the blocks to which the first
1653
   * block branches aren't candidates to replace the successor
1654
   * of the edge.
1655
   */
1656
2.06M
  if (aval0 != aval1)
1657
1.46M
    return 0;
1658
1659
599k
  if (oval0 == oval1)
1660
    /*
1661
     * The operands of the branch instructions are
1662
     * identical, so the branches are testing the
1663
     * same condition, and the result is true if a true
1664
     * branch was taken to get here, otherwise false.
1665
     */
1666
285k
    return sense ? JT(child) : JF(child);
1667
1668
314k
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1669
    /*
1670
     * At this point, we only know the comparison if we
1671
     * came down the true branch, and it was an equality
1672
     * comparison with a constant.
1673
     *
1674
     * I.e., if we came down the true branch, and the branch
1675
     * was an equality comparison with a constant, we know the
1676
     * accumulator contains that constant.  If we came down
1677
     * the false branch, or the comparison wasn't with a
1678
     * constant, we don't know what was in the accumulator.
1679
     *
1680
     * We rely on the fact that distinct constants have distinct
1681
     * value numbers.
1682
     */
1683
52.5k
    return JF(child);
1684
1685
261k
  return 0;
1686
314k
}
1687
1688
/*
1689
 * If we can make this edge go directly to a child of the edge's current
1690
 * successor, do so.
1691
 */
1692
static void
1693
opt_j(opt_state_t *opt_state, struct edge *ep)
1694
1.13M
{
1695
1.13M
  register u_int i, k;
1696
1.13M
  register struct block *target;
1697
1698
  /*
1699
   * Does this edge go to a block where, if the test
1700
   * at the end of it succeeds, it goes to a block
1701
   * that's a leaf node of the DAG, i.e. a return
1702
   * statement?
1703
   * If so, there's nothing to optimize.
1704
   */
1705
1.13M
  if (JT(ep->succ) == 0)
1706
350k
    return;
1707
1708
  /*
1709
   * Does this edge go to a block that goes, in turn, to
1710
   * the same block regardless of whether the test at the
1711
   * end succeeds or fails?
1712
   */
1713
785k
  if (JT(ep->succ) == JF(ep->succ)) {
1714
    /*
1715
     * Common branch targets can be eliminated, provided
1716
     * there is no data dependency.
1717
     *
1718
     * Check whether any register used on exit from the
1719
     * block to which the successor of this edge goes
1720
     * has a value at that point that's different from
1721
     * the value it has on exit from the predecessor of
1722
     * this edge.  If not, the predecessor of this edge
1723
     * can just go to the block to which the successor
1724
     * of this edge goes, bypassing the successor of this
1725
     * edge, as the successor of this edge isn't doing
1726
     * any calculations whose results are different
1727
     * from what the blocks before it did and isn't
1728
     * doing any tests the results of which matter.
1729
     */
1730
101k
    if (!use_conflict(ep->pred, JT(ep->succ))) {
1731
      /*
1732
       * No, there isn't.
1733
       * Make this edge go to the block to
1734
       * which the successor of that edge
1735
       * goes.
1736
       *
1737
       * XXX - optimizer loop detection.
1738
       */
1739
98.3k
      opt_state->non_branch_movement_performed = 1;
1740
98.3k
      opt_state->done = 0;
1741
98.3k
      ep->succ = JT(ep->succ);
1742
98.3k
    }
1743
101k
  }
1744
  /*
1745
   * For each edge dominator that matches the successor of this
1746
   * edge, promote the edge successor to the its grandchild.
1747
   *
1748
   * XXX We violate the set abstraction here in favor a reasonably
1749
   * efficient loop.
1750
   */
1751
1.03M
 top:
1752
5.16M
  for (i = 0; i < opt_state->edgewords; ++i) {
1753
    /* i'th word in the bitset of dominators */
1754
4.46M
    register bpf_u_int32 x = ep->edom[i];
1755
1756
6.94M
    while (x != 0) {
1757
      /* Find the next dominator in that word and mark it as found */
1758
2.80M
      k = lowest_set_bit(x);
1759
2.80M
      x &=~ ((bpf_u_int32)1 << k);
1760
2.80M
      k += i * BITS_PER_WORD;
1761
1762
2.80M
      target = fold_edge(ep->succ, opt_state->edges[k]);
1763
      /*
1764
       * We have a candidate to replace the successor
1765
       * of ep.
1766
       *
1767
       * Check that there is no data dependency between
1768
       * nodes that will be violated if we move the edge;
1769
       * i.e., if any register used on exit from the
1770
       * candidate has a value at that point different
1771
       * from the value it has when we exit the
1772
       * predecessor of that edge, there's a data
1773
       * dependency that will be violated.
1774
       */
1775
2.80M
      if (target != 0 && !use_conflict(ep->pred, target)) {
1776
        /*
1777
         * It's safe to replace the successor of
1778
         * ep; do so, and note that we've made
1779
         * at least one change.
1780
         *
1781
         * XXX - this is one of the operations that
1782
         * happens when the optimizer gets into
1783
         * one of those infinite loops.
1784
         */
1785
335k
        opt_state->done = 0;
1786
335k
        ep->succ = target;
1787
335k
        if (JT(target) != 0)
1788
          /*
1789
           * Start over unless we hit a leaf.
1790
           */
1791
246k
          goto top;
1792
88.9k
        return;
1793
335k
      }
1794
2.80M
    }
1795
4.46M
  }
1796
1.03M
}
1797
1798
/*
1799
 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1800
 * "Predicate Assertion Propagation" in the BPF+ paper?
1801
 *
1802
 * Note that this looks at block dominators, not edge dominators.
1803
 * Don't think so.
1804
 *
1805
 * "A or B" compiles into
1806
 *
1807
 *          A
1808
 *       t / \ f
1809
 *        /   B
1810
 *       / t / \ f
1811
 *      \   /
1812
 *       \ /
1813
 *        X
1814
 *
1815
 *
1816
 */
1817
static void
1818
or_pullup(opt_state_t *opt_state, struct block *b)
1819
568k
{
1820
568k
  bpf_u_int32 val;
1821
568k
  int at_top;
1822
568k
  struct block *pull;
1823
568k
  struct block **diffp, **samep;
1824
568k
  struct edge *ep;
1825
1826
568k
  ep = b->in_edges;
1827
568k
  if (ep == 0)
1828
175k
    return;
1829
1830
  /*
1831
   * Make sure each predecessor loads the same value.
1832
   * XXX why?
1833
   */
1834
392k
  val = ep->pred->val[A_ATOM];
1835
441k
  for (ep = ep->next; ep != 0; ep = ep->next)
1836
131k
    if (val != ep->pred->val[A_ATOM])
1837
82.0k
      return;
1838
1839
  /*
1840
   * For the first edge in the list of edges coming into this block,
1841
   * see whether the predecessor of that edge comes here via a true
1842
   * branch or a false branch.
1843
   */
1844
310k
  if (JT(b->in_edges->pred) == b)
1845
181k
    diffp = &JT(b->in_edges->pred); /* jt */
1846
129k
  else
1847
129k
    diffp = &JF(b->in_edges->pred);  /* jf */
1848
1849
  /*
1850
   * diffp is a pointer to a pointer to the block.
1851
   *
1852
   * Go down the false chain looking as far as you can,
1853
   * making sure that each jump-compare is doing the
1854
   * same as the original block.
1855
   *
1856
   * If you reach the bottom before you reach a
1857
   * different jump-compare, just exit.  There's nothing
1858
   * to do here.  XXX - no, this version is checking for
1859
   * the value leaving the block; that's from the BPF+
1860
   * pullup routine.
1861
   */
1862
310k
  at_top = 1;
1863
419k
  for (;;) {
1864
    /*
1865
     * Done if that's not going anywhere XXX
1866
     */
1867
419k
    if (*diffp == 0)
1868
0
      return;
1869
1870
    /*
1871
     * Done if that predecessor blah blah blah isn't
1872
     * going the same place we're going XXX
1873
     *
1874
     * Does the true edge of this block point to the same
1875
     * location as the true edge of b?
1876
     */
1877
419k
    if (JT(*diffp) != JT(b))
1878
69.8k
      return;
1879
1880
    /*
1881
     * Done if this node isn't a dominator of that
1882
     * node blah blah blah XXX
1883
     *
1884
     * Does b dominate diffp?
1885
     */
1886
349k
    if (!SET_MEMBER((*diffp)->dom, b->id))
1887
1.92k
      return;
1888
1889
    /*
1890
     * Break out of the loop if that node's value of A
1891
     * isn't the value of A above XXX
1892
     */
1893
347k
    if ((*diffp)->val[A_ATOM] != val)
1894
238k
      break;
1895
1896
    /*
1897
     * Get the JF for that node XXX
1898
     * Go down the false path.
1899
     */
1900
108k
    diffp = &JF(*diffp);
1901
108k
    at_top = 0;
1902
108k
  }
1903
1904
  /*
1905
   * Now that we've found a different jump-compare in a chain
1906
   * below b, search further down until we find another
1907
   * jump-compare that looks at the original value.  This
1908
   * jump-compare should get pulled up.  XXX again we're
1909
   * comparing values not jump-compares.
1910
   */
1911
238k
  samep = &JF(*diffp);
1912
312k
  for (;;) {
1913
    /*
1914
     * Done if that's not going anywhere XXX
1915
     */
1916
312k
    if (*samep == 0)
1917
0
      return;
1918
1919
    /*
1920
     * Done if that predecessor blah blah blah isn't
1921
     * going the same place we're going XXX
1922
     */
1923
312k
    if (JT(*samep) != JT(b))
1924
218k
      return;
1925
1926
    /*
1927
     * Done if this node isn't a dominator of that
1928
     * node blah blah blah XXX
1929
     *
1930
     * Does b dominate samep?
1931
     */
1932
94.1k
    if (!SET_MEMBER((*samep)->dom, b->id))
1933
16.4k
      return;
1934
1935
    /*
1936
     * Break out of the loop if that node's value of A
1937
     * is the value of A above XXX
1938
     */
1939
77.7k
    if ((*samep)->val[A_ATOM] == val)
1940
3.74k
      break;
1941
1942
    /* XXX Need to check that there are no data dependencies
1943
       between dp0 and dp1.  Currently, the code generator
1944
       will not produce such dependencies. */
1945
73.9k
    samep = &JF(*samep);
1946
73.9k
  }
1947
#ifdef notdef
1948
  /* XXX This doesn't cover everything. */
1949
  for (i = 0; i < N_ATOMS; ++i)
1950
    if ((*samep)->val[i] != pred->val[i])
1951
      return;
1952
#endif
1953
  /* Pull up the node. */
1954
3.74k
  pull = *samep;
1955
3.74k
  *samep = JF(pull);
1956
3.74k
  JF(pull) = *diffp;
1957
1958
  /*
1959
   * At the top of the chain, each predecessor needs to point at the
1960
   * pulled up node.  Inside the chain, there is only one predecessor
1961
   * to worry about.
1962
   */
1963
3.74k
  if (at_top) {
1964
8.10k
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1965
4.48k
      if (JT(ep->pred) == b)
1966
1.35k
        JT(ep->pred) = pull;
1967
3.12k
      else
1968
3.12k
        JF(ep->pred) = pull;
1969
4.48k
    }
1970
3.61k
  }
1971
130
  else
1972
130
    *diffp = pull;
1973
1974
  /*
1975
   * XXX - this is one of the operations that happens when the
1976
   * optimizer gets into one of those infinite loops.
1977
   */
1978
3.74k
  opt_state->done = 0;
1979
3.74k
}
1980
1981
static void
1982
and_pullup(opt_state_t *opt_state, struct block *b)
1983
568k
{
1984
568k
  bpf_u_int32 val;
1985
568k
  int at_top;
1986
568k
  struct block *pull;
1987
568k
  struct block **diffp, **samep;
1988
568k
  struct edge *ep;
1989
1990
568k
  ep = b->in_edges;
1991
568k
  if (ep == 0)
1992
175k
    return;
1993
1994
  /*
1995
   * Make sure each predecessor loads the same value.
1996
   */
1997
392k
  val = ep->pred->val[A_ATOM];
1998
441k
  for (ep = ep->next; ep != 0; ep = ep->next)
1999
131k
    if (val != ep->pred->val[A_ATOM])
2000
82.0k
      return;
2001
2002
310k
  if (JT(b->in_edges->pred) == b)
2003
180k
    diffp = &JT(b->in_edges->pred);
2004
129k
  else
2005
129k
    diffp = &JF(b->in_edges->pred);
2006
2007
310k
  at_top = 1;
2008
386k
  for (;;) {
2009
386k
    if (*diffp == 0)
2010
0
      return;
2011
2012
386k
    if (JF(*diffp) != JF(b))
2013
63.8k
      return;
2014
2015
322k
    if (!SET_MEMBER((*diffp)->dom, b->id))
2016
7.65k
      return;
2017
2018
314k
    if ((*diffp)->val[A_ATOM] != val)
2019
239k
      break;
2020
2021
75.6k
    diffp = &JT(*diffp);
2022
75.6k
    at_top = 0;
2023
75.6k
  }
2024
239k
  samep = &JT(*diffp);
2025
320k
  for (;;) {
2026
320k
    if (*samep == 0)
2027
0
      return;
2028
2029
320k
    if (JF(*samep) != JF(b))
2030
234k
      return;
2031
2032
85.4k
    if (!SET_MEMBER((*samep)->dom, b->id))
2033
2.59k
      return;
2034
2035
82.8k
    if ((*samep)->val[A_ATOM] == val)
2036
1.63k
      break;
2037
2038
    /* XXX Need to check that there are no data dependencies
2039
       between diffp and samep.  Currently, the code generator
2040
       will not produce such dependencies. */
2041
81.2k
    samep = &JT(*samep);
2042
81.2k
  }
2043
#ifdef notdef
2044
  /* XXX This doesn't cover everything. */
2045
  for (i = 0; i < N_ATOMS; ++i)
2046
    if ((*samep)->val[i] != pred->val[i])
2047
      return;
2048
#endif
2049
  /* Pull up the node. */
2050
1.63k
  pull = *samep;
2051
1.63k
  *samep = JT(pull);
2052
1.63k
  JT(pull) = *diffp;
2053
2054
  /*
2055
   * At the top of the chain, each predecessor needs to point at the
2056
   * pulled up node.  Inside the chain, there is only one predecessor
2057
   * to worry about.
2058
   */
2059
1.63k
  if (at_top) {
2060
3.45k
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
2061
1.83k
      if (JT(ep->pred) == b)
2062
1.33k
        JT(ep->pred) = pull;
2063
495
      else
2064
495
        JF(ep->pred) = pull;
2065
1.83k
    }
2066
1.62k
  }
2067
14
  else
2068
14
    *diffp = pull;
2069
2070
  /*
2071
   * XXX - this is one of the operations that happens when the
2072
   * optimizer gets into one of those infinite loops.
2073
   */
2074
1.63k
  opt_state->done = 0;
2075
1.63k
}
2076
2077
static void
2078
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2079
92.9k
{
2080
92.9k
  int i, maxlevel;
2081
92.9k
  struct block *p;
2082
2083
92.9k
  init_val(opt_state);
2084
92.9k
  maxlevel = ic->root->level;
2085
2086
92.9k
  find_inedges(opt_state, ic->root);
2087
877k
  for (i = maxlevel; i >= 0; --i)
2088
1.69M
    for (p = opt_state->levels[i]; p; p = p->link)
2089
915k
      opt_blk(opt_state, p, do_stmts);
2090
2091
92.9k
  if (do_stmts)
2092
    /*
2093
     * No point trying to move branches; it can't possibly
2094
     * make a difference at this point.
2095
     *
2096
     * XXX - this might be after we detect a loop where
2097
     * we were just looping infinitely moving branches
2098
     * in such a fashion that we went through two or more
2099
     * versions of the machine code, eventually returning
2100
     * to the first version.  (We're really not doing a
2101
     * full loop detection, we're just testing for two
2102
     * passes in a row where we do nothing but
2103
     * move branches.)
2104
     */
2105
39.3k
    return;
2106
2107
  /*
2108
   * Is this what the BPF+ paper describes in sections 6.1.1,
2109
   * 6.1.2, and 6.1.3?
2110
   */
2111
576k
  for (i = 1; i <= maxlevel; ++i) {
2112
1.09M
    for (p = opt_state->levels[i]; p; p = p->link) {
2113
568k
      opt_j(opt_state, &p->et);
2114
568k
      opt_j(opt_state, &p->ef);
2115
568k
    }
2116
523k
  }
2117
2118
53.5k
  find_inedges(opt_state, ic->root);
2119
576k
  for (i = 1; i <= maxlevel; ++i) {
2120
1.09M
    for (p = opt_state->levels[i]; p; p = p->link) {
2121
568k
      or_pullup(opt_state, p);
2122
568k
      and_pullup(opt_state, p);
2123
568k
    }
2124
523k
  }
2125
53.5k
}
2126
2127
static inline void
2128
link_inedge(struct edge *parent, struct block *child)
2129
2.64M
{
2130
2.64M
  parent->next = child->in_edges;
2131
2.64M
  child->in_edges = parent;
2132
2.64M
}
2133
2134
static void
2135
find_inedges(opt_state_t *opt_state, struct block *root)
2136
146k
{
2137
146k
  u_int i;
2138
146k
  int level;
2139
146k
  struct block *b;
2140
2141
3.09M
  for (i = 0; i < opt_state->n_blocks; ++i)
2142
2.95M
    opt_state->blocks[i]->in_edges = 0;
2143
2144
  /*
2145
   * Traverse the graph, adding each edge to the predecessor
2146
   * list of its successors.  Skip the leaves (i.e. level 0).
2147
   */
2148
1.36M
  for (level = root->level; level > 0; --level) {
2149
2.54M
    for (b = opt_state->levels[level]; b != 0; b = b->link) {
2150
1.32M
      link_inedge(&b->et, JT(b));
2151
1.32M
      link_inedge(&b->ef, JF(b));
2152
1.32M
    }
2153
1.21M
  }
2154
146k
}
2155
2156
static void
2157
opt_root(struct block **b)
2158
19.8k
{
2159
19.8k
  struct slist *tmp, *s;
2160
2161
19.8k
  s = (*b)->stmts;
2162
19.8k
  (*b)->stmts = 0;
2163
31.1k
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2164
11.2k
    *b = JT(*b);
2165
2166
19.8k
  tmp = (*b)->stmts;
2167
19.8k
  if (tmp != 0)
2168
2.12k
    sappend(s, tmp);
2169
19.8k
  (*b)->stmts = s;
2170
2171
  /*
2172
   * If the root node is a return, then there is no
2173
   * point executing any statements (since the bpf machine
2174
   * has no side effects).
2175
   */
2176
19.8k
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
2177
9.59k
    (*b)->stmts = 0;
2178
19.8k
}
2179
2180
static void
2181
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2182
40.5k
{
2183
2184
#ifdef BDEBUG
2185
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2186
    printf("opt_loop(root, %d) begin\n", do_stmts);
2187
    opt_dump(opt_state, ic);
2188
  }
2189
#endif
2190
2191
  /*
2192
   * XXX - optimizer loop detection.
2193
   */
2194
40.5k
  int loop_count = 0;
2195
92.9k
  for (;;) {
2196
92.9k
    opt_state->done = 1;
2197
    /*
2198
     * XXX - optimizer loop detection.
2199
     */
2200
92.9k
    opt_state->non_branch_movement_performed = 0;
2201
92.9k
    find_levels(opt_state, ic);
2202
92.9k
    find_dom(opt_state, ic->root);
2203
92.9k
    find_closure(opt_state, ic->root);
2204
92.9k
    find_ud(opt_state, ic->root);
2205
92.9k
    find_edom(opt_state, ic->root);
2206
92.9k
    opt_blks(opt_state, ic, do_stmts);
2207
#ifdef BDEBUG
2208
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2209
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2210
      opt_dump(opt_state, ic);
2211
    }
2212
#endif
2213
2214
    /*
2215
     * Was anything done in this optimizer pass?
2216
     */
2217
92.9k
    if (opt_state->done) {
2218
      /*
2219
       * No, so we've reached a fixed point.
2220
       * We're done.
2221
       */
2222
40.1k
      break;
2223
40.1k
    }
2224
2225
    /*
2226
     * XXX - was anything done other than branch movement
2227
     * in this pass?
2228
     */
2229
52.7k
    if (opt_state->non_branch_movement_performed) {
2230
      /*
2231
       * Yes.  Clear any loop-detection counter;
2232
       * we're making some form of progress (assuming
2233
       * we can't get into a cycle doing *other*
2234
       * optimizations...).
2235
       */
2236
45.8k
      loop_count = 0;
2237
45.8k
    } else {
2238
      /*
2239
       * No - increment the counter, and quit if
2240
       * it's up to 100.
2241
       */
2242
6.96k
      loop_count++;
2243
6.96k
      if (loop_count >= 100) {
2244
        /*
2245
         * We've done nothing but branch movement
2246
         * for 100 passes; we're probably
2247
         * in a cycle and will never reach a
2248
         * fixed point.
2249
         *
2250
         * XXX - yes, we really need a non-
2251
         * heuristic way of detecting a cycle.
2252
         */
2253
13
        opt_state->done = 1;
2254
13
        break;
2255
13
      }
2256
6.96k
    }
2257
52.7k
  }
2258
40.5k
}
2259
2260
/*
2261
 * Optimize the filter code in its dag representation.
2262
 * Return 0 on success, -1 on error.
2263
 */
2264
int
2265
bpf_optimize(struct icode *ic, char *errbuf)
2266
20.2k
{
2267
20.2k
  opt_state_t opt_state;
2268
2269
20.2k
  memset(&opt_state, 0, sizeof(opt_state));
2270
20.2k
  opt_state.errbuf = errbuf;
2271
20.2k
  opt_state.non_branch_movement_performed = 0;
2272
20.2k
  if (setjmp(opt_state.top_ctx)) {
2273
422
    opt_cleanup(&opt_state);
2274
422
    return -1;
2275
422
  }
2276
19.8k
  opt_init(&opt_state, ic);
2277
19.8k
  opt_loop(&opt_state, ic, 0);
2278
19.8k
  opt_loop(&opt_state, ic, 1);
2279
19.8k
  intern_blocks(&opt_state, ic);
2280
#ifdef BDEBUG
2281
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2282
    printf("after intern_blocks()\n");
2283
    opt_dump(&opt_state, ic);
2284
  }
2285
#endif
2286
19.8k
  opt_root(&ic->root);
2287
#ifdef BDEBUG
2288
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2289
    printf("after opt_root()\n");
2290
    opt_dump(&opt_state, ic);
2291
  }
2292
#endif
2293
19.8k
  opt_cleanup(&opt_state);
2294
19.8k
  return 0;
2295
20.2k
}
2296
2297
static void
2298
make_marks(struct icode *ic, struct block *p)
2299
553k
{
2300
553k
  if (!isMarked(ic, p)) {
2301
300k
    Mark(ic, p);
2302
300k
    if (BPF_CLASS(p->s.code) != BPF_RET) {
2303
264k
      make_marks(ic, JT(p));
2304
264k
      make_marks(ic, JF(p));
2305
264k
    }
2306
300k
  }
2307
553k
}
2308
2309
/*
2310
 * Mark code array such that isMarked(ic->cur_mark, i) is true
2311
 * only for nodes that are alive.
2312
 */
2313
static void
2314
mark_code(struct icode *ic)
2315
23.8k
{
2316
23.8k
  ic->cur_mark += 1;
2317
23.8k
  make_marks(ic, ic->root);
2318
23.8k
}
2319
2320
/*
2321
 * True iff the two stmt lists load the same value from the packet into
2322
 * the accumulator.
2323
 */
2324
static int
2325
eq_slist(struct slist *x, struct slist *y)
2326
11.8k
{
2327
19.4k
  for (;;) {
2328
21.4k
    while (x && x->s.code == NOP)
2329
1.97k
      x = x->next;
2330
21.7k
    while (y && y->s.code == NOP)
2331
2.30k
      y = y->next;
2332
19.4k
    if (x == 0)
2333
4.63k
      return y == 0;
2334
14.8k
    if (y == 0)
2335
184
      return x == 0;
2336
14.6k
    if (x->s.code != y->s.code || x->s.k != y->s.k)
2337
7.03k
      return 0;
2338
7.60k
    x = x->next;
2339
7.60k
    y = y->next;
2340
7.60k
  }
2341
11.8k
}
2342
2343
static inline int
2344
eq_blk(struct block *b0, struct block *b1)
2345
8.28M
{
2346
8.28M
  if (b0->s.code == b1->s.code &&
2347
8.28M
      b0->s.k == b1->s.k &&
2348
8.28M
      b0->et.succ == b1->et.succ &&
2349
8.28M
      b0->ef.succ == b1->ef.succ)
2350
11.8k
    return eq_slist(b0->stmts, b1->stmts);
2351
8.27M
  return 0;
2352
8.28M
}
2353
2354
static void
2355
intern_blocks(opt_state_t *opt_state, struct icode *ic)
2356
19.8k
{
2357
19.8k
  struct block *p;
2358
19.8k
  u_int i, j;
2359
19.8k
  int done1; /* don't shadow global */
2360
23.8k
 top:
2361
23.8k
  done1 = 1;
2362
744k
  for (i = 0; i < opt_state->n_blocks; ++i)
2363
720k
    opt_state->blocks[i]->link = 0;
2364
2365
23.8k
  mark_code(ic);
2366
2367
720k
  for (i = opt_state->n_blocks - 1; i != 0; ) {
2368
696k
    --i;
2369
696k
    if (!isMarked(ic, opt_state->blocks[i]))
2370
414k
      continue;
2371
15.8M
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2372
15.5M
      if (!isMarked(ic, opt_state->blocks[j]))
2373
7.27M
        continue;
2374
8.28M
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2375
4.58k
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2376
4.39k
          opt_state->blocks[j]->link : opt_state->blocks[j];
2377
4.58k
        break;
2378
4.58k
      }
2379
8.28M
    }
2380
281k
  }
2381
744k
  for (i = 0; i < opt_state->n_blocks; ++i) {
2382
720k
    p = opt_state->blocks[i];
2383
720k
    if (JT(p) == 0)
2384
44.9k
      continue;
2385
675k
    if (JT(p)->link) {
2386
6.54k
      done1 = 0;
2387
6.54k
      JT(p) = JT(p)->link;
2388
6.54k
    }
2389
675k
    if (JF(p)->link) {
2390
3.82k
      done1 = 0;
2391
3.82k
      JF(p) = JF(p)->link;
2392
3.82k
    }
2393
675k
  }
2394
23.8k
  if (!done1)
2395
3.98k
    goto top;
2396
23.8k
}
2397
2398
static void
2399
opt_cleanup(opt_state_t *opt_state)
2400
20.2k
{
2401
20.2k
  free((void *)opt_state->vnode_base);
2402
20.2k
  free((void *)opt_state->vmap);
2403
20.2k
  free((void *)opt_state->edges);
2404
20.2k
  free((void *)opt_state->space);
2405
20.2k
  free((void *)opt_state->levels);
2406
20.2k
  free((void *)opt_state->blocks);
2407
20.2k
}
2408
2409
/*
2410
 * For optimizer errors.
2411
 */
2412
static void PCAP_NORETURN
2413
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2414
422
{
2415
422
  va_list ap;
2416
2417
422
  if (opt_state->errbuf != NULL) {
2418
422
    va_start(ap, fmt);
2419
422
    (void)vsnprintf(opt_state->errbuf,
2420
422
        PCAP_ERRBUF_SIZE, fmt, ap);
2421
422
    va_end(ap);
2422
422
  }
2423
422
  longjmp(opt_state->top_ctx, 1);
2424
  /* NOTREACHED */
2425
#ifdef _AIX
2426
  PCAP_UNREACHABLE
2427
#endif /* _AIX */
2428
422
}
2429
2430
/*
2431
 * Return the number of stmts in 's'.
2432
 */
2433
static u_int
2434
slength(struct slist *s)
2435
1.31M
{
2436
1.31M
  u_int n = 0;
2437
2438
4.59M
  for (; s; s = s->next)
2439
3.27M
    if (s->s.code != NOP)
2440
2.87M
      ++n;
2441
1.31M
  return n;
2442
1.31M
}
2443
2444
/*
2445
 * Return the number of nodes reachable by 'p'.
2446
 * All nodes should be initially unmarked.
2447
 */
2448
static int
2449
count_blocks(struct icode *ic, struct block *p)
2450
680k
{
2451
680k
  if (p == 0 || isMarked(ic, p))
2452
350k
    return 0;
2453
329k
  Mark(ic, p);
2454
329k
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2455
680k
}
2456
2457
/*
2458
 * Do a depth first search on the flow graph, numbering the
2459
 * the basic blocks, and entering them into the 'blocks' array.`
2460
 */
2461
static void
2462
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2463
680k
{
2464
680k
  u_int n;
2465
2466
680k
  if (p == 0 || isMarked(ic, p))
2467
350k
    return;
2468
2469
329k
  Mark(ic, p);
2470
329k
  n = opt_state->n_blocks++;
2471
329k
  if (opt_state->n_blocks == 0) {
2472
    /*
2473
     * Overflow.
2474
     */
2475
0
    opt_error(opt_state, "filter is too complex to optimize");
2476
0
  }
2477
329k
  p->id = n;
2478
329k
  opt_state->blocks[n] = p;
2479
2480
329k
  number_blks_r(opt_state, ic, JT(p));
2481
329k
  number_blks_r(opt_state, ic, JF(p));
2482
329k
}
2483
2484
/*
2485
 * Return the number of stmts in the flowgraph reachable by 'p'.
2486
 * The nodes should be unmarked before calling.
2487
 *
2488
 * Note that "stmts" means "instructions", and that this includes
2489
 *
2490
 *  side-effect statements in 'p' (slength(p->stmts));
2491
 *
2492
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2493
 *
2494
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2495
 *
2496
 *  the conditional jump itself (1);
2497
 *
2498
 *  an extra long jump if the true branch requires it (p->longjt);
2499
 *
2500
 *  an extra long jump if the false branch requires it (p->longjf).
2501
 */
2502
static u_int
2503
count_stmts(struct icode *ic, struct block *p)
2504
1.10M
{
2505
1.10M
  u_int n;
2506
2507
1.10M
  if (p == 0 || isMarked(ic, p))
2508
563k
    return 0;
2509
542k
  Mark(ic, p);
2510
542k
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2511
542k
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2512
1.10M
}
2513
2514
/*
2515
 * Allocate memory.  All allocation is done before optimization
2516
 * is begun.  A linear bound on the size of all data structures is computed
2517
 * from the total number of blocks and/or statements.
2518
 */
2519
static void
2520
opt_init(opt_state_t *opt_state, struct icode *ic)
2521
20.2k
{
2522
20.2k
  bpf_u_int32 *p;
2523
20.2k
  int i, n, max_stmts;
2524
20.2k
  u_int product;
2525
20.2k
  size_t block_memsize, edge_memsize;
2526
2527
  /*
2528
   * First, count the blocks, so we can malloc an array to map
2529
   * block number to block.  Then, put the blocks into the array.
2530
   */
2531
20.2k
  unMarkAll(ic);
2532
20.2k
  n = count_blocks(ic, ic->root);
2533
20.2k
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2534
20.2k
  if (opt_state->blocks == NULL)
2535
0
    opt_error(opt_state, "malloc");
2536
20.2k
  unMarkAll(ic);
2537
20.2k
  opt_state->n_blocks = 0;
2538
20.2k
  number_blks_r(opt_state, ic, ic->root);
2539
2540
  /*
2541
   * This "should not happen".
2542
   */
2543
20.2k
  if (opt_state->n_blocks == 0)
2544
0
    opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2545
2546
20.2k
  opt_state->n_edges = 2 * opt_state->n_blocks;
2547
20.2k
  if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2548
    /*
2549
     * Overflow.
2550
     */
2551
0
    opt_error(opt_state, "filter is too complex to optimize");
2552
0
  }
2553
20.2k
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2554
20.2k
  if (opt_state->edges == NULL) {
2555
0
    opt_error(opt_state, "malloc");
2556
0
  }
2557
2558
  /*
2559
   * The number of levels is bounded by the number of nodes.
2560
   */
2561
20.2k
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2562
20.2k
  if (opt_state->levels == NULL) {
2563
0
    opt_error(opt_state, "malloc");
2564
0
  }
2565
2566
20.2k
  opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2567
20.2k
  opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2568
2569
  /*
2570
   * Make sure opt_state->n_blocks * opt_state->nodewords fits
2571
   * in a u_int; we use it as a u_int number-of-iterations
2572
   * value.
2573
   */
2574
20.2k
  product = opt_state->n_blocks * opt_state->nodewords;
2575
20.2k
  if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2576
    /*
2577
     * XXX - just punt and don't try to optimize?
2578
     * In practice, this is unlikely to happen with
2579
     * a normal filter.
2580
     */
2581
0
    opt_error(opt_state, "filter is too complex to optimize");
2582
0
  }
2583
2584
  /*
2585
   * Make sure the total memory required for that doesn't
2586
   * overflow.
2587
   */
2588
20.2k
  block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2589
20.2k
  if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2590
0
    opt_error(opt_state, "filter is too complex to optimize");
2591
0
  }
2592
2593
  /*
2594
   * Make sure opt_state->n_edges * opt_state->edgewords fits
2595
   * in a u_int; we use it as a u_int number-of-iterations
2596
   * value.
2597
   */
2598
20.2k
  product = opt_state->n_edges * opt_state->edgewords;
2599
20.2k
  if ((product / opt_state->n_edges) != opt_state->edgewords) {
2600
0
    opt_error(opt_state, "filter is too complex to optimize");
2601
0
  }
2602
2603
  /*
2604
   * Make sure the total memory required for that doesn't
2605
   * overflow.
2606
   */
2607
20.2k
  edge_memsize = (size_t)product * sizeof(*opt_state->space);
2608
20.2k
  if (edge_memsize / product != sizeof(*opt_state->space)) {
2609
0
    opt_error(opt_state, "filter is too complex to optimize");
2610
0
  }
2611
2612
  /*
2613
   * Make sure the total memory required for both of them doesn't
2614
   * overflow.
2615
   */
2616
20.2k
  if (block_memsize > SIZE_MAX - edge_memsize) {
2617
0
    opt_error(opt_state, "filter is too complex to optimize");
2618
0
  }
2619
2620
  /* XXX */
2621
20.2k
  opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2622
20.2k
  if (opt_state->space == NULL) {
2623
0
    opt_error(opt_state, "malloc");
2624
0
  }
2625
20.2k
  p = opt_state->space;
2626
20.2k
  opt_state->all_dom_sets = p;
2627
350k
  for (i = 0; i < n; ++i) {
2628
329k
    opt_state->blocks[i]->dom = p;
2629
329k
    p += opt_state->nodewords;
2630
329k
  }
2631
20.2k
  opt_state->all_closure_sets = p;
2632
350k
  for (i = 0; i < n; ++i) {
2633
329k
    opt_state->blocks[i]->closure = p;
2634
329k
    p += opt_state->nodewords;
2635
329k
  }
2636
20.2k
  opt_state->all_edge_sets = p;
2637
350k
  for (i = 0; i < n; ++i) {
2638
329k
    register struct block *b = opt_state->blocks[i];
2639
2640
329k
    b->et.edom = p;
2641
329k
    p += opt_state->edgewords;
2642
329k
    b->ef.edom = p;
2643
329k
    p += opt_state->edgewords;
2644
329k
    b->et.id = i;
2645
329k
    opt_state->edges[i] = &b->et;
2646
329k
    b->ef.id = opt_state->n_blocks + i;
2647
329k
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2648
329k
    b->et.pred = b;
2649
329k
    b->ef.pred = b;
2650
329k
  }
2651
20.2k
  max_stmts = 0;
2652
350k
  for (i = 0; i < n; ++i)
2653
329k
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2654
  /*
2655
   * We allocate at most 3 value numbers per statement,
2656
   * so this is an upper bound on the number of valnodes
2657
   * we'll need.
2658
   */
2659
20.2k
  opt_state->maxval = 3 * max_stmts;
2660
20.2k
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2661
20.2k
  if (opt_state->vmap == NULL) {
2662
0
    opt_error(opt_state, "malloc");
2663
0
  }
2664
20.2k
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2665
20.2k
  if (opt_state->vnode_base == NULL) {
2666
0
    opt_error(opt_state, "malloc");
2667
0
  }
2668
20.2k
}
2669
2670
/*
2671
 * This is only used when supporting optimizer debugging.  It is
2672
 * global state, so do *not* do more than one compile in parallel
2673
 * and expect it to provide meaningful information.
2674
 */
2675
#ifdef BDEBUG
2676
int bids[NBIDS];
2677
#endif
2678
2679
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2680
    PCAP_PRINTFLIKE(2, 3);
2681
2682
/*
2683
 * Returns true if successful.  Returns false if a branch has
2684
 * an offset that is too large.  If so, we have marked that
2685
 * branch so that on a subsequent iteration, it will be treated
2686
 * properly.
2687
 */
2688
static int
2689
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2690
966k
{
2691
966k
  struct bpf_insn *dst;
2692
966k
  struct slist *src;
2693
966k
  u_int slen;
2694
966k
  u_int off;
2695
966k
  struct slist **offset = NULL;
2696
2697
966k
  if (p == 0 || isMarked(ic, p))
2698
474k
    return (1);
2699
492k
  Mark(ic, p);
2700
2701
492k
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2702
38.5k
    return (0);
2703
453k
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2704
8.18k
    return (0);
2705
2706
445k
  slen = slength(p->stmts);
2707
445k
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2708
    /* inflate length by any extra jumps */
2709
2710
445k
  p->offset = (int)(dst - conv_state->fstart);
2711
2712
  /* generate offset[] for convenience  */
2713
445k
  if (slen) {
2714
388k
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2715
388k
    if (!offset) {
2716
0
      conv_error(conv_state, "not enough core");
2717
      /*NOTREACHED*/
2718
0
    }
2719
388k
  }
2720
445k
  src = p->stmts;
2721
1.32M
  for (off = 0; off < slen && src; off++) {
2722
#if 0
2723
    printf("off=%d src=%x\n", off, src);
2724
#endif
2725
883k
    offset[off] = src;
2726
883k
    src = src->next;
2727
883k
  }
2728
2729
445k
  off = 0;
2730
1.52M
  for (src = p->stmts; src; src = src->next) {
2731
1.08M
    if (src->s.code == NOP)
2732
198k
      continue;
2733
883k
    dst->code = (u_short)src->s.code;
2734
883k
    dst->k = src->s.k;
2735
2736
    /* fill block-local relative jump */
2737
883k
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2738
#if 0
2739
      if (src->s.jt || src->s.jf) {
2740
        free(offset);
2741
        conv_error(conv_state, "illegal jmp destination");
2742
        /*NOTREACHED*/
2743
      }
2744
#endif
2745
871k
      goto filled;
2746
871k
    }
2747
11.3k
    if (off == slen - 2)  /*???*/
2748
0
      goto filled;
2749
2750
11.3k
      {
2751
11.3k
    u_int i;
2752
11.3k
    int jt, jf;
2753
11.3k
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2754
2755
#if 0
2756
    printf("code=%x off=%d %x %x\n", src->s.code,
2757
      off, src->s.jt, src->s.jf);
2758
#endif
2759
2760
11.3k
    if (!src->s.jt || !src->s.jf) {
2761
0
      free(offset);
2762
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2763
      /*NOTREACHED*/
2764
0
    }
2765
2766
11.3k
    jt = jf = 0;
2767
420k
    for (i = 0; i < slen; i++) {
2768
409k
      if (offset[i] == src->s.jt) {
2769
11.3k
        if (jt) {
2770
0
          free(offset);
2771
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2772
          /*NOTREACHED*/
2773
0
        }
2774
2775
11.3k
        if (i - off - 1 >= 256) {
2776
0
          free(offset);
2777
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2778
          /*NOTREACHED*/
2779
0
        }
2780
11.3k
        dst->jt = (u_char)(i - off - 1);
2781
11.3k
        jt++;
2782
11.3k
      }
2783
409k
      if (offset[i] == src->s.jf) {
2784
11.3k
        if (jf) {
2785
0
          free(offset);
2786
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2787
          /*NOTREACHED*/
2788
0
        }
2789
11.3k
        if (i - off - 1 >= 256) {
2790
0
          free(offset);
2791
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2792
          /*NOTREACHED*/
2793
0
        }
2794
11.3k
        dst->jf = (u_char)(i - off - 1);
2795
11.3k
        jf++;
2796
11.3k
      }
2797
409k
    }
2798
11.3k
    if (!jt || !jf) {
2799
0
      free(offset);
2800
0
      conv_error(conv_state, ljerr, "no destination found", off);
2801
      /*NOTREACHED*/
2802
0
    }
2803
11.3k
      }
2804
883k
filled:
2805
883k
    ++dst;
2806
883k
    ++off;
2807
883k
  }
2808
445k
  if (offset)
2809
388k
    free(offset);
2810
2811
#ifdef BDEBUG
2812
  if (dst - conv_state->fstart < NBIDS)
2813
    bids[dst - conv_state->fstart] = p->id + 1;
2814
#endif
2815
445k
  dst->code = (u_short)p->s.code;
2816
445k
  dst->k = p->s.k;
2817
445k
  if (JT(p)) {
2818
    /* number of extra jumps inserted */
2819
410k
    u_char extrajmps = 0;
2820
410k
    off = JT(p)->offset - (p->offset + slen) - 1;
2821
410k
    if (off >= 256) {
2822
        /* offset too large for branch, must add a jump */
2823
13.6k
        if (p->longjt == 0) {
2824
      /* mark this instruction and retry */
2825
1.35k
      p->longjt++;
2826
1.35k
      return(0);
2827
1.35k
        }
2828
12.3k
        dst->jt = extrajmps;
2829
12.3k
        extrajmps++;
2830
12.3k
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2831
12.3k
        dst[extrajmps].k = off - extrajmps;
2832
12.3k
    }
2833
396k
    else
2834
396k
        dst->jt = (u_char)off;
2835
408k
    off = JF(p)->offset - (p->offset + slen) - 1;
2836
408k
    if (off >= 256) {
2837
        /* offset too large for branch, must add a jump */
2838
6.20k
        if (p->longjf == 0) {
2839
      /* mark this instruction and retry */
2840
740
      p->longjf++;
2841
740
      return(0);
2842
740
        }
2843
        /* branch if F to following jump */
2844
        /* if two jumps are inserted, F goes to second one */
2845
5.46k
        dst->jf = extrajmps;
2846
5.46k
        extrajmps++;
2847
5.46k
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2848
5.46k
        dst[extrajmps].k = off - extrajmps;
2849
5.46k
    }
2850
402k
    else
2851
402k
        dst->jf = (u_char)off;
2852
408k
  }
2853
443k
  return (1);
2854
445k
}
2855
2856
2857
/*
2858
 * Convert flowgraph intermediate representation to the
2859
 * BPF array representation.  Set *lenp to the number of instructions.
2860
 *
2861
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2862
 * not* do free(fp) before returning fp; doing so would make no sense,
2863
 * as the BPF array pointed to by the return value of icode_to_fcode()
2864
 * must be valid - it's being returned for use in a bpf_program structure.
2865
 *
2866
 * If it appears that icode_to_fcode() is leaking, the problem is that
2867
 * the program using pcap_compile() is failing to free the memory in
2868
 * the BPF program when it's done - the leak is in the program, not in
2869
 * the routine that happens to be allocating the memory.  (By analogy, if
2870
 * a program calls fopen() without ever calling fclose() on the FILE *,
2871
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2872
 * the program.)  Change the program to use pcap_freecode() when it's
2873
 * done with the filter program.  See the pcap man page.
2874
 */
2875
struct bpf_insn *
2876
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2877
    char *errbuf)
2878
18.9k
{
2879
18.9k
  u_int n;
2880
18.9k
  struct bpf_insn *fp;
2881
18.9k
  conv_state_t conv_state;
2882
2883
18.9k
  conv_state.fstart = NULL;
2884
18.9k
  conv_state.errbuf = errbuf;
2885
18.9k
  if (setjmp(conv_state.top_ctx) != 0) {
2886
0
    free(conv_state.fstart);
2887
0
    return NULL;
2888
0
  }
2889
2890
  /*
2891
   * Loop doing convert_code_r() until no branches remain
2892
   * with too-large offsets.
2893
   */
2894
21.0k
  for (;;) {
2895
21.0k
      unMarkAll(ic);
2896
21.0k
      n = *lenp = count_stmts(ic, root);
2897
2898
21.0k
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2899
21.0k
      if (fp == NULL) {
2900
0
    (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2901
0
        "malloc");
2902
0
    return NULL;
2903
0
      }
2904
21.0k
      memset((char *)fp, 0, sizeof(*fp) * n);
2905
21.0k
      conv_state.fstart = fp;
2906
21.0k
      conv_state.ftail = fp + n;
2907
2908
21.0k
      unMarkAll(ic);
2909
21.0k
      if (convert_code_r(&conv_state, ic, root))
2910
18.9k
    break;
2911
2.09k
      free(fp);
2912
2.09k
  }
2913
2914
18.9k
  return fp;
2915
18.9k
}
2916
2917
/*
2918
 * For iconv_to_fconv() errors.
2919
 */
2920
static void PCAP_NORETURN
2921
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2922
0
{
2923
0
  va_list ap;
2924
2925
0
  va_start(ap, fmt);
2926
0
  (void)vsnprintf(conv_state->errbuf,
2927
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2928
0
  va_end(ap);
2929
0
  longjmp(conv_state->top_ctx, 1);
2930
  /* NOTREACHED */
2931
#ifdef _AIX
2932
  PCAP_UNREACHABLE
2933
#endif /* _AIX */
2934
0
}
2935
2936
/*
2937
 * Make a copy of a BPF program and put it in the "fcode" member of
2938
 * a "pcap_t".
2939
 *
2940
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2941
 * member of the "pcap_t" with an error message, and return -1;
2942
 * otherwise, return 0.
2943
 */
2944
int
2945
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2946
0
{
2947
0
  size_t prog_size;
2948
2949
  /*
2950
   * Validate the program.
2951
   */
2952
0
  if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2953
0
    snprintf(p->errbuf, sizeof(p->errbuf),
2954
0
      "BPF program is not valid");
2955
0
    return (-1);
2956
0
  }
2957
2958
  /*
2959
   * Free up any already installed program.
2960
   */
2961
0
  pcap_freecode(&p->fcode);
2962
2963
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2964
0
  p->fcode.bf_len = fp->bf_len;
2965
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2966
0
  if (p->fcode.bf_insns == NULL) {
2967
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2968
0
        errno, "malloc");
2969
0
    return (-1);
2970
0
  }
2971
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2972
0
  return (0);
2973
0
}
2974
2975
#ifdef BDEBUG
2976
static void
2977
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2978
    FILE *out)
2979
{
2980
  int icount, noffset;
2981
  int i;
2982
2983
  if (block == NULL || isMarked(ic, block))
2984
    return;
2985
  Mark(ic, block);
2986
2987
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2988
  noffset = min(block->offset + icount, (int)prog->bf_len);
2989
2990
  fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2991
  for (i = block->offset; i < noffset; i++) {
2992
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2993
  }
2994
  fprintf(out, "\" tooltip=\"");
2995
  for (i = 0; i < BPF_MEMWORDS; i++)
2996
    if (block->val[i] != VAL_UNKNOWN)
2997
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2998
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2999
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
3000
  fprintf(out, "\"");
3001
  if (JT(block) == NULL)
3002
    fprintf(out, ", peripheries=2");
3003
  fprintf(out, "];\n");
3004
3005
  dot_dump_node(ic, JT(block), prog, out);
3006
  dot_dump_node(ic, JF(block), prog, out);
3007
}
3008
3009
static void
3010
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3011
{
3012
  if (block == NULL || isMarked(ic, block))
3013
    return;
3014
  Mark(ic, block);
3015
3016
  if (JT(block)) {
3017
    fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3018
        block->id, JT(block)->id);
3019
    fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3020
         block->id, JF(block)->id);
3021
  }
3022
  dot_dump_edge(ic, JT(block), out);
3023
  dot_dump_edge(ic, JF(block), out);
3024
}
3025
3026
/* Output the block CFG using graphviz/DOT language
3027
 * In the CFG, block's code, value index for each registers at EXIT,
3028
 * and the jump relationship is show.
3029
 *
3030
 * example DOT for BPF `ip src host 1.1.1.1' is:
3031
    digraph BPF {
3032
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
3033
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
3034
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3036
      "block0":se -> "block1":n [label="T"];
3037
      "block0":sw -> "block3":n [label="F"];
3038
      "block1":se -> "block2":n [label="T"];
3039
      "block1":sw -> "block3":n [label="F"];
3040
    }
3041
 *
3042
 *  After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3043
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
3044
 */
3045
static int
3046
dot_dump(struct icode *ic, char *errbuf)
3047
{
3048
  struct bpf_program f;
3049
  FILE *out = stdout;
3050
3051
  memset(bids, 0, sizeof bids);
3052
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3053
  if (f.bf_insns == NULL)
3054
    return -1;
3055
3056
  fprintf(out, "digraph BPF {\n");
3057
  unMarkAll(ic);
3058
  dot_dump_node(ic, ic->root, &f, out);
3059
  unMarkAll(ic);
3060
  dot_dump_edge(ic, ic->root, out);
3061
  fprintf(out, "}\n");
3062
3063
  free((char *)f.bf_insns);
3064
  return 0;
3065
}
3066
3067
static int
3068
plain_dump(struct icode *ic, char *errbuf)
3069
{
3070
  struct bpf_program f;
3071
3072
  memset(bids, 0, sizeof bids);
3073
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3074
  if (f.bf_insns == NULL)
3075
    return -1;
3076
  bpf_dump(&f, 1);
3077
  putchar('\n');
3078
  free((char *)f.bf_insns);
3079
  return 0;
3080
}
3081
3082
static void
3083
opt_dump(opt_state_t *opt_state, struct icode *ic)
3084
{
3085
  int status;
3086
  char errbuf[PCAP_ERRBUF_SIZE];
3087
3088
  /*
3089
   * If the CFG, in DOT format, is requested, output it rather than
3090
   * the code that would be generated from that graph.
3091
   */
3092
  if (pcap_print_dot_graph)
3093
    status = dot_dump(ic, errbuf);
3094
  else
3095
    status = plain_dump(ic, errbuf);
3096
  if (status == -1)
3097
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3098
}
3099
#endif