Coverage Report

Created: 2024-08-27 12:18

/src/libjpeg-turbo.main/jcarith.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcarith.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Developed 1997-2009 by Guido Vollbeding.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015, 2018, 2021-2022, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains portable arithmetic entropy encoding routines for JPEG
12
 * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
13
 *
14
 * Both sequential and progressive modes are supported in this single module.
15
 *
16
 * Suspension is not currently supported in this module.
17
 *
18
 * NOTE: All referenced figures are from
19
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
20
 */
21
22
#define JPEG_INTERNALS
23
#include "jinclude.h"
24
#include "jpeglib.h"
25
26
27
/* Expanded entropy encoder object for arithmetic encoding. */
28
29
typedef struct {
30
  struct jpeg_entropy_encoder pub; /* public fields */
31
32
  JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */
33
  JLONG a;               /* A register, normalized size of coding interval */
34
  JLONG sc;        /* counter for stacked 0xFF values which might overflow */
35
  JLONG zc;          /* counter for pending 0x00 output values which might *
36
                          * be discarded at the end ("Pacman" termination) */
37
  int ct;  /* bit shift counter, determines when next byte will be written */
38
  int buffer;                /* buffer for most recent output byte != 0xFF */
39
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
42
43
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
44
  int next_restart_num;         /* next restart number to write (0-7) */
45
46
  /* Pointers to statistics areas (these workspaces have image lifespan) */
47
  unsigned char *dc_stats[NUM_ARITH_TBLS];
48
  unsigned char *ac_stats[NUM_ARITH_TBLS];
49
50
  /* Statistics bin for coding with fixed probability 0.5 */
51
  unsigned char fixed_bin[4];
52
} arith_entropy_encoder;
53
54
typedef arith_entropy_encoder *arith_entropy_ptr;
55
56
/* The following two definitions specify the allocation chunk size
57
 * for the statistics area.
58
 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
59
 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
60
 *
61
 * We use a compact representation with 1 byte per statistics bin,
62
 * thus the numbers directly represent byte sizes.
63
 * This 1 byte per statistics bin contains the meaning of the MPS
64
 * (more probable symbol) in the highest bit (mask 0x80), and the
65
 * index into the probability estimation state machine table
66
 * in the lower bits (mask 0x7F).
67
 */
68
69
0
#define DC_STAT_BINS  64
70
0
#define AC_STAT_BINS  256
71
72
/* NOTE: Uncomment the following #define if you want to use the
73
 * given formula for calculating the AC conditioning parameter Kx
74
 * for spectral selection progressive coding in section G.1.3.2
75
 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
76
 * Although the spec and P&M authors claim that this "has proven
77
 * to give good results for 8 bit precision samples", I'm not
78
 * convinced yet that this is really beneficial.
79
 * Early tests gave only very marginal compression enhancements
80
 * (a few - around 5 or so - bytes even for very large files),
81
 * which would turn out rather negative if we'd suppress the
82
 * DAC (Define Arithmetic Conditioning) marker segments for
83
 * the default parameters in the future.
84
 * Note that currently the marker writing module emits 12-byte
85
 * DAC segments for a full-component scan in a color image.
86
 * This is not worth worrying about IMHO. However, since the
87
 * spec defines the default values to be used if the tables
88
 * are omitted (unlike Huffman tables, which are required
89
 * anyway), one might optimize this behaviour in the future,
90
 * and then it would be disadvantageous to use custom tables if
91
 * they don't provide sufficient gain to exceed the DAC size.
92
 *
93
 * On the other hand, I'd consider it as a reasonable result
94
 * that the conditioning has no significant influence on the
95
 * compression performance. This means that the basic
96
 * statistical model is already rather stable.
97
 *
98
 * Thus, at the moment, we use the default conditioning values
99
 * anyway, and do not use the custom formula.
100
 *
101
#define CALCULATE_SPECTRAL_CONDITIONING
102
 */
103
104
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
105
 * We assume that int right shift is unsigned if JLONG right shift is,
106
 * which should be safe.
107
 */
108
109
#ifdef RIGHT_SHIFT_IS_UNSIGNED
110
#define ISHIFT_TEMPS    int ishift_temp;
111
#define IRIGHT_SHIFT(x, shft) \
112
  ((ishift_temp = (x)) < 0 ? \
113
   (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \
114
   (ishift_temp >> (shft)))
115
#else
116
#define ISHIFT_TEMPS
117
0
#define IRIGHT_SHIFT(x, shft)   ((x) >> (shft))
118
#endif
119
120
121
LOCAL(void)
122
emit_byte(int val, j_compress_ptr cinfo)
123
/* Write next output byte; we do not support suspension in this module. */
124
0
{
125
0
  struct jpeg_destination_mgr *dest = cinfo->dest;
126
127
0
  *dest->next_output_byte++ = (JOCTET)val;
128
0
  if (--dest->free_in_buffer == 0)
129
0
    if (!(*dest->empty_output_buffer) (cinfo))
130
0
      ERREXIT(cinfo, JERR_CANT_SUSPEND);
131
0
}
132
133
134
/*
135
 * Finish up at the end of an arithmetic-compressed scan.
136
 */
137
138
METHODDEF(void)
139
finish_pass(j_compress_ptr cinfo)
140
0
{
141
0
  arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
142
0
  JLONG temp;
143
144
  /* Section D.1.8: Termination of encoding */
145
146
  /* Find the e->c in the coding interval with the largest
147
   * number of trailing zero bits */
148
0
  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000UL) < e->c)
149
0
    e->c = temp + 0x8000L;
150
0
  else
151
0
    e->c = temp;
152
  /* Send remaining bytes to output */
153
0
  e->c <<= e->ct;
154
0
  if (e->c & 0xF8000000UL) {
155
    /* One final overflow has to be handled */
156
0
    if (e->buffer >= 0) {
157
0
      if (e->zc)
158
0
        do emit_byte(0x00, cinfo);
159
0
        while (--e->zc);
160
0
      emit_byte(e->buffer + 1, cinfo);
161
0
      if (e->buffer + 1 == 0xFF)
162
0
        emit_byte(0x00, cinfo);
163
0
    }
164
0
    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
165
0
    e->sc = 0;
166
0
  } else {
167
0
    if (e->buffer == 0)
168
0
      ++e->zc;
169
0
    else if (e->buffer >= 0) {
170
0
      if (e->zc)
171
0
        do emit_byte(0x00, cinfo);
172
0
        while (--e->zc);
173
0
      emit_byte(e->buffer, cinfo);
174
0
    }
175
0
    if (e->sc) {
176
0
      if (e->zc)
177
0
        do emit_byte(0x00, cinfo);
178
0
        while (--e->zc);
179
0
      do {
180
0
        emit_byte(0xFF, cinfo);
181
0
        emit_byte(0x00, cinfo);
182
0
      } while (--e->sc);
183
0
    }
184
0
  }
185
  /* Output final bytes only if they are not 0x00 */
186
0
  if (e->c & 0x7FFF800L) {
187
0
    if (e->zc)  /* output final pending zero bytes */
188
0
      do emit_byte(0x00, cinfo);
189
0
      while (--e->zc);
190
0
    emit_byte((e->c >> 19) & 0xFF, cinfo);
191
0
    if (((e->c >> 19) & 0xFF) == 0xFF)
192
0
      emit_byte(0x00, cinfo);
193
0
    if (e->c & 0x7F800L) {
194
0
      emit_byte((e->c >> 11) & 0xFF, cinfo);
195
0
      if (((e->c >> 11) & 0xFF) == 0xFF)
196
0
        emit_byte(0x00, cinfo);
197
0
    }
198
0
  }
199
0
}
200
201
202
/*
203
 * The core arithmetic encoding routine (common in JPEG and JBIG).
204
 * This needs to go as fast as possible.
205
 * Machine-dependent optimization facilities
206
 * are not utilized in this portable implementation.
207
 * However, this code should be fairly efficient and
208
 * may be a good base for further optimizations anyway.
209
 *
210
 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
211
 *
212
 * Note: I've added full "Pacman" termination support to the
213
 * byte output routines, which is equivalent to the optional
214
 * Discard_final_zeros procedure (Figure D.15) in the spec.
215
 * Thus, we always produce the shortest possible output
216
 * stream compliant to the spec (no trailing zero bytes,
217
 * except for FF stuffing).
218
 *
219
 * I've also introduced a new scheme for accessing
220
 * the probability estimation state machine table,
221
 * derived from Markus Kuhn's JBIG implementation.
222
 */
223
224
LOCAL(void)
225
arith_encode(j_compress_ptr cinfo, unsigned char *st, int val)
226
0
{
227
0
  register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy;
228
0
  register unsigned char nl, nm;
229
0
  register JLONG qe, temp;
230
0
  register int sv;
231
232
  /* Fetch values from our compact representation of Table D.2:
233
   * Qe values and probability estimation state machine
234
   */
235
0
  sv = *st;
236
0
  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
237
0
  nl = qe & 0xFF;  qe >>= 8;    /* Next_Index_LPS + Switch_MPS */
238
0
  nm = qe & 0xFF;  qe >>= 8;    /* Next_Index_MPS */
239
240
  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
241
0
  e->a -= qe;
242
0
  if (val != (sv >> 7)) {
243
    /* Encode the less probable symbol */
244
0
    if (e->a >= qe) {
245
      /* If the interval size (qe) for the less probable symbol (LPS)
246
       * is larger than the interval size for the MPS, then exchange
247
       * the two symbols for coding efficiency, otherwise code the LPS
248
       * as usual: */
249
0
      e->c += e->a;
250
0
      e->a = qe;
251
0
    }
252
0
    *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */
253
0
  } else {
254
    /* Encode the more probable symbol */
255
0
    if (e->a >= 0x8000L)
256
0
      return;  /* A >= 0x8000 -> ready, no renormalization required */
257
0
    if (e->a < qe) {
258
      /* If the interval size (qe) for the less probable symbol (LPS)
259
       * is larger than the interval size for the MPS, then exchange
260
       * the two symbols for coding efficiency: */
261
0
      e->c += e->a;
262
0
      e->a = qe;
263
0
    }
264
0
    *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */
265
0
  }
266
267
  /* Renormalization & data output per section D.1.6 */
268
0
  do {
269
0
    e->a <<= 1;
270
0
    e->c <<= 1;
271
0
    if (--e->ct == 0) {
272
      /* Another byte is ready for output */
273
0
      temp = e->c >> 19;
274
0
      if (temp > 0xFF) {
275
        /* Handle overflow over all stacked 0xFF bytes */
276
0
        if (e->buffer >= 0) {
277
0
          if (e->zc)
278
0
            do emit_byte(0x00, cinfo);
279
0
            while (--e->zc);
280
0
          emit_byte(e->buffer + 1, cinfo);
281
0
          if (e->buffer + 1 == 0xFF)
282
0
            emit_byte(0x00, cinfo);
283
0
        }
284
0
        e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
285
0
        e->sc = 0;
286
        /* Note: The 3 spacer bits in the C register guarantee
287
         * that the new buffer byte can't be 0xFF here
288
         * (see page 160 in the P&M JPEG book). */
289
0
        e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
290
0
      } else if (temp == 0xFF) {
291
0
        ++e->sc;  /* stack 0xFF byte (which might overflow later) */
292
0
      } else {
293
        /* Output all stacked 0xFF bytes, they will not overflow any more */
294
0
        if (e->buffer == 0)
295
0
          ++e->zc;
296
0
        else if (e->buffer >= 0) {
297
0
          if (e->zc)
298
0
            do emit_byte(0x00, cinfo);
299
0
            while (--e->zc);
300
0
          emit_byte(e->buffer, cinfo);
301
0
        }
302
0
        if (e->sc) {
303
0
          if (e->zc)
304
0
            do emit_byte(0x00, cinfo);
305
0
            while (--e->zc);
306
0
          do {
307
0
            emit_byte(0xFF, cinfo);
308
0
            emit_byte(0x00, cinfo);
309
0
          } while (--e->sc);
310
0
        }
311
0
        e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
312
0
      }
313
0
      e->c &= 0x7FFFFL;
314
0
      e->ct += 8;
315
0
    }
316
0
  } while (e->a < 0x8000L);
317
0
}
318
319
320
/*
321
 * Emit a restart marker & resynchronize predictions.
322
 */
323
324
LOCAL(void)
325
emit_restart(j_compress_ptr cinfo, int restart_num)
326
0
{
327
0
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
328
0
  int ci;
329
0
  jpeg_component_info *compptr;
330
331
0
  finish_pass(cinfo);
332
333
0
  emit_byte(0xFF, cinfo);
334
0
  emit_byte(JPEG_RST0 + restart_num, cinfo);
335
336
  /* Re-initialize statistics areas */
337
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
338
0
    compptr = cinfo->cur_comp_info[ci];
339
    /* DC needs no table for refinement scan */
340
0
    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
341
0
      memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS);
342
      /* Reset DC predictions to 0 */
343
0
      entropy->last_dc_val[ci] = 0;
344
0
      entropy->dc_context[ci] = 0;
345
0
    }
346
    /* AC needs no table when not present */
347
0
    if (cinfo->progressive_mode == 0 || cinfo->Se) {
348
0
      memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS);
349
0
    }
350
0
  }
351
352
  /* Reset arithmetic encoding variables */
353
0
  entropy->c = 0;
354
0
  entropy->a = 0x10000L;
355
0
  entropy->sc = 0;
356
0
  entropy->zc = 0;
357
0
  entropy->ct = 11;
358
0
  entropy->buffer = -1;  /* empty */
359
0
}
360
361
362
/*
363
 * MCU encoding for DC initial scan (either spectral selection,
364
 * or first pass of successive approximation).
365
 */
366
367
METHODDEF(boolean)
368
encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
369
0
{
370
0
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
371
0
  JBLOCKROW block;
372
0
  unsigned char *st;
373
0
  int blkn, ci, tbl;
374
0
  int v, v2, m;
375
0
  ISHIFT_TEMPS
376
377
  /* Emit restart marker if needed */
378
0
  if (cinfo->restart_interval) {
379
0
    if (entropy->restarts_to_go == 0) {
380
0
      emit_restart(cinfo, entropy->next_restart_num);
381
0
      entropy->restarts_to_go = cinfo->restart_interval;
382
0
      entropy->next_restart_num++;
383
0
      entropy->next_restart_num &= 7;
384
0
    }
385
0
    entropy->restarts_to_go--;
386
0
  }
387
388
  /* Encode the MCU data blocks */
389
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
390
0
    block = MCU_data[blkn];
391
0
    ci = cinfo->MCU_membership[blkn];
392
0
    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
393
394
    /* Compute the DC value after the required point transform by Al.
395
     * This is simply an arithmetic right shift.
396
     */
397
0
    m = IRIGHT_SHIFT((int)((*block)[0]), cinfo->Al);
398
399
    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
400
401
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
402
0
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
403
404
    /* Figure F.4: Encode_DC_DIFF */
405
0
    if ((v = m - entropy->last_dc_val[ci]) == 0) {
406
0
      arith_encode(cinfo, st, 0);
407
0
      entropy->dc_context[ci] = 0;      /* zero diff category */
408
0
    } else {
409
0
      entropy->last_dc_val[ci] = m;
410
0
      arith_encode(cinfo, st, 1);
411
      /* Figure F.6: Encoding nonzero value v */
412
      /* Figure F.7: Encoding the sign of v */
413
0
      if (v > 0) {
414
0
        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
415
0
        st += 2;                        /* Table F.4: SP = S0 + 2 */
416
0
        entropy->dc_context[ci] = 4;    /* small positive diff category */
417
0
      } else {
418
0
        v = -v;
419
0
        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
420
0
        st += 3;                        /* Table F.4: SN = S0 + 3 */
421
0
        entropy->dc_context[ci] = 8;    /* small negative diff category */
422
0
      }
423
      /* Figure F.8: Encoding the magnitude category of v */
424
0
      m = 0;
425
0
      if (v -= 1) {
426
0
        arith_encode(cinfo, st, 1);
427
0
        m = 1;
428
0
        v2 = v;
429
0
        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
430
0
        while (v2 >>= 1) {
431
0
          arith_encode(cinfo, st, 1);
432
0
          m <<= 1;
433
0
          st += 1;
434
0
        }
435
0
      }
436
0
      arith_encode(cinfo, st, 0);
437
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
438
0
      if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
439
0
        entropy->dc_context[ci] = 0;    /* zero diff category */
440
0
      else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
441
0
        entropy->dc_context[ci] += 8;   /* large diff category */
442
      /* Figure F.9: Encoding the magnitude bit pattern of v */
443
0
      st += 14;
444
0
      while (m >>= 1)
445
0
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
446
0
    }
447
0
  }
448
449
0
  return TRUE;
450
0
}
451
452
453
/*
454
 * MCU encoding for AC initial scan (either spectral selection,
455
 * or first pass of successive approximation).
456
 */
457
458
METHODDEF(boolean)
459
encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
460
0
{
461
0
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
462
0
  JBLOCKROW block;
463
0
  unsigned char *st;
464
0
  int tbl, k, ke;
465
0
  int v, v2, m;
466
467
  /* Emit restart marker if needed */
468
0
  if (cinfo->restart_interval) {
469
0
    if (entropy->restarts_to_go == 0) {
470
0
      emit_restart(cinfo, entropy->next_restart_num);
471
0
      entropy->restarts_to_go = cinfo->restart_interval;
472
0
      entropy->next_restart_num++;
473
0
      entropy->next_restart_num &= 7;
474
0
    }
475
0
    entropy->restarts_to_go--;
476
0
  }
477
478
  /* Encode the MCU data block */
479
0
  block = MCU_data[0];
480
0
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
481
482
  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
483
484
  /* Establish EOB (end-of-block) index */
485
0
  for (ke = cinfo->Se; ke > 0; ke--)
486
    /* We must apply the point transform by Al.  For AC coefficients this
487
     * is an integer division with rounding towards 0.  To do this portably
488
     * in C, we shift after obtaining the absolute value.
489
     */
490
0
    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
491
0
      if (v >>= cinfo->Al) break;
492
0
    } else {
493
0
      v = -v;
494
0
      if (v >>= cinfo->Al) break;
495
0
    }
496
497
  /* Figure F.5: Encode_AC_Coefficients */
498
0
  for (k = cinfo->Ss; k <= ke; k++) {
499
0
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
500
0
    arith_encode(cinfo, st, 0);         /* EOB decision */
501
0
    for (;;) {
502
0
      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
503
0
        if (v >>= cinfo->Al) {
504
0
          arith_encode(cinfo, st + 1, 1);
505
0
          arith_encode(cinfo, entropy->fixed_bin, 0);
506
0
          break;
507
0
        }
508
0
      } else {
509
0
        v = -v;
510
0
        if (v >>= cinfo->Al) {
511
0
          arith_encode(cinfo, st + 1, 1);
512
0
          arith_encode(cinfo, entropy->fixed_bin, 1);
513
0
          break;
514
0
        }
515
0
      }
516
0
      arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
517
0
    }
518
0
    st += 2;
519
    /* Figure F.8: Encoding the magnitude category of v */
520
0
    m = 0;
521
0
    if (v -= 1) {
522
0
      arith_encode(cinfo, st, 1);
523
0
      m = 1;
524
0
      v2 = v;
525
0
      if (v2 >>= 1) {
526
0
        arith_encode(cinfo, st, 1);
527
0
        m <<= 1;
528
0
        st = entropy->ac_stats[tbl] +
529
0
             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
530
0
        while (v2 >>= 1) {
531
0
          arith_encode(cinfo, st, 1);
532
0
          m <<= 1;
533
0
          st += 1;
534
0
        }
535
0
      }
536
0
    }
537
0
    arith_encode(cinfo, st, 0);
538
    /* Figure F.9: Encoding the magnitude bit pattern of v */
539
0
    st += 14;
540
0
    while (m >>= 1)
541
0
      arith_encode(cinfo, st, (m & v) ? 1 : 0);
542
0
  }
543
  /* Encode EOB decision only if k <= cinfo->Se */
544
0
  if (k <= cinfo->Se) {
545
0
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
546
0
    arith_encode(cinfo, st, 1);
547
0
  }
548
549
0
  return TRUE;
550
0
}
551
552
553
/*
554
 * MCU encoding for DC successive approximation refinement scan.
555
 */
556
557
METHODDEF(boolean)
558
encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
559
0
{
560
0
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
561
0
  unsigned char *st;
562
0
  int Al, blkn;
563
564
  /* Emit restart marker if needed */
565
0
  if (cinfo->restart_interval) {
566
0
    if (entropy->restarts_to_go == 0) {
567
0
      emit_restart(cinfo, entropy->next_restart_num);
568
0
      entropy->restarts_to_go = cinfo->restart_interval;
569
0
      entropy->next_restart_num++;
570
0
      entropy->next_restart_num &= 7;
571
0
    }
572
0
    entropy->restarts_to_go--;
573
0
  }
574
575
0
  st = entropy->fixed_bin;      /* use fixed probability estimation */
576
0
  Al = cinfo->Al;
577
578
  /* Encode the MCU data blocks */
579
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
580
    /* We simply emit the Al'th bit of the DC coefficient value. */
581
0
    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
582
0
  }
583
584
0
  return TRUE;
585
0
}
586
587
588
/*
589
 * MCU encoding for AC successive approximation refinement scan.
590
 */
591
592
METHODDEF(boolean)
593
encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
594
0
{
595
0
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
596
0
  JBLOCKROW block;
597
0
  unsigned char *st;
598
0
  int tbl, k, ke, kex;
599
0
  int v;
600
601
  /* Emit restart marker if needed */
602
0
  if (cinfo->restart_interval) {
603
0
    if (entropy->restarts_to_go == 0) {
604
0
      emit_restart(cinfo, entropy->next_restart_num);
605
0
      entropy->restarts_to_go = cinfo->restart_interval;
606
0
      entropy->next_restart_num++;
607
0
      entropy->next_restart_num &= 7;
608
0
    }
609
0
    entropy->restarts_to_go--;
610
0
  }
611
612
  /* Encode the MCU data block */
613
0
  block = MCU_data[0];
614
0
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
615
616
  /* Section G.1.3.3: Encoding of AC coefficients */
617
618
  /* Establish EOB (end-of-block) index */
619
0
  for (ke = cinfo->Se; ke > 0; ke--)
620
    /* We must apply the point transform by Al.  For AC coefficients this
621
     * is an integer division with rounding towards 0.  To do this portably
622
     * in C, we shift after obtaining the absolute value.
623
     */
624
0
    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
625
0
      if (v >>= cinfo->Al) break;
626
0
    } else {
627
0
      v = -v;
628
0
      if (v >>= cinfo->Al) break;
629
0
    }
630
631
  /* Establish EOBx (previous stage end-of-block) index */
632
0
  for (kex = ke; kex > 0; kex--)
633
0
    if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
634
0
      if (v >>= cinfo->Ah) break;
635
0
    } else {
636
0
      v = -v;
637
0
      if (v >>= cinfo->Ah) break;
638
0
    }
639
640
  /* Figure G.10: Encode_AC_Coefficients_SA */
641
0
  for (k = cinfo->Ss; k <= ke; k++) {
642
0
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
643
0
    if (k > kex)
644
0
      arith_encode(cinfo, st, 0);       /* EOB decision */
645
0
    for (;;) {
646
0
      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
647
0
        if (v >>= cinfo->Al) {
648
0
          if (v >> 1)                   /* previously nonzero coef */
649
0
            arith_encode(cinfo, st + 2, (v & 1));
650
0
          else {                        /* newly nonzero coef */
651
0
            arith_encode(cinfo, st + 1, 1);
652
0
            arith_encode(cinfo, entropy->fixed_bin, 0);
653
0
          }
654
0
          break;
655
0
        }
656
0
      } else {
657
0
        v = -v;
658
0
        if (v >>= cinfo->Al) {
659
0
          if (v >> 1)                   /* previously nonzero coef */
660
0
            arith_encode(cinfo, st + 2, (v & 1));
661
0
          else {                        /* newly nonzero coef */
662
0
            arith_encode(cinfo, st + 1, 1);
663
0
            arith_encode(cinfo, entropy->fixed_bin, 1);
664
0
          }
665
0
          break;
666
0
        }
667
0
      }
668
0
      arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
669
0
    }
670
0
  }
671
  /* Encode EOB decision only if k <= cinfo->Se */
672
0
  if (k <= cinfo->Se) {
673
0
    st = entropy->ac_stats[tbl] + 3 * (k - 1);
674
0
    arith_encode(cinfo, st, 1);
675
0
  }
676
677
0
  return TRUE;
678
0
}
679
680
681
/*
682
 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
683
 */
684
685
METHODDEF(boolean)
686
encode_mcu(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
687
0
{
688
0
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
689
0
  jpeg_component_info *compptr;
690
0
  JBLOCKROW block;
691
0
  unsigned char *st;
692
0
  int blkn, ci, tbl, k, ke;
693
0
  int v, v2, m;
694
695
  /* Emit restart marker if needed */
696
0
  if (cinfo->restart_interval) {
697
0
    if (entropy->restarts_to_go == 0) {
698
0
      emit_restart(cinfo, entropy->next_restart_num);
699
0
      entropy->restarts_to_go = cinfo->restart_interval;
700
0
      entropy->next_restart_num++;
701
0
      entropy->next_restart_num &= 7;
702
0
    }
703
0
    entropy->restarts_to_go--;
704
0
  }
705
706
  /* Encode the MCU data blocks */
707
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
708
0
    block = MCU_data[blkn];
709
0
    ci = cinfo->MCU_membership[blkn];
710
0
    compptr = cinfo->cur_comp_info[ci];
711
712
    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
713
714
0
    tbl = compptr->dc_tbl_no;
715
716
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
717
0
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
718
719
    /* Figure F.4: Encode_DC_DIFF */
720
0
    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
721
0
      arith_encode(cinfo, st, 0);
722
0
      entropy->dc_context[ci] = 0;      /* zero diff category */
723
0
    } else {
724
0
      entropy->last_dc_val[ci] = (*block)[0];
725
0
      arith_encode(cinfo, st, 1);
726
      /* Figure F.6: Encoding nonzero value v */
727
      /* Figure F.7: Encoding the sign of v */
728
0
      if (v > 0) {
729
0
        arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
730
0
        st += 2;                        /* Table F.4: SP = S0 + 2 */
731
0
        entropy->dc_context[ci] = 4;    /* small positive diff category */
732
0
      } else {
733
0
        v = -v;
734
0
        arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
735
0
        st += 3;                        /* Table F.4: SN = S0 + 3 */
736
0
        entropy->dc_context[ci] = 8;    /* small negative diff category */
737
0
      }
738
      /* Figure F.8: Encoding the magnitude category of v */
739
0
      m = 0;
740
0
      if (v -= 1) {
741
0
        arith_encode(cinfo, st, 1);
742
0
        m = 1;
743
0
        v2 = v;
744
0
        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
745
0
        while (v2 >>= 1) {
746
0
          arith_encode(cinfo, st, 1);
747
0
          m <<= 1;
748
0
          st += 1;
749
0
        }
750
0
      }
751
0
      arith_encode(cinfo, st, 0);
752
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
753
0
      if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1))
754
0
        entropy->dc_context[ci] = 0;    /* zero diff category */
755
0
      else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1))
756
0
        entropy->dc_context[ci] += 8;   /* large diff category */
757
      /* Figure F.9: Encoding the magnitude bit pattern of v */
758
0
      st += 14;
759
0
      while (m >>= 1)
760
0
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
761
0
    }
762
763
    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
764
765
0
    tbl = compptr->ac_tbl_no;
766
767
    /* Establish EOB (end-of-block) index */
768
0
    for (ke = DCTSIZE2 - 1; ke > 0; ke--)
769
0
      if ((*block)[jpeg_natural_order[ke]]) break;
770
771
    /* Figure F.5: Encode_AC_Coefficients */
772
0
    for (k = 1; k <= ke; k++) {
773
0
      st = entropy->ac_stats[tbl] + 3 * (k - 1);
774
0
      arith_encode(cinfo, st, 0);       /* EOB decision */
775
0
      while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
776
0
        arith_encode(cinfo, st + 1, 0);  st += 3;  k++;
777
0
      }
778
0
      arith_encode(cinfo, st + 1, 1);
779
      /* Figure F.6: Encoding nonzero value v */
780
      /* Figure F.7: Encoding the sign of v */
781
0
      if (v > 0) {
782
0
        arith_encode(cinfo, entropy->fixed_bin, 0);
783
0
      } else {
784
0
        v = -v;
785
0
        arith_encode(cinfo, entropy->fixed_bin, 1);
786
0
      }
787
0
      st += 2;
788
      /* Figure F.8: Encoding the magnitude category of v */
789
0
      m = 0;
790
0
      if (v -= 1) {
791
0
        arith_encode(cinfo, st, 1);
792
0
        m = 1;
793
0
        v2 = v;
794
0
        if (v2 >>= 1) {
795
0
          arith_encode(cinfo, st, 1);
796
0
          m <<= 1;
797
0
          st = entropy->ac_stats[tbl] +
798
0
               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
799
0
          while (v2 >>= 1) {
800
0
            arith_encode(cinfo, st, 1);
801
0
            m <<= 1;
802
0
            st += 1;
803
0
          }
804
0
        }
805
0
      }
806
0
      arith_encode(cinfo, st, 0);
807
      /* Figure F.9: Encoding the magnitude bit pattern of v */
808
0
      st += 14;
809
0
      while (m >>= 1)
810
0
        arith_encode(cinfo, st, (m & v) ? 1 : 0);
811
0
    }
812
    /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
813
0
    if (k <= DCTSIZE2 - 1) {
814
0
      st = entropy->ac_stats[tbl] + 3 * (k - 1);
815
0
      arith_encode(cinfo, st, 1);
816
0
    }
817
0
  }
818
819
0
  return TRUE;
820
0
}
821
822
823
/*
824
 * Initialize for an arithmetic-compressed scan.
825
 */
826
827
METHODDEF(void)
828
start_pass(j_compress_ptr cinfo, boolean gather_statistics)
829
0
{
830
0
  arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy;
831
0
  int ci, tbl;
832
0
  jpeg_component_info *compptr;
833
834
0
  if (gather_statistics)
835
    /* Make sure to avoid that in the master control logic!
836
     * We are fully adaptive here and need no extra
837
     * statistics gathering pass!
838
     */
839
0
    ERREXIT(cinfo, JERR_NOTIMPL);
840
841
  /* We assume jcmaster.c already validated the progressive scan parameters. */
842
843
  /* Select execution routines */
844
0
  if (cinfo->progressive_mode) {
845
0
    if (cinfo->Ah == 0) {
846
0
      if (cinfo->Ss == 0)
847
0
        entropy->pub.encode_mcu = encode_mcu_DC_first;
848
0
      else
849
0
        entropy->pub.encode_mcu = encode_mcu_AC_first;
850
0
    } else {
851
0
      if (cinfo->Ss == 0)
852
0
        entropy->pub.encode_mcu = encode_mcu_DC_refine;
853
0
      else
854
0
        entropy->pub.encode_mcu = encode_mcu_AC_refine;
855
0
    }
856
0
  } else
857
0
    entropy->pub.encode_mcu = encode_mcu;
858
859
  /* Allocate & initialize requested statistics areas */
860
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
861
0
    compptr = cinfo->cur_comp_info[ci];
862
    /* DC needs no table for refinement scan */
863
0
    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
864
0
      tbl = compptr->dc_tbl_no;
865
0
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
866
0
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
867
0
      if (entropy->dc_stats[tbl] == NULL)
868
0
        entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
869
0
          ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS);
870
0
      memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS);
871
      /* Initialize DC predictions to 0 */
872
0
      entropy->last_dc_val[ci] = 0;
873
0
      entropy->dc_context[ci] = 0;
874
0
    }
875
    /* AC needs no table when not present */
876
0
    if (cinfo->progressive_mode == 0 || cinfo->Se) {
877
0
      tbl = compptr->ac_tbl_no;
878
0
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
879
0
        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
880
0
      if (entropy->ac_stats[tbl] == NULL)
881
0
        entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small)
882
0
          ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS);
883
0
      memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS);
884
#ifdef CALCULATE_SPECTRAL_CONDITIONING
885
      if (cinfo->progressive_mode)
886
        /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
887
        cinfo->arith_ac_K[tbl] = cinfo->Ss +
888
                                 ((8 + cinfo->Se - cinfo->Ss) >> 4);
889
#endif
890
0
    }
891
0
  }
892
893
  /* Initialize arithmetic encoding variables */
894
0
  entropy->c = 0;
895
0
  entropy->a = 0x10000L;
896
0
  entropy->sc = 0;
897
0
  entropy->zc = 0;
898
0
  entropy->ct = 11;
899
0
  entropy->buffer = -1;  /* empty */
900
901
  /* Initialize restart stuff */
902
0
  entropy->restarts_to_go = cinfo->restart_interval;
903
0
  entropy->next_restart_num = 0;
904
0
}
905
906
907
/*
908
 * Module initialization routine for arithmetic entropy encoding.
909
 */
910
911
GLOBAL(void)
912
jinit_arith_encoder(j_compress_ptr cinfo)
913
0
{
914
0
  arith_entropy_ptr entropy;
915
0
  int i;
916
917
0
  entropy = (arith_entropy_ptr)
918
0
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
919
0
                                sizeof(arith_entropy_encoder));
920
0
  cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
921
0
  entropy->pub.start_pass = start_pass;
922
0
  entropy->pub.finish_pass = finish_pass;
923
924
  /* Mark tables unallocated */
925
0
  for (i = 0; i < NUM_ARITH_TBLS; i++) {
926
0
    entropy->dc_stats[i] = NULL;
927
0
    entropy->ac_stats[i] = NULL;
928
0
  }
929
930
  /* Initialize index for fixed probability estimation */
931
0
  entropy->fixed_bin[0] = 113;
932
0
}